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Abstract. We study the compound flooding processes that
occurred in Hurricane Florence (2018), which was accompa-
nied by heavy precipitation, using a 3D creek-to-ocean hy-
drodynamic model. We examine the important role played
by barrier islands in the observed compound surges in the
coastal watershed. Locally very high resolution is used in
some watershed areas in order to resolve small features that
turn out to be critical for capturing the observed high water
marks locally. The wave effects are found to be significant
near barrier islands and have contributed to some observed
over-toppings and breaches. Results from sensitivity tests ap-
plying each of the three major forcing factors (oceanic, flu-
vial, and pluvial) separately are succinctly summarized in a
“dominance map” that highlights significant compound ef-
fects in most of the affected coastal watersheds, estuaries,
and back bays behind the barrier islands. Operational fore-
casts based on the current model are being set up at NOAA
to help coastal resource and emergency managers with disas-
ter planning and mitigation efforts.

1 Introduction

Recently, more frequent occurrences of “wet” hurricanes
(i.e., hurricanes accompanied by heavy precipitation) that
stall near the coast (Pfahl et al., 2017; Hall and Kossin, 2019)
have brought new challenges to coastal communities in the
form of compound flooding, which is defined as concurrence
of flooding from the same or different origins (river, storm
surge and rainfall), especially in the coastal transitional zone
that sits at the border between coastal, estuarine, and hy-
drologic regimes (Santiago-Collazo et al., 2019). Compound

flooding highlights one of the major pitfalls of the current
hurricane intensity scale, which is entirely based on wind
speed, leaving the potential rainfall and flooding impacts to
be glossed over in initial forecasts that emphasize hurricane
category. The record-setting 2020 Atlantic hurricane season
(which had several very wet storms) highlights the urgency
and exposes the current knowledge gap for understanding
compound flooding processes.

A recent example for compound flood events is Hurricane
Florence that impacted a large area of North Carolina (NC)
in September 2018. Hurricane Florence was the first major
hurricane of the 2018 Atlantic hurricane season. Originating
from a strong tropical wave near Cape Verde, west Africa,
it acquired tropical storm strength on 1 September, followed
by a rapid intensification to a category 4 status on 4 Septem-
ber, with estimated maximum sustained winds of 130 mph
(58 ms~!), and eventually reaching its maximum strength on
11 September. It made landfall south of Wrightsville Beach
near the border between NC and South Carolina (SC) as a
category | hurricane on 14 September. The slow motion of
the storm after the landfall brought heavy rainfall through-
out the Carolinas for several days. Compounded by the storm
surge, the rainfall caused widespread flooding along a large
swath of the NC coast and inland flooding in cities such
as Fayetteville, Smithfield, Lumberton, Durham, and Chapel
Hill. According to a USGS report (Fester et al., 2018), a
new record rainfall total of 35.93in. (0.91 m) was set dur-
ing the hurricane in Elizabethtown, NC. Many other loca-
tions throughout NC and SC also set new rainfall records
(Fig. 1). Florence is a quintessential example of major flood-
ing caused by a slow moving, moisture-laden storm, even if
it does not have strong hurricane wind.
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Figure 1. Weather map showing the low-pressure system and
amount of rainfall Florence brought to the North Carolina and
South Carolina coast around landfall. Credit: NOAA Central Li-
brary US Daily Weather Maps Project (https://www.wpc.ncep.noaa.
gov/dailywxmap/, last access: April 2021); partial views of the orig-
inal online maps.

In this paper, we will study the response to the storm in the
watershed rivers and estuaries and examine the processes and
sources that led to the compound flooding there. We will also
examine the coastal responses to the event and the close con-
nection between watershed and coastal ocean. The existing
modeling efforts on compound flooding (Chen et al., 2010;
Cho et al., 2012; Dresback et al., 2013; Chen and Liu, 2014,
Ikeuchi et al., 2017; Kumbier et al., 2018; Pasquier et al.,
2019; Wing et al., 2019; Muiioz et al., 2020) often focus on
a subset of the processes (storm surges, tides, waves, fluvial
flooding, pluvial flooding, and potential baroclinic effects),
leaving gaps in accurately representing the complex inter-
actions among them (Santiago-Collazo et al., 2019). What
distinguishes this study from traditional compound flooding
simulations is a holistic approach that solves interrelated pro-
cesses in different regimes and on multiple temporal and spa-
tial scales with the same hydrodynamic core (i.e., the same
set of governing equations) in a single modeling framework.
An overview of the processes studied in this paper is shown
in Fig. 2. The primary tool used in this study is a proven
cross-scale 3D baroclinic model designed for effective and
holistic simulations of intertwined processes as found during
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this event. The trade-off between 2D and 3D setups was care-
fully weighed with the goal of operationalization in mind be-
fore the 3D setup was chosen. In short, the advantage of 2D is
the speed (about 80 times faster than its 3D baroclinic coun-
terpart) and the simplicity of the setup; the disadvantage is
that it misses baroclinic effects and 3D processes whose im-
portance can vary in space and time. For example, the baro-
clinic effects during the adjustment phase after Hurricane
Irene (2011) are discussed in detail in Ye et al. (2020) us-
ing a similar model setup as the one used here. Even though
different setups (2D, 3D barotropic, and 3D baroclinic) were
tuned to their best possible skills, the 3D baroclinic setup
was shown to better capture the total elevation during the
post-storm adjustment phase. In addition, during the ongo-
ing effort to operationalize the model, we found that includ-
ing 3D processes greatly simplified the bottom friction pa-
rameterization at some coastal locations (e.g., NOAA Sta-
tion 8447930 at Woods Hole, MA; Huang et al., 2021b). A
3D model can also produce relevant 3D variables (e.g., 3D
velocity and tracer concentration) that are important for safe
navigation and ecosystem health. The 3D model presented
in this paper is efficient enough for operational forecasts
(see Sect. 3.1), which are being set up at NOAA (National
Oceanic and Atmospheric Administration).

The rest of the paper is structured as follows. Section 2
will review the study site and available observations collected
during the event in the watershed, estuaries, and coastal
ocean. Section 3 describes the numerical model used and
its setup. Section 4 presents model validation and impor-
tant sensitivity test results; the validation is done in a cross-
scale fashion from small-scale watershed areas to large-scale
coastal ocean. Section 5 discusses the compound effects as
revealed by the 3D model in all regimes. Section 6 summa-
rizes the major findings and planned follow-up work.

2 Study site and observation

The focus (high-resolution) area of this study is the NC and
SC coast and coastal watersheds that saw most of the impact
from Florence (Fig. 3b and f). Similar to what we did for
other hurricane events, the spatial domain’s landward bound-
ary is set at 10 m above the NAVDS88 datum, which is deemed
sufficient to capture most backwater effects (Zhang et al.,
2020). A rich set of observations for physical and biolog-
ical variables are available from satellites, autonomous in-
struments (e.g., gliders and Argo floats), in situ stations op-
erated by NOAA, and USGS’s field estimates collected dur-
ing after-event surveys (e.g., high water marks or HWMs;
Fig. 2b and c). Analysis and quality control of these datasets
have been done by the data distributors, together with uncer-
tainty assessments. Some of the datasets will be presented
in the context of model validation sections below to allow
for a comprehensive and objective assessment of the model
errors and uncertainties. An assessment of compound flood
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Figure 2. Overview of the processes studied in the paper, from (a) coastal zone to (b) watershed and down to very small local scales in
the watershed in (c¢) and (d). The base maps in (¢) and (d) are provided by Esri (sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS user community).

models such as ours inevitably involves observations col-
lected at disparate spatial and temporal scales of several or-
ders of magnitude contrasts, as illustrated in Fig. 2. To the
best of our knowledge, this type of model assessment has
rarely been attempted before even in a 2D setting due to
the formidable challenges to numerical models (Santiago-
Collazo et al., 2019) but is badly needed in order to gain a
holistic understanding of the complex processes at play (Ye
et al., 2020; Zhang et al., 2020; Huang et al., 2021a).

3 Model description
3.1 Model setups

To capture the storm surge effects we use a large study do-
main that encompasses the North Atlantic west of 60°W
(Fig. 3a). An added benefit of using such a large domain
in conjunction of a 3D baroclinic model is that the interac-
tion between large- and small-scale processes can be organi-
cally examined in a single model. For example, the disruption
and oscillation of the Gulf Stream by storms can directly af-
fect the coastal inundation (i.e., the fair-weather flooding re-
ported by Ezer, 2018); our results suggest that the converse
is also true, as watershed processes can also affect the Gulf
Stream and other coastal processes (Ye et al., 2020). There-
fore, a seamless creek-to-ocean model is advantageous for
compound flood studies.

As we shall see, this model solves the physical pro-
cesses from the watershed to the ocean with the same
set of governing equations, qualifying for the definition of
Santiago-Collazo et al. (2019) of a fully coupled compound
surge and flood model. SCHISM (schism.wiki) uses effi-
cient semi-implicit solvers to solve the hydrostatic form of
the Reynolds-averaged Navier—Stokes equations and trans-
port equation (Zhang et al., 2016) which govern all flow
movements inside the 3D model domain, including over-
land flow in the watersheds, as well as estuarine and ocean
circulations. Major characteristics of the model that ensure
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a balance of accuracy, efficiency, robustness, and flexibil-
ity include hybrid finite-element and finite-volume methods
and a highly flexible 3D gridding system (“polymorphism”)
that combines a hybrid triangular-quadrangular unstructured
grid in the horizontal dimension; and localized sigma co-
ordinates with shaved cells (dubbed as LSC2; Zhang et al.,
2015) in the vertical dimension. The polymorphism allows a
single SCHISM grid to seamlessly morph between full 3D,
2DH (2D depth-averaged), 2DV (2D laterally averaged), and
quasi-1D configurations. The employment of shaved cells
near the bottom in particular faithfully preserves the original
bathymetry without any smoothing required. The detrimen-
tal effects of bathymetry smoothing on important physical
and biological processes (e.g., residual transport, lateral cir-
culation, nutrient cycling, etc.) have been documented in Ye
et al. (2018) and Cai et al. (2020).

Similar to a recent compound flooding study using
SCHISM for Hurricane Harvey (Huang et al., 2021a), the
current model domain covers the entire US east coast and
the entire Gulf of Mexico, with all major bays, estuaries,
and coastal watersheds resolved (Fig. 3). The horizontal
grid, generated using the software SMS (aquaveo.com), has
2.2 million nodes and 4.4 million elements (Fig. 3). About
50 % and 40 % of the elements have a resolution finer than
300 and 220 m, respectively (Fig. 3e). The grid bathymetry
is interpolated from a combination of digital elevation model
(DEM) sources from coarse (ETOPO1, 90 m Coastal Relief
Model!) to fine resolution (1/9 arcsec CUDEM? and 1-3m
CoNED3 ), and the vertical datum used is NAVDS8S, with ap-
propriate conversion between datums done by the VDatum
tool (vdatum.noaa.gov). Note that NAVDS88 is a more conve-

1https://ngdc.noaa.gov/mgg/coastal/crm.html, last access: Jan-
uary 2021.

2https://www.ncei.1‘1oaa.gov/metadata/geoportal/rest/rnetadata/
item/gov.noaa.ngdc.mgg.dem:999919/html, last access: Jan-
uary 2021.

3https://www.usgs.gov/c:ore-science-systems/eros/coned, last
access: January 2021.
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Figure 3. Model domain and horizontal grid. (a) Domain extent and hurricane track. (b) Station locations along the North Carolina and
South Carolina coast. The six NOAA gauges are Charleston (8665530), Springmaid Pier (8661070), Wrightsville Beach (8658163), Beaufort
(8656483), Hatteras (8654467), and Oregon Inlet (8652587). The three squares are National Data Buoy Center (NDBC) buoys (41013, 41159,
and 41025). The spatial extents of (c), (d), and (f) are also marked in (b). (¢) Zoom-in of grid in a watershed area (the arcs are from National
Water Model (NWM) river network). (d) Zoom-in of grid near barrier islands and inlet (the dark line is the O m isobath, NAVDSS). (e)
Cumulative histogram of grid resolution (measured in equivalent diameters). (f) Grid resolution in North Carolina’s coastal watershed area.
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Figure 4. Vertical grid. (a) Transect from the watershed to the ocean used to illustrate the vertical grid; (b) vertical grid along the transect;
(¢) zoom-in from (b) illustrating the transitions from 3D (Pamlico Sound) to 2DH (barrier islands) and back to 3D (coastal ocean). The base
map in (a) is provided by Esri (sources: Esri, DeLorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong),

Esri (Thailand), MapmylIndia, Tomtom).

nient datum to use in the model as most of the recent ob-
servational data refer to this datum, and therefore we use
this datum in the model setup and allow the model to au-
tomatically set up the sub-tidal surface slope from coastal
ocean into watershed (due to the friction effects). Altogether
close to 400 DEM tiles are used to cover such a large re-
gion. The horizontal grid resolution ranges from 6—7 km in
the open ocean to ~400m near the shoreline, with bar-
rier islands and narrow inlets resolved; river channels and
creeks have about 300 m along-channel resolution and vari-
able cross-channel resolutions to ensure adequate represen-
tation of the channelized flow. Shipping channels are repre-
sented by quadrangles and have 20 m or finer cross-channel
resolution in NC. The finest grid resolution used is ~ 1 m
which represents many levees in other parts of the coast;
note that as an implicit model SCHISM is not constraint by
the Courant—Friedrichs—Lewy (CFL) condition and thus can
handle high resolution efficiently. Moreover, to better cap-
ture the geometry and bathymetry of flood pathways in the
watershed region, specifically the region between the 10 m
contour (set as the land boundary) and the O m contour of
the DEM (based on NAVDSS), about 300 000 National Water
Model (NWM) segments (i.e., thalwegs; Fig. 3c) are repro-
duced in SCHISM’s horizontal grid. Note that only the ge-
ometry of the NWM segments is retained, while NWM out-
puts are only used as the land boundary condition, and NWM
does not solve any hydrodynamics inside the model domain.
Customary of all SCHISM applications, no manipulation or
smoothing of bathymetry was done in the computational grid
after interpolation of the depths from DEMs (including steep
slopes in the Caribbean and all shipping channels). From our
experience, CUDEM may underestimate the depth of coastal
streams (e.g., those in the South Carolina watersheds), which
is a potential error source of our model. In the vertical dimen-
sion we use 1-43 grid layers, with 43 layers being applied in
the deep ocean and 1 layer in most of the watershed (Fig. 4),
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Table 1. Baseline and sensitivity runs used in this paper.

Scenario Description

Baseline With forcing from tides, atmosphere, rivers
(from NWM), and precipitation, initialized

with HYCOM GOFS 3.1

Baseline_Wave Baseline with added wave effects

Ocean Baseline forced by ocean and atmosphere
(i.e., tides and storm surge) only

River Baseline forced by rivers (i.e., freshwater
inputs from NWM) only

Rain Baseline forced by precipitation (directly

on top of the domain) only

thus effectively rendering the model 2DH there, which is suf-
ficient for processes like overland flow and inundation.
Table 1 shows the setups for Baseline and important sensi-
tivity simulations used in this paper. For the Baseline, im-
posed at the ocean boundary (60° W) are tidal elevation
and barotropic velocity of eight tidal constituents (S2, M2,
N2, K2, K1, P1, Ol, and Q1) extracted from the FES2014
database*. The baroclinic components for the elevation and
velocity are derived from the daily outputs of the HYbrid
Coordinate Ocean Model (HY COM; hycom.org). The initial
condition for the water elevation is set to be O in all areas
with positive grid depths (“wet” with O initial water level,
e.g., rivers and bays) and to be equal to the bottom eleva-
tion in areas with negative grid depths (“dry” with O initial
water depth, e.g., high ground in the watershed). The initial
condition for the horizonal velocity is zero in the watershed
and is interpolated from HYCOM elsewhere. Commensurate
with the non-zero velocity (fully dynamic state) are salin-

4https://datastore.cls.fr/catalogues/fe52014-tide-m0del/, last ac-
cess: January 2021.
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ity and temperature values interpolated from HYCOM; how-
ever, in the nearshore areas where HYCOM results are less
accurate, the initial conditions for salinity and temperature
are interpolated from the sparse observation at several USGS
gauges in order to speed up the dynamic adjustment process.
The surface meteorological forcing applied in the model is
a combination of two products: (1) a high-resolution ERA
re-analysis product from the European Centre for Medium-
range Weather Forecasts (ECMWF) with a ~ 9 km horizontal
resolution (see Acknowledgements) and (2) a 3 h time inter-
val with NOAA’s High-Resolution Rapid Refresh (HRRRY),
which is a cloud-resolving and convection-allowing atmo-
spheric model with a 3km horizontal resolution and a 1h
time interval. The friction of the Baseline model was tuned in
the wet area (river, estuary, ocean; lower than 1 m, NAVDS88)
and on higher grounds (higher than 3 m, NAVDS88) sepa-
rately. In the wet area, drag coefficients within a range of
0.001-0.01 (non-dimensional) were tested. The commonly
accepted default value of 0.0025 gave good error statistics
near the landfall site, and values within a range of 0.001-
0.005 gave very similar results. In the watershed, drag co-
efficients within a range of 0.01-0.5 were tested. The opti-
mal value was chosen based on the high water mark (HWM)
comparisons (Sect. 4.3) at 276 locations recorded by USGS.
A small friction value within this range tended to underpre-
dict the elevation at HWMs, and a large value led to over-
prediction. Values within a range of 0.02-0.05 gave good er-
ror statistics. We chose 0.025 because it gave slightly bet-
ter results in the Cape Fear River watershed near the land-
fall site. To sum up, drag coefficient is set at a constant
value of 0.0025 at all “wet” locations and then linearly in-
creased to 0.025 as the ground elevation increases from 1
to 3m (NAVDS88), and finally a constant value of 0.025 is
used for higher grounds where the bed texture is generally
rougher than the riverbed. Note that this is the parameteriza-
tion based on the region influenced by Hurricane Florence.
Spatially varying parameterization of bottom friction for dif-
ferent systems is an ongoing effort as we study more recent
hurricanes and operationalize the model along the east coast
and the Gulf Coast. However, as presented in Ye et al. (2020),
Zhang et al. (2020), and Huang et al. (2021a), the choices
described above seem to work fine in general for other sys-
tems as well. The method used to impose the river flow in the
model is described in the next subsection.

Choices of the Baseline model parameters are similar to
those used for Irene (Ye et al., 2020). The time step is 150's
(sensitivity tests using 100-150s gave very similar results).
The level-2.5 equation turbulence closure scheme chosen is
from the generic length scale model k-kI (Umlauf and Bur-
chard, 2003). The simulation starts from 24 August 2018 at
00:00 UTC and lasts for 36d to cover the hurricane and en-
suing restoration period. Although the model covers a large
domain, most of the elements (those in the watersheds) are

5https://rapidrefresh.noaa. gov/hrrr/, last access: January 2021.
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quasi-2D, making it efficient enough for operational fore-
casts. For the Baseline run, the real time to simulation time
ratio is 80 with 1440 cores on TACC’s (Texas Advanced
Computing Center) Stampede?2 cluster and 30 with 480 cores
on W&M'’s SciClone cluster. Intel Skylake cores with a nom-
inal clock speed of 2.1 GHz were used on both clusters. This
means a 3d (typical operational forecast duration) simula-
tion will take about 0.9h using 1440 cores or 2.4h using
480 cores.

3.2 Coupling with NWM

River discharges are introduced into our model at its land
boundary. About 6752 intersection points are identified be-
tween the NWM river segments and SCHISM’s land bound-
ary where the freshwater is injected as volume sources
(Fig. 5). Inside the model domain, streamflow, overland flow,
and precipitation are directly handled by the hydrodynamic
core of SCHISM. This fully coupled configuration is rare
in the existing compound flooding simulations (Santiago-
Collazo et al., 2019). To ensure the accuracy and robust-
ness of SCHISM in simulating hydrological and hydraulic
processes including the overland flow, we already examined
the model’s performance in both lab-scale and field-scale
tests in a previous study (Sects. 2.2 and 2.3 of Zhang et al.,
2020) and applied the model in the Delaware Bay watershed
including the Delaware River (extended to 40 m above the
NAVDS8S8 datum) with a hydraulic jump (Fig. 14 in Zhang
et al., 2020). The NWM segments explicitly reproduced in
our grid (Fig. 3c) during the mesh generation stage help
capture the bathymetry of main flood pathways (thalwegs).
However, flow is not restricted to these 1D segments; in fact,
precipitation may generate overland flow on any 2D horizon-
tal grid elements in the watershed. Note that the river flows
injected at the land boundary have indirectly incorporated
the precipitation that occurred outside (but not inside) the
model domain, and therefore, the addition of direct precipita-
tion onto the model domain is appropriate and is an integral
component of the compound flood processes. To accurately
simulate the initial movement of the very thin layer of rain-
water on the dry land, which is dominated by friction, a very
small threshold of 10~°m is used to differentiate between
wet and dry states (Zhang et al., 2020). Since we have no in-
formation on the scalar concentrations for river inflows and
rainfall, we applied O PSU (practical salinity unit) for salin-
ity and ambient water temperature (i.e., the temperature at
the local receiving cell calculated without accounting for the
rivers or raindrops) for the injected river water and also for
the rainfall. Obviously, the latter represents a source of un-
certainty for the modeled temperature results. As explained
in Huang et al. (2021a), heat exchange between air and water
would misbehave on such a thin layer of water in the water-
shed, so a threshold of 0.1 mm is set for local water depth,
below which the heat exchange is turned off. As a model
limitation, infiltration is neglected in this work. In the case

https://doi.org/10.5194/nhess-21-1703-2021
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Figure 5. Distribution of river discharge (time-averaged during the simulation period) in North Carolina and South Carolina from the National

Water Model (NWM).

of Hurricane-Florence-induced flooding, we expect the ef-
fect of infiltration to be minor. According to NOAA’s weather
map®, there was continuous rainfall along the US east coast
from 11 September 2018 to the date of Florence’s landfall
(14 September 2018), so the infiltration capacity of the soil
was already reduced. Moreover, “wet” storms like Hurricane
Florence (2018) and Hurricane Harvey (2017) tend to dump
a large amount of rain fall at a location for days because
of the slow movement of the storm, so most of the rainfall
should be on saturated soil. As another model limitation, the
drainage in urban settings is not included in our model. This
may have led to some occasional big errors in the predicted
elevation on high water marks, for example the one large er-
ror in the urban area in Fig. 13d. We do have a plan of explic-
itly accounting for infiltration and drainage as volume sinks
based on NWM (or other hydrologic models). However, con-
sidering the additional uncertainty this would bring, for now
we choose to continue improving more important aspects of
the model for operational use; the focus is on the quality of
model grid, which is very likely responsible for most of the
existing large errors.

The assessment of NWM-calculated flow against observed
flow at the two largest rivers in the region is shown in Fig. 6.
Similar to our findings for other storm events, the flow pro-
duced by this particular version of NWM (v2.0) is gener-
ally consistent with USGS observations but tends to show
narrower and higher peaks, with roughly the same total vol-
ume of water throughout the event (Fig. 6). The observa-

6https://www.wpc.ncep.noaa.gov/dailywxmap/, last

April 2021.

access:

https://doi.org/10.5194/nhess-21-1703-2021

tion indicates the peak streamflow occurs about 7 d after the
landfall, which is the time it takes for the rainfall-induced
flood to reach the coastal rivers. Note that there is typically
a time lag of 1-2d between the peak flow in NWM and the
gauged flow (Fig. 6). The forcing errors in the magnitude
and timing of NWM’s peak flow should explain part of the
model errors, especially in the watershed. For example, we
found that replacing the NWM streamflow with the gauged
flow at USGS Station 02109500 (Waccamaw River at Free-
land, NC) improves the model skill locally. However, this is
not cost-effective for our goal of operationalizing this com-
pound flood model along the US east coast and Gulf Coast.
The developers of NWM (Gochis et al., 2018) showed that
NWM’s model skill was improved by each version update,
with 44 % of the gauges having a bias <20 % in the lat-
est version (NWM v2.0). We will adopt the newest and best
NWM version as soon as it is available in our ongoing study
and operational forecast, and we are open to using any other
hydrologic sources to drive our model.

4 Model validation and sensitivity

In this section we will assess the model results for elevation,
inundation, and flow in the watershed and estuary. The spa-
tial scales covered by the validation vary from O(10km) to
O(1 m). The model validation for non-storm period will not
be discussed here; in short, the averaged amplitude error for
the major constituent (M2 on east coast and K1 in north-
ern Gulf of Mexico) for the non-storm period is 3—4 cm (see

Nat. Hazards Earth Syst. Sci., 21, 1703-1719, 2021
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Figure 6. Discharges at the two largest freshwater sources in the impact region (locations marked in Fig. 5). At each location, the NWM
streamflow is taken at the intersection of the NWM segment and SCHISM’s land boundary; the observation is based on the closest USGS

station.

Huang et al., 2021a). We will start by looking at the wave
effects nearshore.

4.1 Wave effects

Multiple breaches and over-toppings were reported’ across
several NC barrier islands during the event, including Surf
City, North Top Sail Beach, and New River inlet. Some of
these breaches may be related to significant wave activi-
ties; for example, the maximum wave height at buoy 41025,
~ 30 km offshore from Cape Hatteras, reached ~ 10 m. Inter-
estingly, the maximum wave heights become relatively mod-
est nearer to the landfall: 4-6 m at buoys 41159 and 41013
(see Fig. 3b for their locations). Therefore, to investigate this
possibility, we have also conducted a simulation with the
wave model in SCHISM activated (Baseline_Wave in Ta-
ble 1). The details of the wave model (Wind Wave Model)
have been described in Roland et al. (2012), and the cou-
pled model has been applied to other systems (Guérin et al.,
2018; Khan et al., 2020). The wave model was initialized and
forced at the ocean boundary by a global Wave Watch III sim-
ulation® and used a spectral resolution of 36 directional bins

7https://www.wusa9.com/articlelweather/
before-and-after-hurricane-florence-changes-north-carolina-coastline/
65-595918389, last access: 29 May 2021.

8ftp://ftp.ifremer.fr/ifremer/ww3/HINDCAST, last access: Jan-
uary 2021.
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and 24 frequency bins to cover a frequency range of 0.04 to
1 Hz. The coupling time step between the two models (i.e.,
the interval at which the information of surface elevation, ve-
locity, and wave radiation stress was exchanged) was 600 s.

Our results indicate that the barrier islands near Surf City,
North Top Sail Beach, and New River inlet were indeed over-
topped with 1-2 m of water (Fig. 7b; the locations of the is-
lands can be seen in Fig. 8b). On the other hand, a large por-
tion of the island north of Cape Hatteras (Outer Banks) was
spared (Fig. 7c) likely due to its north—south shoreline ori-
entation, even with the 10 m wave approximately 30 km off-
shore from there. More quantitative validation for the breach-
ing processes is beyond the scope here because (1) we do
not have accurate and up-to-date bathymetry just before the
event and (2) more importantly, a sediment transport study is
required to simulate the bathymetric changes.

The wave effects on the surface elevation are further quan-
tified in Fig. 8, which suggests that the effects are most pro-
nounced (with 30 cm or larger differences) inside the estuar-
ies and Albemarle—Pamlico Sound (APS) due to large wave
breaking nearby. In the intermediate and deep water, how-
ever, the wave effects are on the order of a few centimeters
and negligible (Fig. 8a). The Baseline results (without wave
effects) also showed over-topping of the barrier islands sim-
ilar to the Baseline_Wave (not shown).

https://doi.org/10.5194/nhess-21-1703-2021
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In summary, the wave effects are significant nearshore
and have contributed to the observed breaching and over-
toppings of barrier islands. However, because the current
study does not focus on the breaching processes and be-
cause of the significant computational overhead introduced
by adding the wave model (> 50 %), we will proceed in the
following by using the run without waves as the Baseline.

4.2 Bays and estuaries

We assess the calculated water levels at six NOAA tide
gauges near the impact area (see locations in Fig. 3b). Three
gauges are facing the open ocean (Charleston, Springmaid,
and Wrightsville), and the other three gauges are either shel-
tered inside a bay (Beaufort) or behind barrier islands (Hat-
teras and Oregon Inlet). The responses to the hurricane are
different at those gauges, as seen from the total elevation
(Fig. 9a) and the sub-tidal signals (Fig. 9b). The latter applies
a low-pass Butterworth filter (Butterworth, 1930) only pre-
serving longer-period (longer than 2 d) components. The ob-
servation shows sea set-downs of ~ 0.3—0.5 m at Charleston,
Springmaid, Hatteras, and Oregon Inlet followed by surges

https://doi.org/10.5194/nhess-21-1703-2021

of ~ 0.2-0.5 m and surges of ~ 0.5-1 m at Wrightsville and
Beaufort (Fig. 9). The different responses at these gauges
are due to the wind curl of Florence that led to different
dominant wind directions between southern and northern sta-
tions and are also due to specific geographic settings of each
gauge. Most intriguing are the prominent set-downs observed
at Hatteras and Oregon Inlet, which are explained by a com-
bination of wind direction and blocking effects of barrier is-
lands. Figure 10 demonstrates that around the time of land-
fall of the hurricane, the predominantly westward wind felt
in the Pamlico Sound has pushed water away from the bar-
rier islands. Meanwhile, the surge that propagated from the
ocean side is effectively blocked by the barrier island chain,
thus creating a ~ 70 cm elevation difference between the wa-
ters immediately outside and inside the islands (Fig. 10).
The mechanism causing the water level set-downs at the two
South Carolina stations (Charleston and Springmaid) is simi-
lar to that causing the set-downs behind the barrier islands in
North Carolina. The two South Carolina stations are located
to the south of the landfall site, and the wind direction is from
the land to the ocean, pushing water away from shore. The

Nat. Hazards Earth Syst. Sci., 21, 1703-1719, 2021
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Figure 9. Comparison of elevation at six NOAA gauges: (left) total elev:
sensitivity runs (Baseline_Wave and Ocean; see descriptions in Table 1).

model captured the different regional responses; overall, the
averaged MAE (mean absolute error) for elevation is 11 cm.
The averaged MAE for the subtidal comparison is 8.6 cm,
and the averaged correlation coefficient is 0.92. The peak er-
rors at different stations occur around the storm surge, with

Nat. Hazards Earth Syst. Sci., 21, 1703-1719, 2021

ation; (right) subtidal elevation. Also included are results from two
Note the plots have different y-axis ranges.

a maximum overprediction of 0.64 m for the peak surge at
Springmaid Pier, SC. The overpredicted peak surge can lead
to overpredictions in elevation on coastal high water marks
(HWMs). In addition, there is a maximum underprediction
of 0.66 m for the set-down at Hatteras, NC, mainly due to the

https://doi.org/10.5194/nhess-21-1703-2021
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mismatch in the set-down timing. The uncertainties in wind
forcing may be the main cause of the error, which is predomi-
nantly from subtidal signals. The grid quality near the barrier
islands may also contribute to the error. Adding wave effects
slightly increases the surge and rebounding waves at the last
three gauges, resulting in slightly better model skills there.

4.3 Watershed

High water marks (HWMs) were collected by USGS experts
more than 2 weeks after Hurricane Florence’s landfall. They

https://doi.org/10.5194/nhess-21-1703-2021

are derived from small seeds or floating debris carried by
floodwaters that adhere to smooth surfaces or lodge in tree
bark to form a distinct line and also by stain lines on build-
ings, fences, and other structures. Therefore, HWMs are time
sensitive and usually have vertical uncertainties of +0.3 ft
or equivalently +0.09 m (Koenig, et al., 2016; Austin, et al.,
2018).

The simulated elevation on 276 HWMs in the NC and SC
watersheds are compared with field estimates (Fig. 11). The
model is able to capture the transition from estuarine to river-
ine regimes; note that the averaged bottom elevation for all

Nat. Hazards Earth Syst. Sci., 21, 1703-1719, 2021



1714 F. Ye et al.: A cross-scale study for compound flooding processes during Hurricane Florence

USGS 02105769 CAPE FEAR RIVER AT LOCK #1 NR KELLY. NC

—~ 3000 | —— USGS Observation (a)
b SCHISM (baseline) B

E 2000 SCHISM (no NWM, no precip.) / "

5_ -

£ 1000

@

1

B 0 R R I et a sttt et ens

2018'09'05 7_013'09'09 1013'09'13 7_01%‘09'17 2019'09’21 2018'09'25 7_018—09'29

Gauge Height (m; MSL)

2013'09'05 2018'09'09 1013'09'13 1013'09'17 2018’09'21 2018'09'25 1018—09'7‘9

Figure 12. Model-data comparison near the landfall location: (a)
streamflow; (b) gauge height. The sensitivity run (without freshwa-
ter inputs from NWM or precipitation) is also shown, in which the
channels are dry even during the hurricane, indicating they are be-
yond the storm surge influence. The station location is marked in
Fig. 3b.

observation points is 3.8 m (NAVDS8S), and about 70 % of the
points are located above 2 m (NAVDSS), beyond the reach of
storm surges. Overall, the averaged MAE for all HWMs is
0.73 m, with a correlation coefficient of 0.92 and a positive
mean bias of 0.09 m. There is a slight positive bias on near-
shore HWMs (Fig. 11) corresponding to the overprediction
of peak elevation at coastal stations (Fig. 9a—c). These skill
scores are similar to what we obtained for Hurricane Harvey
(Huang et al., 2021a).

Figure 12 shows the comparison for both elevation (gauge
height) and discharge in a large river in the study region.
The gauge is in the interior of our grid, near “Freshwater
Source 2” in Fig. 6. Because the observation’s vertical da-
tum is NAVD29 and the model’s datum is NAVDS8, we
have adjusted the mean model elevations to match the ob-
served mean in the elevation comparison (Fig. 12b); in other
words, only the elevation variability is compared. Our model
overpredicted the flow and underpredicted the flood-induced
surges. Using a more accurate fresh water source at the land
boundary, improving the channel representation in the model
grid, and locally adjusting the bottom friction should help
improve the skill.

Our tests show that the simulated elevation on the high
water marks (HWMs) in the watershed is sensitive to grid
resolution, precipitation, river inputs through the land bound-
ary, and bottom friction. Grid resolution and quality are the
most important factors. Misrepresenting flood pathways can
easily lead to errors of a few meters near some very local-
ized features such as ditches and highways. Figure 13 illus-
trates such an example around Burnt Mill Creek in the city of
Wilmington, NC. Large HWM errors were found in the pre-
liminary setup because the computational grid did not resolve
the small creeks that served as the main conduit in draining
out the storm water after the flood. This resulted in the stack-

Nat. Hazards Earth Syst. Sci., 21, 1703-1719, 2021

ing of water locally and thus large overprediction of HWMs
there. The channel of the creek is about 6-10 m wide, and
once resolved using two rows of quadrangles as was done in
the Baseline (Fig. 13c), the model skill was greatly improved
(Fig. 13d). The only remaining large error point in the Base-
line occurs in an urban area away from the river (Fig. 13d)
likely due to the building or drainage effects that have not
been incorporated in the model. The defects in grid quality
can lead to large errors that are not likely to be rectified by
tuning other parameters. To fix the remaining few large er-
rors away from the landfall site, grid quality should be exam-
ined first. The continuous improvement on this model grid
is part of an ongoing effort of operationalizing the model
along the US east coast and Gulf Coast, and we will report
this in future studies. Resolving small-scale flow routing fea-
tures on a national scale requires automated tools such as
Pysheds” that can detect and delineate the channels automat-
ically. Initial tests showed very promising results from this
package. We remark that it is feasible to resolve these fea-
tures efficiently without significantly increasing the grid size
due to SCHISM’s flexibility and robustness in handling poor-
quality meshes. Afterwards, the inclusion of urban drainage
should reduce the occasional large errors there. Other fac-
tors such as uncertainties in DEM, precipitation, and the river
flow through land boundary also play minor roles.

5 Compound effects

A carefully validated 3D model such as the one presented
here can effectively separate out compounding factors from
different sources: coastal surge, river flooding, and precipi-
tation. In this section we apply this approach to examine the
contributing factors to the total flooding during Florence. The
design of the numerical experiments is such that we selec-
tively turn on and off forcing from ocean, river, and precip-
itation to examine their individual effects in isolation (Ta-
ble 1). As an overview, the conditions of maximum inunda-
tion extent from all scenarios are listed in Table 2. To facili-
tate the comparison of inundated area, a practical value (1 ft,
or equivalently 0.305 m) on the same order of the mean inun-
dation depth is used as a threshold. For the two indices (per-
cent inundated area and maximum inundation depth) shown
in Table 2, the Baseline values are significantly larger than
those from a single sensitivity test. This confirms the exis-
tence of compound regions in the two states (North Carolina
and South Carolina) during the event. More details of each
forcing’s effect and the compound effects are discussed be-
low.

Turning off both rivers and precipitation (i.e., ocean only)
is expected to have a major impact on flooding in the wa-
tershed. This is confirmed in Fig. 12 in the previous section.
Not surprisingly, without rivers and precipitation, watershed

9https://github.com/mdbartos/pysheds, last access: Jan-

uary 2021.
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Figure 13. Importance of resolving small-scale features on the order of a few meters in the watershed, illustrated by a comparison between
a preliminary setup (a, b) and the Baseline setup (c, d). To better resolve Burnt Mill Creek, NC, more SMS feature arcs (cyan lines in d) are
used in the Baseline setup than in the preliminary setup (cyan lines in b), significantly reducing the HWM errors. See Fig. 2 for the location
of this locally zoomed-in region. The base maps in (b) and (d) are provided by Esri (sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA
FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS user community).
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Figure 14. Simulated water surface elevation on HWMs from the sensitivity run “Ocean”, i.e., without the freshwater inputs from NWM or
precipitation. Note the underpredictions in the watershed and worse model skill compared with Baseline (Fig. 11).

is mostly dry as the storm surge cannot propagate over steep
terrains. As a result, the predicted HWMs are biased too low
(Fig. 14), as the steep topography quickly damped out any
surges brought in by the ocean. This leads to systematic un-
derpredictions in the watershed and a 64 % increase in MAE
compared to the Baseline (Fig. 11). On the other hand, Zhang
et al. (2020) demonstrated that the storm surges can propa-
gate much further into watershed if watershed rivers are in-
cluded. There is no apparent deterioration of model skill on

https://doi.org/10.5194/nhess-21-1703-2021

the near-shore HWMs because those locations are predomi-
nately affected by oceanic processes.

Less obvious are the effects of rivers and precipitation on
the observed surges in the coastal bays. Figure 9 indicates
that the effects are negligible at the three coastal stations
away from barrier islands (Fig. 9a—c), as the large amount of
freshwater from the watershed directly drains into the coastal
ocean (which has a much larger volume of water). On the
other hand, the impounding effects are clearly seen at the two
stations behind the barrier islands (Fig. 9ef; roughly starting

Nat. Hazards Earth Syst. Sci., 21, 1703-1719, 2021
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(a) Ocean force

(b) River force

(c) Precipitation

Proportion of individual disturbance (%)

Figure 15. Regional map showing the spatially varying importance of each forcing factor: (a) ocean force (Ocean in Table 1); (b) river force
(“River” in Table 1); and (c) precipitation (“Rain” in Table 1). The value is the proportion of a factor’s individual “disturbance” (see definition
in Sect. 5) to the sum of the disturbance from all factors. The colors from blue to red represent the increasing importance of a factor at a

specific location.

Table 2. Overview of the maximum inundation extent in South Car-
olina and North Carolina watersheds (above the NAVD88 datum)
during the simulation period.

Scenario Percentage of Spatially averaged
inundated area with ~ maximum inundation

water depth > 0.305m depth (m)

(1ft)

Baseline 46.7 % 0.61
Ocean 12.7 % 0.12
River 17.4 % 0.31
Rain 34.4% 0.36

from day 22), where the discharged water is trapped for al-
most a week. As we showed in Sect. 4.2, the barrier islands
are effective in creating separation and thus a large elevation
gradient between water immediately outside and inside (see
Fig. 10).

To assess the contributions from each of the three forcing
factors to the total sum, we follow Huang et al. (2021a) and
use the concept of “disturbance”. We recognize that for com-
pound flooding processes involving both ocean and water-
shed, neither the water surface elevation nor the water depth
is a satisfactory metric because the nominally large water el-
evations on the high ground of the watershed are dominated
by the high bottom elevation there, and the large water depths
in the bays and ocean are dominated by the local bathymetry.
Therefore, we adopt the concept of disturbance, defined as

n,
D=
{n+h,

if h >0,
if h <0,

where 1 is the water surface elevation and # is the bathymetry
(positive downward based on the same datum as 7n; e.g.,
h > 0 for ocean and h < 0O for high grounds in watershed),
so (n+ h) is water depth. Basically, D represents the de-
parture from “initial condition” (either the initial water sur-
face or bottom, whichever is higher). Note that D is contin-
uous across & = 0. On the initially “dry” ground in water-
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shed, D represents the local water depth, whereas at initially
“wet” locations, D is simply the surface elevation. D is also
a smoother metric to measure the compound effects as one
transitions from oceanic into watershed regimes.

The comparison between the maximum disturbances from
the three experiments using only one of the three forcing fac-
tors and the total sum helps elucidate the contributions from
each. The results are presented in Fig. 15 in terms of pro-
portion of total maximum disturbance as explained by each
forcing factor at a given location (therefore, the sum of all
proportions equals unity). Our results clearly indicate that (1)
the ocean (and atmospheric) forcing dominates in the open
ocean and part of southern Pamlico Sound in the APS sys-
tem, (2) river forcing is most dominant in the river network of
watershed, and (3) precipitation effects are dominant in other
parts of the watershed away from the river network. However,
the presence of the barrier islands significantly complicates
the interaction among different forcings (e.g., the significant
contribution from precipitation in Pamlico Sound as shown
in Fig. 15c). On the other hand, the inclusion of the wave ef-
fects is not expected to alter the findings here because their
contribution to the total elevation is relatively minor as com-
pared to the atmospheric effects (see Fig. 9).

The competition among different forcing factors in differ-
ent regions can be succinctly summarized in a “dominance”
map as shown in Fig. 16: a factor is deemed dominant if it
explains at least 80 % of the total disturbance; if, however,
none of the three factors contribute to 80 % or more at a par-
ticular place, the nonlinear compound effects are expected to
be significant there. The ocean response is overwhelmingly
dominated by the oceanic and atmospheric forcing, the re-
sponse in the watershed rivers by the river flow, and the re-
sponse in a large portion of highly elevated watersheds by
the precipitation, as seen in Fig. 16. Most of the response in
the southern Pamlico Sound is of oceanic origin because of
the wider openings to the south (e.g., Ocracoke Inlet). On
the other hand, there are only a few narrow inlets to the east
(e.g., Oregon Inlet), thus effectively blocking off the oceanic
influence there (Fig. 16b; also see Fig. 10). It is the “grey

https://doi.org/10.5194/nhess-21-1703-2021
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Figure 16. Dominance map showing the spatial dominance of different flood drivers during Hurricane Florence. Panels (b—e) are zoom-ins

from (a) in different regions.

areas” (Fig. 16) of compound flooding zones that are most
intriguing. These include most of the APS and coastal rivers
(Fig. 16b), where the weakened oceanic influence competes
with river flow and large rainfall there (Fig. 15). In the estu-
aries with large river discharges and limited openings to the
coastal ocean (Fig. 16¢ and e), the compound flooding zone
is a result of the competition among all three factors. On the
other hand, the estuaries to the south of the landfall site have
smaller river discharges and less precipitation; moreover,
they are not protected by barrier islands. As a result, oceanic
effects can penetrate very deep into these coastal watersheds
(Fig. 16d). Note that the ocean dominance near Wrightsville
Beach, NC (NOAA Station 8658163), and Springmaid Pier,
SC (NOAA Station 8661070), may be exaggerated, consider-
ing the overestimated peak elevation there (Fig. 9). The com-
pound map in Fig. 16 clearly demonstrates the urgent need

https://doi.org/10.5194/nhess-21-1703-2021

for a holistic management approach in the planning of miti-
gation efforts for the flood hazard during and after hurricane
events.

6 Conclusions

We have successfully applied a 3D cross-scale model to ex-
amine the compound flooding processes that occurred dur-
ing Hurricane Florence 2018. The model is fully coupled in
the sense that the hydrologic and hydrodynamic processes
are solved by the same set of governing equations. Limita-
tions of the model include the neglection of infiltration and
urban drainage, which will be implemented soon. The model
was validated with observation data collected in the water-
shed and coastal ocean. The mean absolute errors for major
variables are 11 cm for coastal elevation and 72 cm for high
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water marks (HWMs). Locally very high resolution was used
in some watershed areas to resolve small features that were
critical for a good model skill for the HWMs. The wave ef-
fects were found to be significant near barrier islands and
have contributed to over-toppings and breaches there. The
validated model was then used to reveal significant nonlinear
compound effects in most parts of coastal watersheds and be-
hind the barrier islands. The barrier islands were shown to be
particularly effective in separating the processes in the water
bodies on the land side and on the ocean side.

The results of the current study, especially the regional
compound zone map, filled in a critical knowledge gap in our
understanding of compound flooding events. In fact, opera-
tional forecasts based on the current model are being set up
at NOAA to help coastal resource and emergency managers
with disaster planning and mitigation efforts. The model can
also be used to facilitate new scientific discoveries of novel
coastal processes; for example, preliminary results for the
fate of pollutants discharged from the watershed suggest that
the large watershed outflow resulting from heavy precipi-
tation played an essential role in exporting pollutants far
into the ocean through the large and long-lasting freshwater
plumes that occurred after the event.

Data availability. The model source code is freely available at
https://github.com/schism-dev (last access: 29 May 2021) (Zhang,
2019).
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