Articles | Volume 20, issue 5
https://doi.org/10.5194/nhess-20-1441-2020
https://doi.org/10.5194/nhess-20-1441-2020
Research article
 | 
26 May 2020
Research article |  | 26 May 2020

Topographic uncertainty quantification for flow-like landslide models via stochastic simulations

Hu Zhao and Julia Kowalski

Related authors

Bayesian data selection to quantify the value of data for landslide runout calibration
V Mithlesh Kumar, Anil Yildiz, and Julia Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-4531,https://doi.org/10.5194/egusphere-2025-4531, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Data clustering to optimise the representativity of observational data in air quality data assimilation: a case study with EURAD-IM (version 5.9.1 DA)
Alexander Hermanns, Anne Caroline Lange, Julia Kowalski, Hendrik Fuchs, and Philipp Franke
EGUsphere, https://doi.org/10.5194/egusphere-2025-450,https://doi.org/10.5194/egusphere-2025-450, 2025
Short summary
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024,https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022,https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Elements of future snowpack modeling – Part 1: A physical instability arising from the nonlinear coupling of transport and phase changes
Konstantin Schürholt, Julia Kowalski, and Henning Löwe
The Cryosphere, 16, 903–923, https://doi.org/10.5194/tc-16-903-2022,https://doi.org/10.5194/tc-16-903-2022, 2022
Short summary

Cited articles

AECOM Asia Company Limited: Detailed study of the 7 June 2008 landslides on the hillshade above Yu Tung Road, Tung Chung, Tech. rep., 2012. a, b, c, d
Aziz, S., Steward, B., Kaleita, A., and Karkee, M.: Assessing the effects of DEM uncertainty on erosion rate estimation in an agricultural field, T. ASABE, 55, 785–798, https://doi.org/10.13031/2013.41514, 2012. a, b, c
Bartelt, P., Salm, B., and Gruber, U.: Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining, J. Glaciol., 45, 242–254, https://doi.org/10.3189/002214399793377301, 1999. a
Berry, P., Garlick, J., and RG, S.: Near-global validation of the SRTM DEM using satellite radar altimetry, Remote Sens. Environ., 106, 17–27, https://doi.org/10.1016/j.rse.2006.07.011, 2007. a
Bolkas, D., Fotopoulos, G., Braun, A., and Tziavos, I.: Assessing digital elevation model uncertainty using GPS survey data, J. Surv. Eng., 142, 04016001, https://doi.org/10.1061/(ASCE)SU.1943-5428.0000169, 2016. a
Download
Short summary
We study the impact of topographic uncertainty on landslide run-out modeling using conditional and unconditional stochastic simulation. First, we propose a generic workflow and then apply it to a historic flow-like landslide. We find that topographic uncertainty can greatly affect landslide run-out modeling, depending on how well the underlying flow path is captured by topographic data. The difference between unconditional and conditional stochastic simulation is discussed in detail.
Share
Altmetrics
Final-revised paper
Preprint