Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying processes contributing to marine hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea
Svetlana Jevrejeva
CORRESPONDING AUTHOR
National Oceanography Centre, Liverpool, L3 5DA, UK
Centre for Climate Research Singapore, Singapore, Singapore
Lucy Bricheno
National Oceanography Centre, Liverpool, L3 5DA, UK
Jennifer Brown
National Oceanography Centre, Liverpool, L3 5DA, UK
David Byrne
National Oceanography Centre, Liverpool, L3 5DA, UK
Michela De Dominicis
National Oceanography Centre, Liverpool, L3 5DA, UK
Andy Matthews
National Oceanography Centre, Liverpool, L3 5DA, UK
Stefanie Rynders
National Oceanography Centre, Southampton, SO14 3ZH, UK
Hindumathi Palanisamy
Centre for Climate Research Singapore, Singapore, Singapore
Judith Wolf
National Oceanography Centre, Liverpool, L3 5DA, UK
Related authors
No articles found.
Dale Partridge, Ségolène Berthou, Rebecca Millington, James Clark, Lucy Bricheno, Juan Manuel Castillo, Julia Rulent, and Huw Lewis
EGUsphere, https://doi.org/10.5194/egusphere-2025-3654, https://doi.org/10.5194/egusphere-2025-3654, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Phytoplankton blooms are governed by the availability of light and nutrients, both of which are affected by mixing in the upper layers of the ocean, which is impacted by wave activity on the surface. Most numerical ocean models estimate waves through a parameterisation, here we explicitly resolve waves through a coupled wave model to examine the impact on the strength and timing of phytoplankton blooms, particular during storms when wave activity is elevated.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Cited articles
Bamber, J. and Riva, R.: The sea level fingerprint of recent ice mass fluxes, The Cryosphere, 4, 621–627, https://doi.org/10.5194/tc-4-621-2010, 2010.
Berg, R. Hurricane Ike: Technical report, 5–9 November 2008, tropical cyclone report, National Hurricane Center, USA, 2014.
Beven, J. L. and Kimberlain, T. B.: Tropical cyclone report: Hurricane
Gustav, Technical report, National Hurricane Center, USA, 2009.
Bricheno, L. M, and Wolf, J.: Future Wave Conditions of Europe, in Response
to High-End Climate Change Scenarios, J. Geophys. Res.-Oceans, 123, 8762–8791, https://doi.org/10.1029/2018JC013866, 2018.
Caribbean Marine Climate Change Report Card: edited by: Buckley, P., Townhill, B., Trotz, U., Nichols, K., Murray, P. A., Samuels, C. C., Gordon, A., and Taylor, M., Commonwealth Marine Economies Programme, 2017.
CARIBSAVE: Climate Change Risk Profile for Saint Vincent and the Grenadines,
Technical Report, available at:
https://www.researchgate.net/publication/272791668_Climate_Change_Risk_Profile_for_Saint_Vincent_and_the_Grenadines (last access: 20 January 2020), 2012.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Climate
Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T., Qin, D., Plattner, G. K., Tignor, M., Allen,
S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley P. M.,
Cambridge University Press, Cambridge, 2013a.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea-Level
Rise by 2100, Science, 342, 1445, https://doi.org/10.1126/science.342.6165.1445-a, 2013b.
Copernicus: Global Ocean Gridded L4 Sea Surface Heights And Derived Variables Reprocessed (1993–Ongoing), available at: https://marine.copernicus.eu/services-portfolio/access-to- products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047, last access: 5 October 2020.
C3S – Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS), available at:
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 10 March 2018), 2017.
Dasgupta, S., Laplante, B., Murray, S., and Wheeler, D.: Climate Change and
the Future Impacts of Storm-Surge Disasters in Developing Countries, Center
for Global Development Working Paper No. 182, Center
for Global Development, https://doi.org/10.2139/ssrn.1479650, 2009.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 2002.
Furner, R., Williams, J., Horsburgh, K., and Saulter, A.: Nemo-surge: Setting up an accurate tidal model, Technical Report 610, Met Office, UK, 2016.
GEBCO: General Bathymetric Chart of the Oceans, available at: https://www.gebco.net/, last access: 5 October 2020.
Grinsted, A., Jevrejeva, S., Riva, R., and Dahl-Jensen, D.: Sea level rise
projections for Northern Europe under RCP8.5, Clim. Res., 64, 15–23,
https://doi.org/10.3354/cr01309, 2015.
Hinkel, J. and Klein, R. J. T.: Integrating knowledge to assess coastal
vulnerability to sea-level rise: The development of the DIVA tool, Global
Environ. Change, 19, 384–395, 2009.
Holgate, S., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M.
E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.:
New Data Systems and Products at the Permanent Service for Mean Sea Level,
J. Coast. Res., 29, 493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Holland, G. J.: An analytical model of the wind and pressure profiles in
hurricanes, Mon. Weather Rev., 108, 1212–1218, 1980.
Holland, G. J., Belanger, J. I., and Fritz, A. A.: Revised Model for Radial
Profiles of Hurricane Winds, Mon. Weather Rev., 138, 4393–4401, 2010.
Hunter, J. R., Church, J. A., White, N. J., and Zhang, X.: Towards a global
regionally varying allowance for sea-level rise, Ocean Eng., 71, 17–27, 2013.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, in: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., and Mastrandrea,
M. D., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2012.
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, in: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2014.
Jackson, L. P. and Jevrejeva, S.: A probabilistic approach to 21st century
regional sea-level projections using RCP and high-end scenarios, Global Planet. Change, 146, 179–89, 2016.
Jackson, L. P., Grinsted, A., and Jevrejeva, S.: 21st century sea-level rise
in line with the Paris accord, Earth's Future, 6, 213–29, 2018.
Jevrejeva, S., Grinsted, A., and Moore, J. C.: Upper limit for sea level
projections by 2100, Environ. Res. Lett., 9, 104008, https://doi.org/10.1088/1748-9326/9/10/104008, 2014.
Jevrejeva, S., Jackson, L. P., Riva, R., Grinsted, A., and Moore, J. C.:
Coastal sea level rise with warming above 2 ∘C, P. Natl. Acad. Sci. USA, 113, 13342–13347, https://doi.org/10.1073/pnas.1605312113, 2016.
Jevrejeva, S., Jackson, L. P., Grinsted, A., Lincke, D., and Marzeion, B.:
Flood damage costs under the sea level rise with warming of 1.5 ∘C and 2 ∘C, Environ. Res. Lett., 13, 074014, https://doi.org/10.1088/1748-9326/aacc76, 2018.
Jevrejeva, S., Frederikse, T., Kopp, R. E., Le Cozannet, G., Jackson, L. P.,
and van de Wal, R.: Probabilistic Sea Level Projections at the Coast by 2100, Surv. Geophys., 40, 1673–1696, https://doi.org/10.1007/s10712-019-09550-y, 2019.
Jury, M. R.: Characteristics and meteorology of Atlantic swells reaching the
Caribbean, J. Coast. Res., 34, 400–412, 2018.
Kennedy, A. B., Gravois, U., Zachry, B. C., Westerink, J. J., Hope, M. E.,
Dietrich, J. C., Powell, M. D., Cox, A. T., Luettich Jr., R. A., and Dean, R.
G.: Origin of the Hurricane Ike forerunner surge, Geophys. Res. Lett., 38, L08608, https://doi.org/10.1029/2011GL047090, 2011.
Knapp, K. R., Kruk, M., Levinson, D., Diamond, H., and Neumann, C.: The
international best track archive for climate stewardship: Unifying tropical
cyclone best track data, B. Am. Meteorol. Soc., 91, 363–376, 2010.
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M.,
Rasmussen, D. J., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites,
Earth's Future, 2, 383–406, 2014.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level
projections, Earth's Future, 5, 1217–1233, https://doi.org/10.1002/2017EF000663, 2017.
Krien, Y., Dudon, B., Roger, J., and Zahibo, N.: Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles, Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, 2015.
Krien, Y., Dudon, B., Roger, J., Arnaud, G., and Zahibo, N.: Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique, Nat. Hazards Earth Syst. Sci., 17, 1559–1571, https://doi.org/10.5194/nhess-17-1559-2017, 2017.
Madec, G.: NEMO Ocean Engine, Note from the School of Modeling, No. 27, Pierre-Simon Laplace Institute (IPSL), France, ISSN 1288-1619, 2008.
Melet, A., Almar, R., and Meyssignac, B.: What dominates sea level at the coast: a case study for the Gulf of Guinea, Ocean Dynam., 66, 623–636, 2016.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated
wave contribution to coastal sea-level rise, Nat. Clim. Change, 8, 234–239, 2018.
Monioudi, I., Asariotis, R., Becker, A., Bhat, C., Dowding-Gooden, D., Esteban, M., Feyen, L., Mentaschi, L., Nikolaou, A., Nurse, L., Phillips,
W., Smith, D., Satoh, M., O'Donnell Trotz, U., Velegrakis, A. F., Voukouvalas, E., Vousdoukas, M. I., and Witkop, R.: Climate change impacts on
critical international transportation assets of Caribbean Small Island
Developing States (SIDS): the case of Jamaica and Saint Lucia, Reg. Environ.
Change, 18, 2211–2225, 2018.
Morim, J., Hemer, M., Wang, X. L., Cartwright, N., Trenham, C., Semedo, A.,
Young, I., Bricheno, L., Camus, P., Casas-Prat, M., Erikson, L., Mentaschi,
L., Mori, N., Shimura, T., Timmermans, B., Aarnes, O., Breivik, Ø.,
Behrens, A., Dobrynin, M., Menendez, M., Staneva, J., Wehner, M., Wolf, J.,
Kamranzad, B., Webb, A., Stopa, J., and Andutta, F.: Robustness and
uncertainties in global multivariate wind-wave climate projections, Nat. Clim. Change, 9, 711–718, 2019.
National Research Council: Managing Coastal Erosion, National Academy Press, Washington, D.C., p. 163, available at: https://www.nap.edu/catalog/1446/managing-coastal-erosion (last access: 4 October 2020), 1990.
National Research Council: Beach Nourishment and Protection, National Academy Press, Washington, D.C., p. 334, available at: https://www.nap.edu/catalog/1446/managing-coastal-erosion, last access: 4 October 2020), 1995.
NOAA: Global Ocean Heat and Salt Content, available at:
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/ (last access: 5 October 2020), 2020a.
NOAA: International Best Track Archive for Climate Stewardship (IBTrACS), available at:
https://www.ncdc.noaa.gov/ibtracs/ (last access: 5 October 2020), 2020b.
Özyurt, G. and Ergin, A.: Improving coastal vulnerability assessments to
sea-level rise: a new indicator based methodology for decision makers, J. Coast. Res., 26, 265–273, 2010.
Palanisamy, H., Becker, M., Meyssignac, B., and Henry, O.: Regional sea level change and variability in the Caribbean Sea since 1950, J. Geodet. Sci., 2, 2125–2133, 2012.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: the global ICE-6 G_C (VM5a) model, J. Geophys. Res.-Solid, 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Prime, T., Brown, J., and Wolf, J.: St Vincent – Black Point Beach Modelling, National Oceanography Centre Research and Consultancy Report no. 70, National Oceanography Centre, UK, 2019.
PSMSL – Permanent Service for Mean Sea Level: Referencing the Tide Gauge Data Set, avaiable at: https://www.psmsl.org/data/obtaining/reference.php (last access: 5 October 2020), 2020a.
PSMSL – Permanent Service for Mean Sea Level: Data, avaiable at: https://www.psmsl.org/data/ (last access: 5 October 2020), 2020b.
PSMSL – Permanent Service for Mean Sea Level: Commonwealth Marine Economies Data Portal, avaiable at: https://www.psmsl.org/cme/ (last access: 5 October 2020), 2020c.
Ramieri, E., Hartley, A., Barbanti, A., Santos, F. D., Gomes, A., Hilden, M., Laihonen, P., Marinova, N., and Santini, M.: Methods for assessing coastal vulnerability to climate change European environment agency, European topic centre on climate change impacts, vulnerability and adaptation, 1–91, available at: https://www.researchgate.net/profile/Andrea_Barbanti/publication/301296277_Methods_for_assessing_coastal_vulnerability_to_climate_change/links/5710bd7008ae68dc790a2421.pdf (last access: 2 February 2020), 2011.
Rhiney, K.: Geographies of Caribbean vulnerability in a changing climate:
issues and trends, Geogr. Compass, 9, 97–114, https://doi.org/10.1111/gec3.12199, 2015.
Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger, A. H.: Empirical
parameterization of setup, swash, and runup, Coast. Eng., 53, 573–588, 2006.
Sutherland, J. and Wolf, J.: Coastal Defence Vulnerability 2075, Hydraulics
Research Scientific Report, SR590, HR Wallingford, Wallingford, Oxford, UK, 220 pp., 2002.
Thieler, E. R. and Hammar-Klose, E. S.: National assessment of coastal vulnerability to sea-level rise, U.S. Atlantic Coast, US Geological Survey
Open-File Report 99-593, US Geological Survey, available at:
https://pubs.usgs.gov/of/1999/of99-593/ (last access: 1 March 2019), 1999.
Tolman, H.: User manual and system documentation of WAVEWATCH IIItm-version 3.14, Tech. rep., NOAA/NWS/NCEP/MMAB Technical Note-276, US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service National Centers for Environmental Prediction, Camp Springs, USA, 220 pp., 2009.
Torres, R. R. and Tsimplis, M. N.: Sea-level trends and interannual variability in the Caribbean Sea, J. Geophys. Res., 118, 2934–2947,
https://doi.org/10.1002/jgrc.20229, 2013.
United Nations: Small Island Developing States in Numbers, Climate Change Edition 2015, available at:
http://unohrlls.org/sids-in-numbers-climate-change-edition-2015/ (last access: 10 March 2020), 2015.
van de Wal, R. S. W., Zhang, X., Minobe, S., Jevrejeva, S., Riva, R., Little, C., Richter, K., and Palmer, M. D.: Uncertainties in long-term twenty-first century process-based coastal sea-level projections, Surv. Geophys., 40, 1655–1671 https://doi.org/10.1007/s10712-019-09575-3, 2019.
Villarroel-Lamb, D.: Quantitative Risk Assessment of Coastal Erosion in the
Caribbean Region, Nat. Hazards Rev., 21, 3, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000388, 2020.
Wada, Y., van Beek, L., Sperna, F. C., Chao, W., Wu, Y., and Bierkens, M.:
Past and future contribution of global groundwater depletion to sea-level
rise, Geophys. Res. Lett., 39, L09402, https://doi.org/10.1029/2012GL051230, 2012.
Walker, A. M., Titley, D. W., Mann, M. E., Najjar, R. G., and Miller, S. K.: A fiscally based scale for tropical cyclone storm surge, Weather Forecast., 33, 1709–1723, https://doi.org/10.1175/WAF-D-17-0174.1, 2018.
Wolf, J.: Practical aspects of physical oceanography for small island
states, in: Small Islands: marine science and sustainable development, AGU Coastal and Estuarine Studies Series, edited by: Maul, G., 120–131, 1996.
Wolf, J. and Woolf, D. K.: Waves and climate change in the north-east Atlantic, Geophys. Res. Lett., 33, L06604, https://doi.org/10.1029/2005GL025113, 2006.
Wolf, J., Beraud, C., Bricheno, L., Brown, J., Byrne, D., De Dominicis, M., Hull, D., Prime, T., White, A., Williams, J., and Jevrejeva, S.: Understanding Coastal Flooding and Erosion for Small Island Developing States in the Eastern Caribbean Sea, with application to the island of Saint Vincent, in preparation, 2020.
Zahibo, N., Pelinovsky, E., Talipova, T., Rabinovich, A., Kurkin, A., and
Nikolkina, I.: Statistical analysis of cyclone hazard for Guadeloupe, Lesser Antilles, Atmos. Res., 84, 13–29, 2007.
Short summary
We explore the role of waves, storm surges and sea level rise for the Caribbean region with a focus on the eastern Caribbean islands. We simulate past extreme events, suggesting a storm surge might reach 1.5 m and coastal wave heights up to 12 m offshore and up to 5 m near the coast of St Vincent. We provide sea level projections of up to 2.2 m by 2100. Our work provides quantitative evidence for policy-makers, scientists and local communities to actively protect against climate change.
We explore the role of waves, storm surges and sea level rise for the Caribbean region with a...
Altmetrics
Final-revised paper
Preprint