Articles | Volume 20, issue 5
https://doi.org/10.5194/nhess-20-1441-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-1441-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Topographic uncertainty quantification for flow-like landslide models via stochastic simulations
Hu Zhao
CORRESPONDING AUTHOR
AICES Graduate School, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany
Julia Kowalski
AICES Graduate School, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany
Computational Geoscience, Geowissenschaftliches Zentrum, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
Related authors
No articles found.
V Mithlesh Kumar, Anil Yildiz, and Julia Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-4531, https://doi.org/10.5194/egusphere-2025-4531, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
The reliability of Bayesian calibration depends on the quality and availability of observational data. But are we choosing the right data? We address this question by measuring the information gained during calibration to quantify how data selection influences the Bayesian calibration of physics-based landslide runout models. We find that more data does not always yield better results – observations that capture the dynamics governed by a parameter are more effective for its calibration.
Alexander Hermanns, Anne Caroline Lange, Julia Kowalski, Hendrik Fuchs, and Philipp Franke
EGUsphere, https://doi.org/10.5194/egusphere-2025-450, https://doi.org/10.5194/egusphere-2025-450, 2025
Short summary
Short summary
For air quality analyses, data assimilation models split available data into assimilation and validation data sets. The former is used to generate the analysis, the latter to verify the simulations. A preprocessor classifying the observations by the data characteristics is developed based on clustering algorithms. The assimilation and validation data sets are compiled by equally allocating data of each cluster. The resulting improvement of the analysis is evaluated with EURAD-IM.
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
Konstantin Schürholt, Julia Kowalski, and Henning Löwe
The Cryosphere, 16, 903–923, https://doi.org/10.5194/tc-16-903-2022, https://doi.org/10.5194/tc-16-903-2022, 2022
Short summary
Short summary
This companion paper deals with numerical particularities of partial differential equations underlying 1D snow models. In this first part we neglect mechanical settling and demonstrate that the nonlinear coupling between diffusive transport (heat and vapor), phase changes and ice mass conservation contains a wave instability that may be relevant for weak layer formation. Numerical requirements are discussed in view of the underlying homogenization scheme.
Anna Simson, Henning Löwe, and Julia Kowalski
The Cryosphere, 15, 5423–5445, https://doi.org/10.5194/tc-15-5423-2021, https://doi.org/10.5194/tc-15-5423-2021, 2021
Short summary
Short summary
This companion paper deals with numerical particularities of partial differential equations underlying one-dimensional snow models. In this second part we include mechanical settling and develop a new hybrid (Eulerian–Lagrangian) method for solving the advection-dominated ice mass conservation on a moving mesh alongside Eulerian diffusion (heat and vapor) and phase changes. The scheme facilitates a modular and extendable solver strategy while retaining controls on numerical accuracy.
Cited articles
Aziz, S., Steward, B., Kaleita, A., and Karkee, M.: Assessing the effects of
DEM uncertainty on erosion rate estimation in an agricultural field,
T. ASABE, 55, 785–798, https://doi.org/10.13031/2013.41514, 2012. a, b, c
Bartelt, P., Salm, B., and Gruber, U.: Calculating dense-snow avalanche runout
using a Voellmy-fluid model with active/passive longitudinal straining,
J. Glaciol., 45, 242–254, https://doi.org/10.3189/002214399793377301, 1999. a
Berry, P., Garlick, J., and RG, S.: Near-global validation of the SRTM DEM
using satellite radar altimetry, Remote Sens. Environ., 106, 17–27,
https://doi.org/10.1016/j.rse.2006.07.011, 2007. a
Bolkas, D., Fotopoulos, G., Braun, A., and Tziavos, I.: Assessing digital
elevation model uncertainty using GPS survey data, J. Surv.
Eng., 142, 04016001, https://doi.org/10.1061/(ASCE)SU.1943-5428.0000169, 2016. a
Courty, L., Soriano-Monzalvo, J., and Pedrozo-Acuna, A.: Evaluation of
open-access global digital elevation models (AW3D30, SRTM, and ASTER)
for flood modelling purposes, J. Flood Risk Manag., 12, e12550,
https://doi.org/10.1111/jfr3.12550, 2019. a
DeBlasio, F. and Elverhoi, A.: A model for frictional melt production beneath
large rock avalanches, J. Geophys. Res.-Earth, 113, F02014,
https://doi.org/10.1029/2007JF000867, 2008. a
Elkhrachy, I.: Vertical accuracy assessment for SRTM and ASTER digital
elevation models: a case study of Najran city, Saudi Arabia, Ain Shams
Eng. J., 9, 1807–1817, https://doi.org/10.1016/j.asej.2017.01.007, 2018. a
Fisher, P. and Tate, N.: Causes and consequences of error in digital elevation
models, Prog. Phys. Geogr.-Earth Environ., 30, 467–489,
https://doi.org/10.1191/0309133306pp492ra, 2006. a, b, c, d
Frank, F., McArdell, B. W., Huggel, C., and Vieli, A.: The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps, Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015, 2015. a
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018. a, b
Gonga-Saholiariliva, N., Gunnell, Y., Petit, C., and Mering, C.: Techniques for
quantifying the accuracy of gridded elevation models and for mapping
uncertainty in digital terrain analysis, Prog. Phys. Geogr.-Earth Environ., 35, 739–764, https://doi.org/10.1177/0309133311409086, 2011. a
Hawker, L., Bates, P., Neal, J., and Rougier, J.: Perspectives on digital
elevation model (DEM) simulation for flood modeling in the absence of a
high-accuracy open assess global DEM, Front. Earth Sci., 6, 233,
https://doi.org/10.3389/feart.2018.00233, 2018. a, b
Hengl, T., Gruber, S., and Shrestha, D.: Reduction of errors in digital terrain
parameters used in soil-landscape modeling, Int. J. Appl. Earth Observ., 5, 97–112,
https://doi.org/10.1016/j.jag.2004.01.006, 2004. a
Hofton, M., Dubayah, R., Blair, J., and Rabine, D.: Validation of SRTM
elevations over vegetated and non-vegetated terrain using medium footprint
LiDAR, Photogramm. Eng. Rem. S., 72, 279–285,
https://doi.org/10.14358/PERS.72.3.279, 2006. a
Holmes, K., Chadwick, O., and Kyriakidis, P.: Error in a USGS 30-meter
digital elevation model and its impact on terrain modeling, J.
Hydrol., 233, 154–173, https://doi.org/10.1016/S0022-1694(00)00229-8, 2000. a, b, c
Hungr, O.: Numerical modelling of the motion of rapid, flow-like landslides for
hazard assessment, KSCE J. Civil Eng., 13, 281–287,
https://doi.org/10.1007/s12205-009-0281-7, 2009. a, b
Hungr, O. and McDougall, S.: Two numerical models for landslide dynamic
analysis, Comput. Geosci., 35, 978–992,
https://doi.org/10.1016/j.cageo.2007.12.003, 2009. a
Hungr, O., Corominas, J., and Eberhardt, E.: Estimating landslide motion
mechanism, travel distance and velocity, in: Landslide risk management,
edited by: Hungr, O., Fell, R., Couture, R., and Eberhardt, E., 99–128,
https://doi.org/10.1201/9781439833711, 2005. a
Hussin, H. Y., Quan Luna, B., van Westen, C. J., Christen, M., Malet, J.-P., and van Asch, Th. W. J.: Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps, Nat. Hazards Earth Syst. Sci., 12, 3075–3090, https://doi.org/10.5194/nhess-12-3075-2012, 2012. a
Kiczko, A. and Miroslaw-Swiatek, D.: Impact of uncertainty of floodplain
digital terrain model on 1D hydrodynamic flow calculation, Water, 10, 1308,
https://doi.org/10.3390/w10101308, 2018. a
Krishnan, S., Crosby, C., Nandigam, V., Phan, M., Cowart, C., Baru, C., and
Arrowsmith, R.: OpenTopography: a services oriented architecture for
community access to LiDAR topography, in: ACM International Conference
Proceeding Series, p. 7, https://doi.org/10.1145/1999320.1999327, 2011. a
Kumar, V., Gupta, V., Jamir, I., and Chattoraj, S.: Evaluation of potential
landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley,
India, Geosci. Front., 10, 753–767, https://doi.org/10.1016/j.gsf.2018.05.004,
2019. a
Lindsay, J.: WhiteboxTools user manual, Geomorphometry and Hydrogeomatics
Research Group, University of Guelph, Guelph, Canada, 20 November 2018. a
Mast, C., Arduino, P., Miller, G., and Mackenzie-Helnwein, P.: Avalanche and
landslide simulation using the material point method: flow dynamics and force
interaction with structures, Comput. Geosci., 18, 817–830,
https://doi.org/10.1007/s10596-014-9428-9, 2014. a
McDougall, S.: 2014 Canadian Geotechnical Colloquium: landslide runout
analysis – current practice and challenges, Can. Geotech. J.,
54, 605–620, https://doi.org/10.1139/cgj-2016-0104, 2017. a, b
Miller, C. and Laflamme, R.: The digital terrain model – theory &
application, Photogramm. Eng., 24, 433–442, 1958. a
Moawad, M. and EI Aziz, A.: Assessment of remotely sensed digital elevation
models (DEMs) compared with DGPS elevation data and its influence on
topographic attributes, Adv. Remote Sens., 7, 144–162,
https://doi.org/10.4236/ars.2018.72010, 2018. a
Mouratidis, A. and Ampatzidis, D.: European digital elevation model validation
against extensive global navigation satellite systems data and comparison
with SRTM DEM and ASTER GDEM in central Macedonia (Greece), ISPRS J. Geo-Inf., 8, 108, https://doi.org/10.3390/ijgi8030108, 2019. a, b
Naef, D., Rickenmann, D., Rutschmann, P., and McArdell, B. W.: Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model, Nat. Hazards Earth Syst. Sci., 6, 155–165, https://doi.org/10.5194/nhess-6-155-2006, 2006. a
Oksanen, J.: Tracing the gross errors of DEM-visualization techniques for
preliminary quality analysis, in: Proceedings of the 21st International
Cartographic Conference “Cartographic Renaissance”, 2410–2416, 2003. a
Oksanen, J.: Digital elevation model error in terrain analysis, PhD thesis,
University of Helsinki, Helsinki, 2006. a
Pakoksung, K. and Takagi, M.: Digital elevation models on accuracy validation
and bias correction in vertical, Model. Earth Syst. Environ., 2, 11,
https://doi.org/10.1007/s40808-015-0069-3, 2016. a
Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., and Drempetic, V.: A
depth-integrated, coupled SPH model for flow-like landslides and related
phenomena, Int. J. Numer. Anal. Meth.
Geomechan., 33, 143–172, https://doi.org/10.1002/nag.705, 2009. a
Pastor, M., Soga, K., McDougall, S., and Kwan, J.: Review of benchmarking
exercise on landslide runout analysis 2018, in: Proceedings of the Second
JTC1 Workshop on Triggering and Propagation of Rapid Flow-like
Landslides, edited by: Ho, K., Leung, A., Kwan, J., Koo, R., and Law, R., 281–323, The Hong Kong Geotechnical Society, 2018. a, b, c, d
Patel, A., Katiyar, S., and Prasad, V.: Performances evaluation of different
open source DEM using differential global positioning system (DGPS),
Egypt. J. Remote Sens. Space Sci., 19, 7–16,
https://doi.org/10.1016/j.ejrs.2015.12.004, 2016. a
Pitman, E., Nichita, C., Patra, A., Bauer, A., Sheridan, M., and Bursik, M.:
Computing granular avalanches and landslides, Phys. Fluid., 15,
3638–3646, https://doi.org/10.1063/1.1614253, 2003. a
Qin, C., Bao, L., Zhu, A., Wang, R., and Hu, X.: Uncertainty due to DEM error
in landslide susceptibility mapping, Int. J. Geogr.
Inf. Sci., 27, 1364–1380, https://doi.org/10.1080/13658816.2013.770515,
2013. a
Raaflaub, L. and Collins, M.: The effect of error in gridded digital elevation
models on the estimation of topographic parameters, Environ. Modell. Softw., 21, 710–732, https://doi.org/10.1016/j.envsoft.2005.02.003, 2006. a, b
Remy, N., Boucher, A., and Wu, J.: Applied Geostatistics with SGeMS, Cambridge
University Press, Cambridge, UK, 2009. a
Rodriguez, E., Morris, C., and Belz, J.: A global assessment of the SRTM
performance, Photogramm. Eng. Rem. S., 72, 249–260,
https://doi.org/10.14358/PERS.72.3.249, 2006. a, b
Salm, B.: Flow, flow transition and runout distances of flowing avalanches,
Ann. Glaciol., 18, 221–226, https://doi.org/10.3189/S0260305500011551, 1993. a
Stefanescu, E., Bursik, M., Cordoba, G., Dalbey, K., Jones, M., Patra, A.,
Pieri, D., Pitman, E., and Sheridan, M.: Digital elevation model uncertainty
and hazard analysis using a geophysical flow model, P. Roy.
Meteorol. Soc. A, 468, 1543–1563, https://doi.org/10.1098/rspa.2011.0711, 2012. a, b
Temme, A., Heuvelink, G., Schoorl, J., and Claessens, L.: Chapter 5
Geostatistical Simulation and Error Propagation in Geomorphometry, in:
Geomorphometry, edited by: Hengl, T. and Reuter, H., 33, 121–140,
https://doi.org/10.1016/S0166-2481(08)00005-6, 2009. a, b
Teufelsbauer, H., Wang, Y., Pudasaini, S., Borja, R., and Wu, W.: DEM
simulation of impact force exerted by granular flow on rigid structures, Ac.
Geotechn., 6, 119–133, https://doi.org/10.1007/s11440-011-0140-9, 2011. a
Wallemacq, P., UNISDR, and CRED: Economic losses, poverty & disasters
1998–2017, Tech. rep., https://doi.org/10.13140/RG.2.2.35610.08643, 2018. a
Watson, C., Carrivick, J., and Quincey, D.: An improved method to represent
DEM uncertainty in glacial lake outburst flood propagation using stochastic
simulations, J. Hydrol., 529, 1373–1389,
https://doi.org/10.1016/j.jhydrol.2015.08.046, 2015. a
Wechsler, S. P.: Uncertainties associated with digital elevation models for hydrologic applications: a review, Hydrol. Earth Syst. Sci., 11, 1481–1500, https://doi.org/10.5194/hess-11-1481-2007, 2007. a, b, c
Wechsler, S. and Kroll, C.: Quantifying DEM uncertainty and its effect on
topographic parameters, Photogramm. Eng. Rem. S., 72,
1081–1090, https://doi.org/10.14358/PERS.72.9.1081, 2006. a, b
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth, A.:
Accuracy assessment of the global TanDEM-X digital elevation model with
GPS data, ISPRS J. Photogramm., 139,
171–182, https://doi.org/10.1016/j.isprsjprs.2018.02.017, 2018. a, b, c, d
Wilson, J.: Digital terrain modeling, Geomorphology, 137, 107–121,
https://doi.org/10.1016/j.geomorph.2011.03.012, 2012. a, b
Xia, X. and Liang, Q.: A new depth-averaged model for flow-like landslides over
complex terrains with curvatures and steep slopes, Eng. Geol., 234,
174–191, https://doi.org/10.1016/j.enggeo.2018.01.011, 2018. a
Zhao, H. and Kowalski, J.: DEM uncertainty propagation in rapid flow-like
landslide simulations, in: Proceedings of the Second JTC1 Workshop on
Triggering and Propagation of Rapid Flow-like Landslides, edited by: Ho, K.,
Leung, A., Kwan, J., Koo, R., and Law, R., 191–194, The Hong Kong
Geotechnical Society, 2018. a, b
Short summary
We study the impact of topographic uncertainty on landslide run-out modeling using conditional and unconditional stochastic simulation. First, we propose a generic workflow and then apply it to a historic flow-like landslide. We find that topographic uncertainty can greatly affect landslide run-out modeling, depending on how well the underlying flow path is captured by topographic data. The difference between unconditional and conditional stochastic simulation is discussed in detail.
We study the impact of topographic uncertainty on landslide run-out modeling using conditional...
Altmetrics
Final-revised paper
Preprint