Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1703-2021
https://doi.org/10.5194/nhess-21-1703-2021
Research article
 | 
02 Jun 2021
Research article |  | 02 Jun 2021

A cross-scale study for compound flooding processes during Hurricane Florence

Fei Ye, Wei Huang, Yinglong J. Zhang, Saeed Moghimi, Edward Myers, Shachak Pe'eri, and Hao-Cheng Yu

Related authors

A hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of Mexico
Jiabi Du, Kyeong Park, Jian Shen, Yinglong J. Zhang, Xin Yu, Fei Ye, Zhengui Wang, and Nancy N. Rabalais
Ocean Sci., 15, 951–966, https://doi.org/10.5194/os-15-951-2019,https://doi.org/10.5194/os-15-951-2019, 2019
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Semi-empirical forecast modelling of rip-current and shore-break wave hazards
Bruno Castelle, Jeoffrey Dehez, Jean-Philippe Savy, Sylvain Liquet, and David Carayon
Nat. Hazards Earth Syst. Sci., 25, 2379–2397, https://doi.org/10.5194/nhess-25-2379-2025,https://doi.org/10.5194/nhess-25-2379-2025, 2025
Short summary
A multiscale modelling framework of coastal flooding events for global to local flood hazard assessments
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025,https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary
Super typhoons Mangkhut (2018) and Saola (2023) during landfall: comparison and insights for wind engineering practice
Yujie Liu, Yuncheng He, Pakwai Chan, Aiming Liu, and Qijun Gao
Nat. Hazards Earth Syst. Sci., 25, 2255–2269, https://doi.org/10.5194/nhess-25-2255-2025,https://doi.org/10.5194/nhess-25-2255-2025, 2025
Short summary
Recent Baltic Sea storm surge events from a climate perspective
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 25, 2137–2154, https://doi.org/10.5194/nhess-25-2137-2025,https://doi.org/10.5194/nhess-25-2137-2025, 2025
Short summary
Development of a wind-based storm surge model for the German Bight
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025,https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary

Cited articles

Austin, S. H., Watson, K. M., Lotspeich, R. R., Cauller, S. J., White, J. S., and Wicklein, S. M.: Characteristics of peak streamflows and extent of inundation in areas of West Virginia and southwestern Virginia affected by flooding, June 2016 (ver. 1.1, September 2018), US Geological Survey Open-File Report 2017-1140, US Geological Survey, Reston, Virginia, USA, 35 pp., https://doi.org/10.3133/ofr20171140, 2018. 
Butterworth, S.: On the theory of filter amplifiers, Wireless Eng., 7, 536–541, 1930. 
Cai, X., Zhang, Y. J., Shen, J., Wang, H., Wang, Z., Qin, Q., and Ye, F.: A Numerical Study of Hypoxia in Chesapeake Bay Using an Unstructured Grid Model: Validation and Sensitivity to Bathymetry Representation, J. Am. Water Resour. As., https://doi.org/10.1111/1752-1688.12887, in press, 2020. 
Chen, A. S., Djordjević, S., Leandro, J., and Savić, D. A.: An analysis of the combined consequences of pluvial and fluvial flooding, Water Sci. Technol., 62, 1491–1498, 2010. 
Chen, W. B. and Liu, W. C.: Modeling flood inundation induced by river flow and storm surges over a river basin, Water, 6, 3182–3199, 2014. 
Download
Short summary
Compound flooding is caused by multiple mechanisms contributing to elevated water level simultaneously, which poses higher risks than conventional floods. This study uses a holistic approach to simulate the processes on a wide range of spatial and temporal scales that contributed to the compound flooding during Hurricane Florence in 2018. Sensitivity tests are used to isolate the contribution from each mechanism and identify the region experiencing compound effects, thus supporting management.
Share
Altmetrics
Final-revised paper
Preprint