Articles | Volume 21, issue 8
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, 2021
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, 2021
Research article
18 Aug 2021
Research article | 18 Aug 2021

Performance of the Adriatic early warning system during the multi-meteotsunami event of 11–19 May 2020: an assessment using energy banners

Iva Tojčić et al.

Related authors

Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017,,, 2021
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698,,, 2022
Short summary
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682,,, 2022
Short summary
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435,,, 2022
Short summary
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285,,, 2022
Short summary
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082,,, 2022
Short summary

Cited articles

Anderson, E. J. and Mann, G. E.: A high-amplitude atmospheric inertia–gravity wave-induced meteotsunami in Lake Michigan, Nat. Hazards, 106, 1489–1501,, 2020. 
Belušić, D., Grisogono, B., and Klaić, Z. B.: Atmospheric origin of the devastating coupled air–sea event in the east Adriatic, J. Geophys. Res.-Atmos., 112, D17111., 2007. 
Cooley, J. W. and Tukey, J. W.: An algorithm for the machine calculation of complex fourier series, Math. Comput., 19, 297–301, 1965. 
Denamiel, C., Šepić, J., and Vilibić, I.: Impact of geomorphological changes to harbour resonance during meteotsunamis: The Vela Luka Bay test case, Pure Appl. Geophys., 175, 3839–3859,, 2018. 
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami forecast component, Ocean Model., 135, 71–93,, 2019a. 
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Final-revised paper