Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2427-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2427-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance of the Adriatic early warning system during the multi-meteotsunami event of 11–19 May 2020: an assessment using energy banners
Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Cléa Denamiel
Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Ruđer Bošković Institute, Division for Marine and
Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Ivica Vilibić
Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Ruđer Bošković Institute, Division for Marine and
Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Related authors
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Cléa Denamiel
Ocean Sci., 21, 1909–1931, https://doi.org/10.5194/os-21-1909-2025, https://doi.org/10.5194/os-21-1909-2025, 2025
Short summary
Short summary
This study advances our understanding of Adriatic marine heatwaves (MHWs) under historical and far-future extreme warming scenarios, emphasizing the critical role of the Po River plume and Adriatic natural variability in shaping MHW dynamics. While the pseudo-global-warming (PGW) approach used in the study provides valuable insights, future research should adopt more comprehensive modelling frameworks to better capture the complexities of future climate change and its impacts on MHWs.
Elena Terzić, Clara Gardiol, and Ivica Vilibić
Ocean Sci., 21, 1441–1459, https://doi.org/10.5194/os-21-1441-2025, https://doi.org/10.5194/os-21-1441-2025, 2025
Short summary
Short summary
Vertical salinity profiles with their highest values at the surface layers – surface saline lakes – have been known to occur in the eastern Mediterranean, where strong evaporation, warm summers, and low winds all contribute to an increase in surface salinity. Our analysis of Argo data from the past 2 decades showed that saline lakes also occur in other regions across the Mediterranean Sea. This poses the question of whether such changes indicate a salinification of the entire basin due to climate change.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Cited articles
Anderson, E. J. and Mann, G. E.: A high-amplitude atmospheric inertia–gravity wave-induced meteotsunami in Lake Michigan, Nat. Hazards, 106,
1489–1501, https://doi.org/10.1007/s11069-020-04195-2, 2020.
Belušić, D., Grisogono, B., and Klaić, Z. B.: Atmospheric origin of the devastating coupled air–sea event in the east Adriatic, J. Geophys. Res.-Atmos., 112, D17111. https://doi.org/10.1029/2006JD008204, 2007.
Cooley, J. W. and Tukey, J. W.: An algorithm for the machine
calculation of complex fourier series, Math. Comput., 19, 297–301, 1965.
Denamiel, C., Šepić, J., and Vilibić, I.: Impact of geomorphological changes to harbour resonance during meteotsunamis: The Vela Luka Bay test case, Pure Appl. Geophys., 175, 3839–3859, https://doi.org/10.1007/s00024-018-1862-5, 2018.
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami forecast component, Ocean Model., 135, 71–93, https://doi.org/10.1016/j.ocemod.2019.02.003, 2019a.
Denamiel, C., Šepić, J., Huan, X., Bolzer, C., and Vilibić, I.: Stochastic surrogate model for meteotsunami early warning system in the eastern Adriatic Sea, J. Geophys. Res.-Oceans, 124, 8485–8499, https://doi.org/10.1029/2019JC015574, 2019b.
Denamiel, C., Huan, X., Šepić, J., and Vilibić, I.: Uncertainty propagation using polynomial chaos expansions for extreme sea-level hazard assessment: The case of the eastern Adriatic meteotsunamis, J. Phys. Oceanogr., 50, 1005–1021, https://doi.org/10.1175/JPO-D-19-0147.1, 2020.
Denamiel, C., Huan, X., and Vilibić, I.: Conceptual Design of Extreme Sea-Level Early Warning Systems Based on Uncertainty Quantification and Engineering Optimization Methods, Front. Mar. Sci., 8, 562, https://doi.org/10.3389/fmars.2021.650279, 2021.
Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N.,
Luettich, Jr R. A., Zijlema, M., Holthuijsen, L. H., Smith, J. M.,
Westerink, J. G., and Westerink, H. J.: Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in computing hurricane waves and surge, J. Sci. Comput., 52, 468–497, https://doi.org/10.1007/s10915-011-9555-6, 2012.
Ewing, M., Press, F., and Donn, W. L.: An explanation of the Lake Michigan wave of 26 June 1954, Science, 120, 684–686, https://doi.org/10.1126/science.120.3122.684, 1954.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hibiya, T. and Kajiura, K.: Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay, J. Oceanogr. Soc. Jpn., 38, 172–182, https://doi.org/10.1007/BF02110288, 1982.
Horvath, K. and Vilibić, I.: Atmospheric mesoscale conditions during the Boothbay meteotsunami: a numerical sensitivity study using a high-resolution mesoscale model, Nat. Hazards, 74, 55–74, https://doi.org/10.1007/s11069-014-1055-1, 2014.
Jansà, A. and Ramis, C.: The Balearic rissaga: from pioneering research to present-day knowledge, Nat. Hazards, 106, 1269–1297, https://doi.org/10.1007/s11069-020-04221-3, 2020.
Jansa, A., Monserrat, S., and Gomis, D.: The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami, Adv. Geosci., 12, 1–4, https://doi.org/10.5194/adgeo-12-1-2007, 2007.
Linares, A., Wu, C. H., Bechle, A. J., Anderson, E. J., and Kristovich, D. A. R.: Unexpected rip currents induced by a meteotsunami, Sci. Rep., 9, 2105, https://doi.org/10.1038/s41598-019-38716-2, 2019.
Lindzen, R. S. and Tung K.-K.: Banded convective activity and ducted gravity waves, Mon. Weather Rev., 104, 1602–1617, https://doi.org/10.1029/2018JD029523 1976.
Miles, J. and Munk, W.: Harbor Paradox, Journal of the Waterways and Harbors Division, ASCE, 87, 111–130, 1961
Monserrat, S. and Thorpe, A. J.: Gravity-wave observations using an array of microbarographs in the Balearic Islands, Q. J. Roy. Meteor. Soc., 118, 259–282, https://doi.org/10.1002/qj.49711850405, 1992.
Monserrat, S. and Thorpe, A. J.: Use of ducting theory in an observed case of gravity waves, J. Atmos. Sci., 53, 1724–1736, https://doi.org/10.1175/1520-0469(1996)053<1724:UODTIA>2.0.CO;2, 1996.
Monserrat, S., Vilibić, I., and Rabinovich, A. B.: Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band, Nat. Hazards Earth Syst. Sci., 6, 1035–1051, https://doi.org/10.5194/nhess-6-1035-2006, 2006.
Mourre, B.,
Santana, A., Buils, A., Gautreau, L., Ličer, M., Jansà, A., Casas, B., Amengual, B., and Tintoré, J.: On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations, Nat. Hazards, 106, 1315–1336, https://doi.org/10.1007/s11069-020-03908-x, 2020.
NCAR: WRF Source Code, available at:
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html, last access: 16 August 2021.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future coastal population growth and exposure to sea-level rise and coastal flooding – A global assessment, PLoS ONE, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015.
Nicholls, R. J. and Cazenave, A.: Sea-level rise and its impact on coastal zones, Science, 328, 1517–1520, https://doi.org/10.1126/science.1185782, 2010.
Orlić, M., Belušić, D., Janeković, I., and Pasarić, M.: Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing, J. Geophys. Res.-Oceans, 115, C06011, https://doi.org/10.1029/2009JC005777, 2010.
Pattiaratchi, C. B. and Wijeratne, E. M. S.: Are meteotsunamis an underrated hazard?, Philos. T. Roy. Soc. A, 373, 20140377. https://doi.org/10.1098/rsta.2014.0377, 2015.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Lascaratos, A., Le Traon, P.-Y., Maillard, C., Manzella, G., and Tziavos, C.: The Mediterranean ocean forecasting system: first phase of implementation (1998–2001), Ann. Geophys., 21, 3–20, https://doi.org/10.5194/angeo-21-3-2003, 2003.
Proudman, J.: The effects on the sea of changes in atmospheric pressure, Mon. Not. R. Astron. Soc. Geophys. Suppl., 2, 197–209, https://doi.org/10.1111/j.1365-246X.1929.tb05408.x, 1929.
Rabinovich, A. B.: Seiches and harbour oscillations. In: Kim YC (eds) Handbook of coastal and ocean engineering, pp 193–236. World Scientific, Singapore, https://doi.org/10.1142/9789812819307_0009, 2009.
Rabinovich, A. B.: Twenty-seven years of progress in the science of meteorological tsunamis following the 1992 Daytona Beach event, Pure Appl. Geophys., 177, 1193–1230, https://doi.org/10.1007/s00024-019-02349-3, 2020.
Renault, L., Vizoso, G., Jansà, A., Wilkin, J., and Tintoré, J.: Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models, Geophys. Res. Lett., 38, L10601, https://doi.org/10.1029/2011gl047361, 2011.
Salaree, A., Mansouri, R., and Okal, E. A.: The intriguing tsunami of 19 March 2017 at Bandar Dayyer, Iran: field survey and simulations, Nat. Hazards, 90, 1277–1307, https://doi.org/10.1007/s11069-017-3119-5, 2018.
Soize, C. and Ghanem, R. G.: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., 26, 395–410, https://doi.org/10.1137/S1064827503424505, 2004.
Šepić, J., Vilibić, I., and Belušić, D.: The source of the 2007 Ist meteotsunami (Adriatic Sea), J. Geophys. Res.-Oceans, 114, C03016, https://doi.org/10.1029/2008JC005092, 2009.
Šepić, J., Međugorac, I., Janeković, I., Dunić, N., and Vilibić, I.: Multi-meteotsunami event in the Adriatic Sea generated by atmospheric disturbances of 25–26 June 2014, Pure Appl. Geophys., 173, 4117–4138, https://doi.org/10.1007/s00024-016-1249-4, 2016.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O.,
Barker, D. M., Wang, W., and Powers, J. G.: A Description of the Advanced
Research WRF Version 2, NCAR Technical Note NCAR/TN-468+STR, University Corporation for Atmospheric Research, Boulder, CO, USA,
https://doi.org/10.5065/D6DZ069T, 2005.
Tojčić, I.: Performance of the Adriatic Early Warning System during the
Multi-Meteotsunami Event of 11–19 May 2020: An Assessment Using Energy Banners, OSF [data set], https://doi.org/10.17605/OSF.IO/24M8E,
2020.
University of North Carolina of Chapel Hill: ADCIRC user guide, available at: http://adcirc.org/, last access: 16 August 2021.
Vich, M. d. M. and Romero, R.: Forecasting meteotsunamis with
neural networks: the case of Ciutadella harbour (Balearic Islands),
Nat. Hazards, 106, 1299–1314, https://doi.org/10.1007/s11069-020-04041-5, 2020.
Vilibić, I. and Šepić, J.: Destructive meteotsunamis along the eastern Adriatic coast: overview, Phys. Chem. Earth, 34, 904–917, https://doi.org/10.1016/j.pce.2009.08.004, 2009.
Vilibić, I., Domijan, N., Orlić, M., Leder, N., and Pasarić, M.: Resonant coupling of a traveling air-pressure disturbance with the east Adriatic coastal waters, J. Geophys. Res.-Oceans, 109, C10001, https://doi.org/10.1029/2004JC002279, 2004.
Vilibić, I., Monserrat, S., Rabinovich, A., and Mihanović, H.: Numerical modelling of the destructive meteotsunami of 15 June 2006 on the coast of the Balearic Islands, Pure Appl. Geophys., 165, 2169–2195, https://doi.org/10.1007/s00024-008-0426-5, 2008.
Vilibić, I., Šepić, J., Rabinovich, A. B., and Monserrat, S.: Modern approaches in meteotsunami research and early warning, Front. Mar. Sci., 3, 57, https://doi.org/10.3389/fmars.2016.00057, 2016.
Vučetić, T., Vilibić, I., Tinti, S., and Maramai, A.: The Great Adriatic flood of 21 June 1978 revisited: An overview of the reports, Phys. Chem. Earth, 34, 894–903, https://doi.org/10.1016/j.pce.2009.08.005, 2009.
Warner, J. C.: Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, available at: https://www.usgs.gov/software/coupled-ocean-atmosphere-wave-sediment-transport-coawst-modeling-system, last access: 16 August 2021.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Xiu, D. and Karniadakis, G. E.: The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619–644, https://doi.org/10.1137/S1064827501387826, 2002.
Zemunik, P., Bonanno, A., Mazzola, S., Giacalone, G., Fontana, I., Genovese, S., Basilone, G., Candela, J., Šepić, J., Vilibić, I., and Aronica, S.: Observing meteotsunamis (“Marrobbio”) in the southwestern coast of Sicily, Nat. Hazards, 106, 1337–1363, https://doi.org/10.1007/s11069-020-04303-2, 2020.
Zsótér, E., Pappenberger, F., and Richardson, D.: Sensitivity of model climate to sampling configurations and the impact on the Extreme Forecast Index, Meteorol. Appl., 22, 236–257, https://doi.org/10.1002/met.1447, 2014.
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS)...
Altmetrics
Final-revised paper
Preprint