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Abstract. Digital elevation models (DEMs) representing to-
pography are an essential input for computational models
capable of simulating the run-out of flow-like landslides.
Yet, DEMs are often subject to error, a fact that is mostly
overlooked in landslide modeling. We address this research
gap and investigate the impact of topographic uncertainty
on landslide run-out models. In particular, we will describe
two different approaches to account for DEM uncertainty,
namely unconditional and conditional stochastic simulation
methods. We investigate and discuss their feasibility, as well
as whether DEM uncertainty represented by stochastic simu-
lations critically affects landslide run-out simulations. Based
upon a historic flow-like landslide event in Hong Kong, we
present a series of computational scenarios to compare both
methods using our modular Python-based workflow. Our re-
sults show that DEM uncertainty can significantly affect
simulation-based landslide run-out analyses, depending on
how well the underlying flow path is captured by the DEM, as
well as on further topographic characteristics and the DEM
error’s variability. We further find that, in the absence of sys-
tematic bias in the DEM, a performant root-mean-square-
error-based unconditional stochastic simulation yields simi-
lar results to a computationally intensive conditional stochas-
tic simulation that takes actual DEM error values at refer-
ence locations into account. In all other cases the uncondi-
tional stochastic simulation overestimates the variability in
the DEM error, which leads to an increase in the potential
hazard area as well as extreme values of dynamic flow prop-
erties.

1 Introduction

Landslides are natural hazards that occur frequently all
around the world causing casualties, economic devastation,
and environmental destruction. Most often, they are natu-
rally driven, e.g., by means of long-lasting and/or intensive
precipitation events or induced by earthquakes. Yet, land-
slides might also be triggered or an area’s susceptibility to
them increased as a result of human activities, e.g., deforesta-
tion and construction. According to the United Nations Of-
fice for Disaster Risk Reduction and the Centre for Research
on the Epidemiology of Disasters, 378 recorded landslides
from 1998 to 2017 affected 4.8 million people and caused
18 414 deaths as well as several billion US dollars of eco-
nomic losses (Wallemacq et al., 2018). Froude and Petley
(2018) reported that in total 55 997 people were killed during
4862 fatal nonseismic landslide events from January 2004
to December 2016. Still, it has to be assumed that the dam-
age potential of landslides is underestimated as (1) events
have been underreported for decades, especially in develop-
ing countries, and (2) losses caused by coseismic landslide
events tend to be classified as secondary losses due to earth-
quakes.

Rapid flow-like landslides, such as rock avalanches and
debris flows, show a particularly high hazard potential due
to their high mobility, long travel distance, and fast prop-
agation speed. In recent years, the geohazard community
has put a lot of effort into developing computational run-
out models in order to assess and predict risks associated
with rapid landslides and to develop mitigation strategies.
Most of the models in practical use are based on a (compu-
tationally efficient) “shallow-flow-type” process description
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and depth-averaging techniques (e.g., Pitman et al., 2003;
Hungr, 2009; Pastor et al., 2009; Christen et al., 2010; Xia
and Liang, 2018). In these, the flowing material is treated as
an “equivalent fluid” and governed by idealized internal and
basal rheologies (Hungr, 2009). Alternative (computation-
ally demanding) models aim to directly describe fully three-
dimensional flow behavior. They hence offer a higher process
complexity level (e.g., Mast et al., 2014; Teufelsbauer et al.,
2011) yet are typically not feasible for practical hazard mit-
igation purposes. Detailed reviews of computational run-out
models for rapid, flow-like landslides have been published by
McDougall (2017) and Pastor et al. (2018).

An indispensable input to any of these computational land-
slide run-out models is data that represent the terrain in which
the slide is likely to occur. Pioneered by Miller and Laflamme
(1958), digital elevation models (DEMs) have become the
most popular form of representing topographies in the scien-
tific community. Methods for generating DEMs have evolved
rapidly over decades from conventional approaches, like field
surveying and topographic-map digitizing, to passive and ac-
tive remote sensing, such as stereoscopic photogrammetry,
interferometric synthetic aperture radar (InSAR), and light
detection and ranging (lidar); see Wilson (2012) for a com-
prehensive review. Differences between these methods ex-
ist in terms of their footprint, cost, resolution, and accuracy
of the resulting DEM. Whatever method used, however, the
resulting DEM will inevitably contain errors that are intro-
duced either during source data acquisition or during data
processing. The so-called DEM error hence refers to the
difference between the true real-world elevations and their
DEM representation. Typically, there is a lack of information
on the DEM error, which has led to the notion of “DEM un-
certainty”, which refers to what we do not know about the
error; see Wechsler (2007).

Nowadays, several global DEM databases, e.g., SRTM
(Rodriguez et al., 2006), AW3D30 (Courty et al., 2019),
and TanDEM-X (Wessel et al., 2018), as well as some re-
gional DEM databases (Pakoksung and Takagi, 2016) are
publicly available. Commercial DEM databases that are as-
sociated with significant costs also exist (Hawker et al.,
2018). Online initiatives such as OpenTopography facilitate
community access and aim to democratize online availability
of high-resolution topography data acquired with lidar and
other technologies (Krishnan et al., 2011). Despite a broad
variety of existing DEM sources, however, we are still facing
(and will continue to face in the near future) a very limited
availability of high-accuracy DEMs for some regions that are
particularly prone to landslide hazards, e.g., in Asia (Froude
and Petley, 2018). Whenever using DEM data for simulation-
based landslide hazard analysis, it is hence important to be
aware of DEM error and uncertainty and to consider their po-
tential impact on computational run-out analyses and related
computational risk assessments.

DEM error has had the attention of researchers for a long
time. Many efforts have for instance been put into quanti-

fying the error associated with specific DEM sources based
on data of higher accuracy, e.g., acquired by satellite mea-
surements (Berry et al., 2007; Mouratidis and Ampatzidis,
2019), medium-footprint lidar (Hofton et al., 2006), or GPS
survey (Rodriguez et al., 2006; Bolkas et al., 2016; Patel
et al., 2016; Wessel et al., 2018; Elkhrachy, 2018). Mean-
while, a variety of methods have been devised to classify
DEM error into various categories (Oksanen, 2003; Hengl
et al., 2004; Fisher and Tate, 2006). Due to the complexity
of potential influencing factors (sensor technology, retrieval
algorithms, data processing, land cover and surface morphol-
ogy, terrain attributes; Wilson, 2012; Fisher and Tate, 2006;
Gonga-Saholiariliva et al., 2011), these methods can only
constrain the DEM error and will not deterministically cor-
rect for it at all grid points. Hence, DEM uncertainty remains
and has to be accounted for in any subsequent analysis that
relies on the DEM data.

In this circumstance, a stochastic simulation is an effective
computational approach to deal with the situation (Holmes
et al., 2000). Instead of considering a single (assumed as ac-
curate) DEM, the fundamental idea of a stochastic simulation
in the context of DEM uncertainty propagation is to separate
the DEM into a known deterministic contribution and an un-
known DEM error. DEM uncertainty is then accounted for
by treating the DEM error as a random field consisting of a
collection of random variables defined at selected grid points.
An ensemble of equiprobable realizations of the random field
is then generated based on certain assumptions and available
information about DEM error. This could for instance be the
so-called root mean square error (RMSE), a minimalist in-
dicator for the overall error magnitude, or a semivariogram
that provides information about the spatial autocorrelation
of the DEM error. Adding the DEM error realizations to the
known deterministic DEM contribution results in an ensem-
ble of equiprobable DEM realizations, which can finally be
used for a DEM uncertainty propagation analysis.

Stochastic simulation methods for DEM uncertainty prop-
agation analyses have been developed since the 1990s and
are by now widely applied in many fields, including terrain
analysis (Holmes et al., 2000; Raaflaub and Collins, 2006;
Moawad and EI Aziz, 2018), flood modeling (Watson et al.,
2015; Hawker et al., 2018; Kiczko and Miroslaw-Swiatek,
2018), soil erosion modeling (Aziz et al., 2012), landslide
susceptibility mapping (Qin et al., 2013), and dry-block-and-
ash-flow modeling (Stefanescu et al., 2012). With respect to
rapid, flow-like landslide run-out modeling, very little work
has been done to assess the potential impact of DEM uncer-
tainty, most likely due to the complexity, and hence level of
sophistication, of the associated process models. Meanwhile,
however, advances in computing technology have led to com-
putationally feasible and well-developed landslide run-out
simulation tools. As one of the most important inputs for
these tools, a DEM determines the landslide’s flow path. A
natural next step is hence to consider the impact of DEM un-
certainty in these models, as overlooking DEM uncertainty
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may lead to a bias in risk management decisions. The major
aim of this study is therefore to describe two different ap-
proaches in order to incorporate DEM uncertainty into com-
putational landslide run-out analyses and to investigate and
discuss the feasibility of the approaches, as well as whether
DEM uncertainty is critical to landslide run-out modeling
and affects the modeling’s results.

This paper is organized as follows: in Sect. 2, we briefly
describe the landslide run-out model used in this study, which
is a continuum-mechanical shallow-flow model based on
the Voellmy–Salm rheology. In Sect. 3, we call on various
methods to account for DEM uncertainty with a major fo-
cus on two approaches, namely an unconditional and a con-
ditional stochastic simulation method. The rest of the pa-
per is devoted to investigating DEM uncertainty propagation
for rapid, flow-like landslides based on an integrated work-
flow that combines the aforementioned computational pro-
cess model (Sect. 2) with the stochastic DEM simulations
(Sect. 3). Note that, while in our particular study we chose
to use a continuum-mechanical shallow-flow process model
based on the Voellmy–Salm rheology, the workflow itself
is modular and nonintrusive. It would hence also be possi-
ble to couple the stochastic DEM simulation with any other
(DEM-based) computational landslide model. Section 4 de-
scribes the modular Python-based workflow that we devel-
oped in order to set up and manage the workflow and to
interpret its simulation results. We present a series of com-
putational scenarios based upon a historic landslide event in
Sect. 5. All scenarios compare the unconditional and con-
ditional stochastic DEM simulation. Finally, Sect. 6 is de-
voted to a discussion of our results. Important conclusions
are drawn in Sect. 7.

2 Landslide process model

As detailed in the introduction, a variety of process-based
computational landslide run-out models have been devel-
oped in recent decades. Among these is a family of depth-
integrated shallow-flow-type landslide models that we chose
as the basis for our work. Shallow-flow-type landslide mod-
els can be further classified based on their applied basal
rheology, e.g., Voellmy, Bingham, and quadratic resistance
model (Naef et al., 2006; Hungr and McDougall, 2009). Our
study uses the Voellmy–Salm (VS) process model, which is a
depth-averaged continuum-mechanical model incorporating
the Voellmy basal rheology. Note that the stochastic work-
flow presented later is modular and does not depend on this
choice. Hence, the Voellmy model can straightforwardly be
substituted by other computational process models.

2.1 Reference frame and relation to topographic error

Let {X,Y,Z} denote a fixed Cartesian coordinate system, in
which X and Y are the horizontal axes and Z is the vertical

axis. The coordinates of a point in the Cartesian coordinate
system are denoted by (X,Y,Z). A topography can then be
expressed as a surface mapping of horizontal X and Y co-
ordinates and represents the elevation at each point, namely
Z(X,Y ). The mapped topography induces a surface coordi-
nate system {x,y,z}, in which x and y denote tangential di-
rections and z points in the direction of the surface normal.
Hence any vector that is constant with respect to the fixed
Cartesian coordinates system, e.g., gravitational acceleration
g= (gX,gY ,gZ)T = (0,0,−g)T , spatially varies when in-
terpreted in terms of the surface-mapped coordinated system
g= (gx,gy,gz)T . Error or uncertainty in the topography rep-
resentation Z(X,Y ) hence directly translates into error and
uncertainty in that vector representation.

2.2 Voellmy rheology computational process model

The Voellmy process model along with its computational im-
plementation is described in Bartelt et al. (1999) and Christen
et al. (2010). It assesses the slide’s dynamics in terms of flow
height H(x,y, t) and depth-averaged velocity U(x,y, t) :=
(Ux(x,y, t),Uy(x,y, t))

T , both of which depend on time t
and spatial coordinates x and y. The governing system reads

∂tH + ∂x(HUx)+ ∂y(HUy)= Q̇(x,y, t) (1a)

∂t (HUx)+ ∂x

(
HU2

x + gz
H 2

2

)
+ ∂y

(
HUxUy

)
= gxH − nx(µgzH + g‖U‖2/ξ) (1b)

∂t (HUy)+ ∂x(HUxUy)+ ∂y

(
HU2

y + gz
H 2

2

)
= gyH − ny(µgzH + g‖U‖2/ξ). (1c)

Here, Eq. (1a) denotes the mass balance, in whichH ,Ux , and
Uy stand for height and surface tangential velocity compo-
nents and Q̇(x,y, t) stands for a mass production source term
that accounts for erosion of material along the way. Equa-
tions (1b) and (1c) denote the x and y momentum balance, in
which gx , gy, and gz are the three local components of grav-
itational acceleration vector g. Furthermore, nx and ny are x
and y components of the unit vector n that opposes the local
velocity, and µ and ξ are two friction parameters that stand
for dry Coulomb and turbulent friction coefficients, respec-
tively. The friction parameters are determined by back anal-
ysis based on historic events. Note that additional model pa-
rameters introduced in the original publications, such as ve-
locity shape factors and nonhydrostatic pressure corrections,
are not taken into account as they are hard to constrain and
have been shown to not critically affect the slide’s dynamics
(e.g., Hungr et al., 2005; Christen et al., 2010).

The topographic surface Z(X,Y ) enters the governing
equations of the process model implicitly in terms of
the spatially varying gravitational acceleration vector g=
(gx,gy,gz)

T . Any error and uncertainty present in the topog-
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raphy representation hence also enters the landslide run-out
simulation results.

The VS model was first proposed to model snow avalanche
(Salm, 1993). Recently it has been widely applied to other
types of gravity-driven rapid mass movements including
flow-like landslides (Pastor et al., 2018; Frank et al., 2015;
Hussin et al., 2012; Kumar et al., 2019). In this study, the
proprietary mass flow simulation platform RAMMS (Chris-
ten et al., 2010) which provides a GIS-integrated implemen-
tation of the VS model is used for landslide run-out model-
ing. It is integrated as a module of our workflow (see Sect. 4)
that is developed for the purpose of DEM uncertainty propa-
gation analysis.

3 Methods to represent DEM uncertainty

Again, the topographic surface is expressed as a function
Z(X,Y ) parameterized in horizontal coordinates X and Y .
In practice, the function Z(X,Y ) is often constructed from
discrete gridded raster data. We hence assume that a domain
of interestD is discretized into the horizontalX and Y direc-
tion, which results in a spatial grid defined as

Dmn = {Dij = (Xi,Yj ) | (Xi,Yj ) ∈D; i = 1,2,

. . .,m; j = 1,2, . . .,n}. (2)

The elevation data associated with each grid point Dij are
defined as

Zmn = {Zij = Z(Xi,Yj ) | ∀ Dij ∈Dmn}. (3)

The elevation Zmn of a common DEM data product might be
erroneous with respect to the true values as discussed in the
introduction. If we denote the true elevation as

Z∗mn = {Z
∗

ij = Z
∗(Xi,Yj ) | ∀ Dij ∈Dmn}, (4)

the DEM error can be expressed as

εmn = {εij = Z
∗

ij −Zij | ∀ Dij ∈Dmn}. (5)

If we knew the error εmn, we would be able to recover the
real-world topographic surface Z∗mn. The fact, however, that
the error is unknown or we only have limited information
about it implies an uncertainty in the input to our landslide
process simulation. Within this study, we will refer to the un-
certainty associated with the unknown DEM error as DEM
uncertainty. In this circumstance, each εij is treated as a ran-
dom variable and εmn is accordingly treated as a random
field, which consists of a collection of random variables εij .
By generating multiple realizations of the random field εmn,
DEM uncertainty can be represented. This process is widely
known as stochastic simulation. It requires a suitable model
to describe the jointed uncertainty in all εij based on limited
available information about DEM error. The task can be fur-
ther divided into determining (1) the probability distribution

function (pdf) of each εij which quantifies local uncertainty
at each grid point and (2) the correlation between different
εij which is usually termed spatial autocorrelation of DEM
error.

According to available information on the DEM error, ex-
isting approaches that could be used to solve the two issues
can be generally classified into two groups:

a. unconditional stochastic simulation (USS),

b. conditional stochastic simulation (CSS).

More specifically, USS is only informed of properties of
DEM error, e.g., the RMSE, and thus does not honor any
actual DEM error values. CSS is informed of a certain num-
ber of actual DEM error values at reference locations within
the DEM, e.g., obtained from higher-accuracy reference data,
and thus could directly honor the actual DEM error values at
reference locations (Fisher and Tate, 2006).

3.1 Unconditional stochastic simulation (USS) based on
the RMSE

Typically available information about the DEM error pro-
vided by DEM vendors is the root mean square error
(RMSE). For a set of K reference locations, it is defined as

RMSE=

√√√√ 1
K

K∑
k=1
(Z∗kk −Zkk)

2. (6)

Here, Z∗KK = {Z
∗

kk = Z
∗(Xk,Yk) | (Xk,Yk) ∈D; k =

1,2, . . .,K} denotes higher-accuracy elevation values
measured at the reference locations and ZKK = {Zkk =
Z(Xk,Yk) | (Xk,Yk) ∈D; k = 1,2, . . .,K} denotes corre-
sponding elevation values based on the DEM.

It should be noted that, while the RMSE is typically avail-
able, this is not true for the reference elevation values Z∗KK
themselves. As stated numerous times in the literature, it is
critical that the RMSE only provides a global indication of
DEM error magnitude without any information about its spa-
tial autocorrelation. Still, it is by far the most widely used
DEM error indicator for many DEM databases and mostly
the only available information that are included with DEM
products. In this circumstance, USS could be used to repre-
sent DEM uncertainty and study its propagation into land-
slide run-out analyses.

Modeling DEM uncertainty based on USS assumes that
all local error values εij are independent and fulfill the same
univariate Gaussian distribution with a mean (µ) of zero and
a standard deviation (σ ) equivalent to the given RMSE. Un-
der this assumption, an ensemble of spatially uncorrelated
realizations of the random field εmn can be generated by ran-
domly assigning error values to each εij according to its local
Gaussian probability distribution.

In the next step, we have to account for the (unknown) spa-
tial autocorrelation of εmn. Potential methods that could be

Nat. Hazards Earth Syst. Sci., 20, 1441–1461, 2020 https://doi.org/10.5194/nhess-20-1441-2020



H. Zhao and J. Kowalski: Topographic uncertainty quantification for flow-like landslide models 1445

applied are simulated annealing, spatial autoregressive mod-
eling, spatial moving averages, etc.; see Wechsler (2007).
Simulated annealing is generally computationally intensive,
and spatial autoregressive modeling becomes impractical for
the simulation of large areas (Oksanen, 2006). In this study,
we use the spatial moving-averages method that increases the
spatial autocorrelation by filtering spatially uncorrelated re-
alizations with a distance-weighted filter proposed by Wech-
sler and Kroll (2006). For εij at one grid point of an uncorre-
lated realization, its value is replaced by the weighted aver-
age of εij at all grid points within the filter kernel. The weight
decreases with increasing distance to the grid point, which is
similar to semivariogram trends (Wechsler and Kroll, 2006).
The size of the filter denoted as d depends on the maximum
autocorrelation length of εmn which again is unknown if the
RMSE is the only available information. In practice, d is of-
ten determined based on the maximum autocorrelation length
of the original DEM (Wechsler, 2007; Aziz et al., 2012).

Though it relies on some assumptions, such as an appro-
priate choice of correlation length d , the sketched approach
is generally applicable if the RMSE is the only available in-
formation. It may become critical if a DEM contains a sys-
tematic bias which means that the mean of Z∗kk−Zkk deviates
largely from zero. More specifically, if we follow Fisher and
Tate (2006) and Wessel et al. (2018) in defining mean µ and
standard deviation σ as

µ=
1
K

K∑
k=1
(Z∗kk −Zkk) and

σ =

√√√√ 1
K − 1

K∑
k=1
((Z∗kk −Zkk)−µ)

2, (7)

we can express the RMSE in terms of µ and σ as

RMSE=

√
µ2+

K − 1
K

σ 2. (8)

If the number of reference points K is relatively large,
√
(K − 1)/K is close to 1. Equation (8) then indicates that

the RMSE is larger than the standard deviation σ if the mean
µ deviates from zero. The difference between the RMSE and
σ increases with increasing µ. For example, the µ, σ , and
RMSE of the global TanDEM-X DEM based on about 3 mil-
lion reference points are 0.17, 1.28, and 1.29 m (Wessel et al.,
2018). Those of the EU-DEM of Central Macedonia based on
12 943 reference points are 1.8, 3.6, and 4.0 m, while those
of the ASTER GDEM of the same area based on the same
reference points are 6.8, 7.6, and 10.2 m (Mouratidis and
Ampatzidis, 2019). This means that assuming the standard
deviation of the DEM error to be given as the RMSE conse-
quently overestimates the variability in the DEM error if the
mean deviates largely from zero.

The implications of both issues, namely the fact that the
filter size d is unknown and has to be subjectively chosen

and that the RMSE provides an insufficient representation of
the DEM error, are investigated in the following study. For
convenience, the two issues are referred to as

– unrepresentative RMSE and

– subjective d.

3.2 Conditional stochastic simulation (CSS) based on
higher-accuracy reference data

This approach requires the availability of higher-accuracy
reference data at certain reference locations, e.g., from
higher-accuracy DEM products or GPS surveys. Note that,
although these data might be subject to error themselves, it
is fair to assume this error to be much smaller. This justifies
the use of the higher-accuracy reference data as true eleva-
tion values Z∗KK . Based on Z∗KK , we could determine the
statistics of the DEM error, e.g., the RMSE, the µ, and the
σ as discussed in Sect. 3.1. Likewise, we can assess the spa-
tial autocorrelation of the DEM error, e.g., in the form of a
semivariogram model (see Sect. 5.2.1). In addition, we know
the DEM error at the reference locations exactly, denoted as
ε∗KK = { ε

∗

kk | k = 1,2, . . .,K}. Yet, we still lack knowledge
about the DEM error away from the K reference locations,
hence the complete random field εmn.

In that situation, conditional stochastic simulation (CSS)
can be used to simulate, i.e., generate, realizations of the
random field εmn. Many geostatistical methods of condi-
tional simulation could be applied, including sequential sim-
ulation algorithms, the p-field approach, and simulated an-
nealing (Goovaerts, 1997). In this study, we apply a sequen-
tial Gaussian simulation. It is the most attractive technique
for stochastic spatial simulation according to Temme et al.
(2009) and has been widely utilized in DEM uncertainty
propagation analysis (Holmes et al., 2000; Aziz et al., 2012).

The sequential Gaussian simulation sequentially samples
each local error εij along a random path that consists of all
grid points Dij under the multi-Gaussian assumption. This
means that, assuming the random field εmn satisfies a mul-
tivariate Gaussian distribution, each εij fulfills a univariate
Gaussian distribution denoted as N(µij ,σij ). The essential
idea now is that the mean µij and standard deviation σij are
determined sequentially by means of simple kriging based
on the semivariogram model of DEM error that provides co-
variances in simple kriging equations and the conditioning
information including ε∗KK and previously sampled εij . By
making each univariate Gaussian distribution conditional not
only on ε∗KK but also on all previously sampled εij , the semi-
variogram model of DEM error is reproduced in realizations
of εmn (Goovaerts, 1997). The process to generate one real-
ization of εmn is as follows:

1. Determine a semivariogram model to represent the spa-
tial autocorrelation of DEM error based on normal score
transformed ε∗KK .
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2. Define a random path visiting each Dij once.

3. At each Dij , determine N(µij ,σij ) using simple krig-
ing based on the semivariogram model and normal score
transformed ε∗KK .

4. Sample a value from N(µij ,σij ), assign it to εij , and
add εij into normal score transformed ε∗KK .

5. Repeat steps (3) and (4) until all Dij along the path are
visited.

6. Back-transform all sampled εij to the original distribu-
tion of ε∗KK .

Multiple realizations can be generated by defining different
random paths.

4 Implementation

Studying the impact of DEM uncertainty on landslide run-out
modeling is computationally intensive and technically de-
manding. It includes representing DEM uncertainty in terms
of a large number of DEM realizations, conducting numer-
ous landslide run-out modeling based on the DEM realiza-
tions, and postprocessing extensive output data. In addition,
understanding how DEM uncertainty affects terrain attributes
may facilitate us in interpreting its impact on landslide run-
out modeling. This requires the ability to calculate terrain
attributes, e.g., slope and roughness, of the original DEM as
well as of the generated DEM realizations.

In this study, we propose a workflow that integrates our
own Python implementation of selected aspects of the work-
flow and existing software as well as toolboxes to solve the
above-mentioned tasks. It is part of our PSI-slide (Predic-
tive Simulation of Slides) package in development that is
designed for the purpose of systematically investigating the
impact of the various sources of uncertainty on simulating
gravity-driven mass movements (Kowalski et al., 2018; Zhao
and Kowalski, 2018). Herein, we focus on DEM uncertainty.
Figure 1 illustrates the workflow. It consists of four modules:

1. DEM uncertainty representation. In this module, we
generate an ensemble of N equally probable DEM re-
alizations to represent DEM uncertainty based on avail-
able information about DEM error. USS as introduced
in Sect. 3.1 is implemented without third-party software
(USS.py) for cases in which only the RMSE is avail-
able. For cases in which higher-accuracy reference data
are provided, CSS as introduced in Sect. 3.2 is imple-
mented by integrating the sequential Gaussian simula-
tion algorithm of the Stanford Geostatistical Modeling
Software (SGeMS; Remy et al., 2009) into our work-
flow (SGeMS.py).

2. Landslide run-out modeling. This module is used to
conduct N landslide run-out simulations based on the

Figure 1. Computational workflow of DEM uncertainty propaga-
tion in landslide run-out simulation. It is part of our PSI-slide pack-
age in development that is designed for the purpose of systemati-
cally investigating the impact of various sources of uncertainty on
simulating gravity-driven mass movements (Kowalski et al., 2018;
Zhao and Kowalski, 2018). The workflow consists of four modules:
(1) DEM uncertainty representation, (2) landslide run-out model-
ing, (3) statistical analysis and visualization, and (4) terrain analy-
sis.

N DEM realizations generated in module (1). In this
study we employ the proprietary mass flow simulation
platform RAMMS (Christen et al., 2010) which pro-
vides a GIS-integrated implementation of the VS model.
First, a Python script named SetInput.py is called to
set up required inputs for each simulation run. Then a
Python script named RAMMS.py starts parallel runs of
RAMMS using the Python SCOOP module. In the end,
a Python script named ExtractOutput.py is called to ex-
tract user-specified outputs.

3. Statistical analysis and visualization. This module is
used to conduct statistical analysis on the user-specified
outputs from module (2) and visualize results. It is
mainly based on the Python NumPy and Matplotlib

Nat. Hazards Earth Syst. Sci., 20, 1441–1461, 2020 https://doi.org/10.5194/nhess-20-1441-2020



H. Zhao and J. Kowalski: Topographic uncertainty quantification for flow-like landslide models 1447

modules. For example, a probabilistic hazard map can
be produced to indicate potential hazard area.

4. Terrain analysis. This module is used to analyze terrain
characteristics of the original DEM and DEM realiza-
tions from module (1), which may help us to interpret
outputs from module (3). This is achieved by integrat-
ing several terrain analysis tools from WhiteboxTools
(Lindsay, 2018) like calculating slope, aspect, rough-
ness index, etc. into our workflow (WhiteboxTools.py).

5 Case study

This study is based upon a historic landslide and two DEM
sources. For the purpose of DEM uncertainty propagation
analysis, we assume one DEM source to be more accurate
than the other and then obtain higher-accuracy reference data
from the more accurate DEM source to assess elevation er-
ror in the less accurate DEM source. We design a series of
computational scenarios based on the higher-accuracy refer-
ence data to study the impact of DEM uncertainty on land-
slide process simulation for both the case where only the
RMSE is available and the case where higher-accuracy refer-
ence data are available. Additional computational scenarios
are designed to study the unrepresentative RMSE and sub-
jective d issues as detailed in Sect. 3.1 in the form of a sen-
sitivity analysis.

5.1 Scenario background and DEM sources

A historic landslide happened on 7 June 2008 on the hill-
side above Yu Tung Road in Hong Kong due to an intense
rainfall event; see Fig. 2. It was the largest flow-like land-
slide out of 19 landslides during that event. Around 3400 m3

of material was mobilized and traveled about 600 m until it
was deposited. The landslide event had a severe infrastruc-
tural impact, as it led to closure of the westbound lanes of Yu
Tung Road for more than 2 months (AECOM Asia Company
Limited, 2012). The Yu Tung Road landslide also served as
a benchmark case for predictive landslide run-out analysis at
the second Joint Technical Committee on Natural Slopes and
Landslides (JTC1) workshop on Triggering and Propagation
of Rapid Flow-like Landslides in Hong Kong 2018 (Pastor
et al., 2018). Two types of DEM data of the Yu Tung Road
area were the basis for this study:

– A public 5 m resolution digital terrain model covering
the whole area of Hong Kong (HK-DTM). It can be
downloaded from the website of the Survey and Map-
ping Office of Hong Kong. The HK-DTM is generated
from a series of digital orthophotos, which are derived
from aerial photographs taken in 2014 and 2015. The
reported accuracy is ±5 m at a 90% confidence level.
(DATA.GOV.HK, 2020)

– A 2 m resolution DEM (2m-DEM) covering the main
area of the Yu Tung Road landslide event. Its bound-
ary is shown in Fig. 3a. It was provided for the bench-
mark exercise during the second JTC1 workshop. It is
produced based on the field mapping after the 2008
Yu Tung Road landslide event and a pre-event DEM.
According to the “note to participants” of the sec-
ond JTC1 workshop (which can be found under the
link http://www.hkges.org/JTC1_2nd/be.html, last ac-
cess: 18 May 2020), the 2m-DEM represents the rupture
surface in the release zone area and the pre-event slope
surface in other areas. The rupture surface is obtained
based on the field mapping (AECOM Asia Company
Limited, 2012).

In this study, we assume the 2m-DEM to be more accurate
than the 5 m resolution HK-DTM. Similar to our considera-
tion at the beginning of Sect. 3.2, the 2m-DEM and 5 m reso-
lution HK-DTM correspond to Z∗ and Z as defined in Sect. 3.
A set of higher-accuracy reference data Z∗KK can hence be
determined to provide information to represent uncertainty
in the 5 m resolution HK-DTM. At the channel base, infor-
mation on vegetation in the 2m-DEM is not available. The
5 m resolution HK-DTM includes vegetation. In this study,
any vegetation present in the channel base in the 5 m resolu-
tion HK-DTM is not explicitly accounted for in the sense of
a modeled DTM correction. Rather, it is subsumed as part of
the DEM error.

It should be noted that, due to a different time of DEM
data acquisition, there are infrastructural factors present in
the 5 m resolution HK-DTM but not in the 2m-DEM. After
the time of data acquisition of the 2m-DEM, debris-resisting
barriers and a road were built in the area within the red el-
lipse and blue rectangle, respectively, in Fig. 3a. They are re-
flected in the HK-DTM but not in the 2m-DEM, which leads
to large inconsistency between the two DEMs in that area.
Therefore, to avoid an unrealistically large error in the HK-
DTM, data from the 2m-DEM in that area are excluded from
higher-accuracy reference data Z∗KK .

5.2 DEM realizations

5.2.1 Information on DEM error

As shown in Fig. 3a, we pick 180 evenly spaced reference
locations from the HK-DTM grid points within the bound-
ary of the 2m-DEM. Higher-accuracy reference data at these
locations are obtained from the 2m-DEM using bilinear inter-
polation, denoted as Z∗KK{K = 180}. Subtracting the corre-
sponding elevation values of the HK-DTM ZKK{K = 180}
from Z∗KK{K = 180}, we obtain elevation error values of
the HK-DTM at the 180 reference locations, denoted as
ε∗KK{K = 180}.

Figure 3b shows the histogram of ε∗KK{K = 180}. Of
the elevation error values, 90% are within −5.84 m and
−1.04 m, which is close to the reported accuracy (see
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Figure 2. The 2008 Yu Tung Road landslide. Left: Google map of Hong Kong (map data © 2019). Right: aerial photograph of Yu Tung Road
site after the 2008 landslide. It corresponds to the No. L25 landslide in the GEO Report (AECOM Asia Company Limited, 2012).

Sect. 5.1). The µ, σ , and RMSE according to Eqs. (7) and
(6) are −3.0, 1.5, and 3.3 m, respectively. Here, it should
be noted that the RMSE is larger than the σ since the µ is
not zero, which indicates a systematic bias. As discussed in
Sect. 3.1, this also indicates that assuming the standard de-
viation of the HK-DTM error to be equivalent to the RMSE
in USS would overestimate the variability in the HK-DTM
error.

Based on ε∗KK{K = 180}, we can determine an isotropic
semivariogram model which describes the spatial autocorre-
lation of the HK-DTM error. It results in

γ (h)= 0.1×Sph
(
h

180

)
+ 0.9×Exp

(
h

50

)
. (9)

Here, Sph(·) and Exp(·) denote the basic spherical and ex-
ponential semivariogram models (Goovaerts, 1997) and h
denotes the horizontal distance between any two locations.
A comparison between the experimental semivariance val-
ues based on ε∗KK{K = 180} and the parameterized semivar-
iogram model given by Eq. (9) can be seen in Fig. 4. Semi-
variance is a measure of spatial dependence between DEM
error values at two different locations. The continuous semi-
variogram model is fitted to the experimental semivariance
values so as to deduce semivariance values for any possible
distance h required by simple kriging (Goovaerts, 1997). The
range of the semivariogram model is 180 m. It indicates the
maximum autocorrelation length of the HK-DTM error, on
which the size of the spatial moving filter d depends (see
Sect. 3.1).

5.2.2 DEM uncertainty scenarios

As mentioned in Sect. 3, DEM users are often restricted to
DEM error information in the form of a single RMSE value
per data product. Rarely, they have higher-accuracy reference
data. In order to account for both situations, two correspond-
ing information levels are considered in the following study.

a. Rudimentary error information – the RMSE only. In this
situation, the RMSE is assumed to be the only available
error information for the 5 m resolution HK-DTM. In
order to compare results to (b), we employ the RMSE
3.3 m as generated based on Z∗KK{K = 180} as well as
the size of the spatial moving filter d of 180 m to match
the range of the fitted semivariogram model in Fig. 4.
USS introduced in Sect. 3.1 is used to generate N re-
alizations of the HK-DTM, denoted as USSN{RMSE=
3.3, d = 180}.

b. Highly informed – higher-accuracy reference data. In
this situation, Z∗KK{K = 180} is assumed to be avail-
able. That means we know the error ε∗KK{K = 180} at
the reference locations exactly and the fitted semivari-
ogram model based on ε∗KK{K = 180}. CSS introduced
in Sect. 3.2 is used to generateN realizations of the HK-
DTM, denoted as CSSN .

Following the two nominal scenarios (a) and (b) that are
based on specific error ε∗KK{K = 180} at reference locations
determined from the available data sources, we also want to
analyze the impact of unrepresentative RMSE and subjective
d issues of USS as introduced in Sect. 3.1 in the form of a
sensitivity analysis. Hence, to what extent can we trust the
results of USS if only a single RMSE value per data prod-
uct is available. Three additional values of the RMSE that
are 0.5, 1.5, and 2.5 m with a fixed d of 180 m are used as
inputs for USS to study the unrepresentative RMSE issue. It
should be noted that the RMSE 1.5 m corresponds to the true
standard deviation σ based on ε∗KK{K = 180}; see Fig. 3b.
Another three additional values of d that are 0, 90, and 270 m
with a fixed RMSE of 3.3 m are used to consider the subjec-
tive d issue. The corresponding realizations of the HK-DTM
are denoted as USSN{RMSE= 0.5, 1.5, 2.5, d = 180} and
USSN{RMSE= 3.3, d = 0, 90, 270}. To sum up, all the sce-
narios for stochastic simulation are listed in Table 1.
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Figure 3. (a) Elevation error ε∗
KK
{K = 180} of the HK-DTM at 180 reference locations. The background is the hillshade plot of the HK-

DTM. Debris-resisting barriers and a road in the area indicated by the red ellipse and blue rectangle constructed after the 2008 landslide event
are represented in the HK-DTM but not in the 2m-DEM. It causes inconsistency between the two DEMs in that area. To avoid an unrealis-
tically large error in the HK-DTM, data from the 2m-DEM in that area are excluded from higher-accuracy reference data. (b) Histogram of
ε∗
KK
{K = 180}. The RMSE is larger than the standard deviation (σ ) since the mean (µ) is not zero. As discussed in Sect. 3.1, this indicates

that assuming the standard deviation of the HK-DTM error to be equivalent to the RMSE in USS would overestimate the variability in the
HK-DTM error.

Table 1. Scenarios for stochastic simulation.

Method to generate Input to generate
DEM realizations DEM realizations

Scenario (a) USS RMSE= 3.3; d = 180

Scenario (b) CSS semivariogram; ε∗
KK
{K = 180}

Scenarios for
USS RMSE= 0.5, 1.5, 2.5; d = 180

unrepresentative RMSE

Scenarios for
USS RMSE= 3.3; d = 0, 90, 270

subjective d

Note that, in scenario (a) and (b), the inputs to generate DEM realizations are obtained from higher-accuracy
reference data at the 180 reference locations.

Figure 4. Experimental semivariances based on ε∗
KK
{K = 180}

and fitted parameterized semivariogram model given by Eq. (9). The
range of the semivariogram model is 180 m. It indicates the maxi-
mum autocorrelation length of DEM error, on which the size of the
spatial moving filter d depends (see Sect. 3.1).

5.2.3 Number of DEM realizations

The integrity of a stochastic simulation requires a large
number of DEM realizations, and more realizations natu-
rally require many computational resources. Thus one has
to find a reasonable compromise. Typically, this can be
found through a representative convergence study. Since
in our study we address the impact of topographic uncer-
tainty on landslide run-out simulation, we analyze the rel-
ative change in topographic attributes with an increasing
number of HK-DTM realizations in a preliminary study.
In this study, 1000 HK-DTM realizations are generated for
the two information levels (a) and (b) as introduced in
Sect. 5.2.2, namely USSN=1000{RMSE= 3.3, d = 180} and
CSSN=1000, respectively. Topographic attributes including
slope, aspect, and roughness at all HK-DTM grid points are
calculated for each realization.
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We define an indicator of the relative change similarly to
Raaflaub and Collins (2006) to investigate the converging be-
havior. Taking slope as an example, for a given number n of
HK-DTM realizations, we first calculate the standard devi-
ation of slope at each HK-DTM grid point over the n real-
izations. The calculated standard deviation values at all grid
points constitute a grid of standard deviation values. Then
we calculate the standard deviation of the grid of standard
deviation values, which leads to a single standard deviation
value for the given number n. For each n from 1 to 1000,
we can correspondingly calculate a standard deviation value.
The same procedure is applied to aspect, roughness, and ele-
vation.

Figure 5 shows plots of normalized standard deviation of
the grid of standard deviation values with respect to the num-
ber of HK-DTM realizations for the two situations (a) and
(b). It can be seen that for situation (a), aspect levels out first,
followed by slope, roughness, and elevation. Beyond 500 re-
alizations, there is little change in normalized standard de-
viations. This indicates that adding more realizations has lit-
tle impact on topographic attributes. For situation (b), aspect
also levels out first while the other three attributes show less
difference. Compared to (a), (b) converges faster, which indi-
cates CSS requires fewer DEM realizations than USS does.
Nevertheless, we set N = 500 for the remainder of this study
both for USS and CSS. Namely, we generate 500 HK-DTM
realizations for each scenario input set as listed in Table 1.

5.2.4 Statistics of DEM error realizations

In order to conduct a further quality check of our implemen-
tation of both USS and CSS, we investigate the correspond-
ing DEM error realizations of the USSN=500{RMSE= 3.3,
d = 180} and CSSN=500 scenarios, denoted as USSError

N=500
{RMSE= 3.3, d = 180} and CSSError

N=500, respectively. Ide-
ally, the local mean µij and standard deviation σij of DEM
error realizations at each grid pointDij should match the un-
derlying assumptions as introduced in Sect. 3 if the number
of DEM error realizations is sufficiently large.

Figure 6a and c show the mean and standard deviation grid
of the USSError

N=500{RMSE= 3.3, d = 180}. It can be seen that
the mean values at all grid points are centered around 0 m.
The standard deviation values are centered around 3.3 m.
This corresponds to the assumption underlying USS that all
εij fulfill the same univariate Gaussian distribution with a
mean (µ) of zero and a standard deviation (σ ) given by the
RMSE (see Sect. 3.1).

Figure 6b and d show the mean and standard deviation
grid of the CSSError

N=500. The mean values at grid points away
from the reference locations are centered around the mean
(µ) −3.0 m based on ε∗KK{K = 180}. They become close to
ε∗KK{K = 180} with the decrease in distance between grid
points and the reference locations and are equal to ε∗KK{K =
180} at the reference locations. Similarly, the standard de-
viation values at grid points away from the reference loca-

tions are centered around the standard deviation (σ ) 1.5 m
based on ε∗KK{K = 180}. They vanish at the reference lo-
cations. This also corresponds to the assumption underlying
CSS that each εij fulfills a univariate Gaussian distribution
with a mean µij and standard deviation σij given by the sim-
ple kriging estimate and simple kriging standard deviation at
Dij (see Sect. 3.2).

5.3 Landslide process simulation setup

With the DEM realizations generated in Sect. 5.2, we can
study the impact of DEM uncertainty on landslide process
simulation. Here, we introduce the key inputs and our setup
for the process simulation.

5.3.1 Model input

Release zone area and fracture height, friction parameters,
and a DEM are three key inputs for performing a determinis-
tic landslide process simulation based on the VS model and
utilizing the mass movement simulation platform RAMMS
(Christen et al., 2010). For all scenarios, we consistently use
the release zone area as provided for the benchmark exer-
cise during the second JTC1 workshop, which matches that
of the 2008 Yu Tung Road landslide (Pastor et al., 2018) as
shown in Fig. 7b. The fracture height is assumed to be 1.2 m,
leading to a release volume of around 2900 m3, based on
the 5 m resolution HK-DTM. The friction parameters µ and
ξ used in this study are 0.105 and 300 m s−2, respectively.
They are suggested in the GEO Report issued by the Civil
Engineering and Development Department of Hong Kong
and are obtained using back analysis with information from
a video capturing the lower portion of the landslide and de-
tailed field mapping after the landslide (AECOM Asia Com-
pany Limited, 2012). The HK-DTM and all HK-DTM real-
izations generated in Sect. 5.2 are used as DEM inputs. En-
trainment is not considered in this study.

It should be noted that release zone area and fracture
height, as well as friction parameters, may also be subject
to uncertainty in landslide modeling practice. In this study
we keep them fixed and focus only on the DEM uncertainty
which is mostly overlooked in landslide run-out modeling.
Future work should therefore continue to focus on system-
atically quantifying all the uncertainty factors and evaluat-
ing their relative importance and interaction. Researchers
carrying out this work should notice that increasing the di-
mension of uncertainty factors instantly requires a much
larger number of simulation runs for stochastic simulation
and computational-resource consumption may become pro-
hibitively expensive. One promising solution to this chal-
lenge is to employ emulator techniques.

5.3.2 Simulation ensembles

We denote a deterministic landslide process simulation based
on a DEM as a simulation run and N deterministic landslide
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Figure 5. The relative change in topographic attributes with respect to the number of HK-DTM realizations. The realizations are generated
with (a) USSN{RMSE= 3.3, d = 180}; (b) CSSN . Beyond N = 500, adding more realizations has little impact on topographic attributes.
Therefore, we set N = 500 for all computational scenarios in Table 1.

Figure 6. Statistics of HK-DTM error realizations. (a) Mean and (c) standard deviation grid of USSError
N=500{RMSE= 3.3, d = 180}. The

mean and standard deviation values are centered around 0 and 3.3 m. (b) Mean and (d) standard deviation grid of CSSError
N=500. The mean

values at grid points away from the reference locations are centered around the mean (µ) −3.0 m of ε∗
KK
{K = 180} and are equal to

ε∗
KK
{K = 180} at the reference locations. The standard deviation values at grid points away from the reference locations are centered around

the standard deviation (σ ) 1.5 m of ε∗
KK
{K = 180} and vanish at the reference locations. This matches the assumptions underlying USS and

CSS as introduced in Sect. 3.

process simulations based on N DEM realizations as a simu-
lation ensemble. The following deterministic simulation and
simulation ensembles are conducted based on the original
HK-DTM and the aforementioned computational scenarios;
see Table 1. They are named after the corresponding DEM
and DEM realizations.

1. Deterministic simulation HK-DTM. One landslide pro-
cess simulation run is conducted based on the origi-
nal HK-DTM. This one time simulation corresponds to
what is traditionally performed in a simulation-based

hazard assessment study. The results serve as the basis
to assess the impact of DEM uncertainty.

2. USSN=500{RMSE= 3.3, d = 180} ensemble. A total of
500 landslide process simulations are conducted based
on the USSN=500{RMSE= 3.3, d = 180} DEM real-
izations as introduced in Sect. 5.2. Each of them is re-
ferred to as USSnN=500{RMSE= 3.3, d = 180}, with
n= 1,2, . . .,500. This ensemble allows us to access the
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impact of DEM uncertainty if only the RMSE is avail-
able.

3. CSSN=500 ensemble. A total of 500 landslide pro-
cess simulations are conducted based on the CSSN=500
DEM realizations. Similar to (2), each of them is re-
ferred to as CSSnN=500, with n= 1,2, . . .,500. This en-
semble allows us to assess the impact of DEM uncer-
tainty if higher-accuracy reference data are available.

4. USSN=500{RMSE= 0.5, 1.5, 2.5, d = 180} ensembles.
For each of the three different RMSE values, 500 land-
slide process simulations are conducted, while keeping
the maximum autocorrelation length d constant. They
lead to 1500 process simulations. The results allow us
to discuss the unrepresentative RMSE issue as detailed
in Sect. 3.1. They can be also used to discuss the rela-
tionship between the degree of DEM uncertainty and its
impact.

5. USSN=500{RMSE= 3.3, d = 0, 90, 270} ensembles.
For each of the three maximum autocorrelation length
values, 500 landslide process simulations are con-
ducted, while keeping the RMSE constant. They lead
to 1500 process simulations. The results allow us to dis-
cuss the subjective d issue as detailed in Sect. 3.1.

All in all this adds up to one deterministic simulation run
HK-DTM, as well as to simulation ensembles of 500 process
simulations of both the USSN=500 {RMSE= 3.3, d = 180}
ensemble and the CSSN=500 ensemble, which is constructed
from higher-accuracy reference data based on the 2m-DEM,
and 3000 additional process simulations to result in six en-
sembles of USSN=500{RMSE= 0.5, 1.5, 2.5, d = 180} and
USSN=500{RMSE= 3.3, d = 0, 90, 270} to test sensitivi-
ties. Each process simulation takes around 1 min on a laptop
with Intel Core i7-9750H CPU, adding up to around 67 h of
simulation time.

6 Results and discussions

This section is organized according to the simulation ensem-
bles introduced in Sect. 5.3.2. Section 6.1 presents the re-
sults of the deterministic simulation HK-DTM which serves
as the basis for all following discussions. Section 6.2 is de-
voted to analyzing the impact of DEM uncertainty on land-
slide process simulation in the cases of only the RMSE being
available (USSN=500{RMSE= 3.3, d = 180} ensemble) and
higher-accuracy reference data being available (CSSN=500
ensemble). In Sect. 6.3, the unrepresentative RMSE and sub-
jective d issues are discussed based on the ensembles de-
scribed in Sect. 5.3.2 (labeled 4 and 5).

6.1 Deterministic simulation HK-DTM

In a continuum-mechanical landslide process model such as
that used for this study and introduced in Sect. 2, the land-

Figure 7. Results of the deterministic simulation HK-DTM.
(a) Hmax(x,y) above a cutoff threshold of 0.1 m. The black out-
line is the 0.1 m contour ofHmax(x,y). The area within this outline
is regarded as the hazard area. Area 1–3 are denoted for later discus-
sions (see Sect. 6.2.1). (b) ‖Umax(x,y)‖ above a cutoff threshold of
0.01 m s−1. The relatively high elevation area within the red circle
decelerates and holds back the flow material. The channel bottom
and cross section are denoted for later discussions (see Sect. 6.2.2).

slide flow behavior is characterized by its spatially vary-
ing height and velocity distribution over time, denoted as
H(x,y, t) and U(x,y, t). Hence, for the purpose of land-
slide hazard assessment and mitigation measure develop-
ment, maximum height and velocity data over the duration
of the landslide are most informative. Thus, we focus on the
maximum values of H(x,y, t) and U(x,y, t) over the whole
time, denoted as Hmax(x,y) and ‖Umax(x,y)‖.

Figure 7a and b show Hmax(x,y) and ‖Umax(x,y)‖ as
given by the deterministic simulation HK-DTM. It should
be noted that there is a relatively high elevation area at the
end part of the channel in the HK-DTM as denoted within
the red circle in Fig. 7b. It corresponds to the construction of
debris-resisting barriers after the 2008 Yu Tung Road land-
slide as introduced in Sect. 5.1. The flow material is decel-
erated and held back here. We will come back to this point
later in Sect. 6.2.1.

Landslide run-out distance is often characterized in terms
of its apparent friction angle. The tangent of the apparent
friction angle is equal to the ratio of the landslide fall height
and the run-out distance (DeBlasio and Elverhoi, 2008). The
apparent friction angle evaluated from the deterministic sim-
ulation is 16.80◦. This result is used as a reference to assess
the impact of DEM uncertainty in the following discussions.
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6.2 USSN=500{RMSE = 3.3, d = 180} ensemble and
CSSN=500 ensemble

While it is straightforward to present the results of a deter-
ministic simulation run as shown in Sect. 6.1, a stochastic
simulation-based ensemble ofN simulation runs calls for tai-
lored statistics to manage and interpret the extensive output
data. First, we define the hazard probability P(xl ,yl) at one lo-
cation (xl,yl) as the frequency of Hmax(xl,yl) exceeding a
certain predefined height threshold value; hence

P(xl ,yl) =

∑N
n=1P

n
(xl ,yl)

N
, P n(xl ,yl)

=

{
1, if H n

max(xl,yl)≥ threshold

0, otherwise,
(10)

where H n
max(xl,yl) denotes the maximum flow height at lo-

cation (xl,yl) for the nth simulation run of the corresponding
ensemble. Hence P n(xl ,yl) indicates whether location (xl,yl) is
within the hazard area of the nth simulation run for a given
threshold, and P(xl ,yl) indicates the resulting hazard proba-
bility at location (xl,yl) considering the complete ensemble.
Here, the threshold is set as 0.1 m, which matches the cut-
off threshold of the deterministic simulation HK-DTM in
Fig. 7a. Evaluation of hazard probabilities at all locations
then gives rise to a probabilistic hazard map (Stefanescu
et al., 2012), which provides an overall view of the DEM
uncertainty impact.

Besides assessing the overall impact of DEM uncertainty
in terms of the probabilistic hazard map, we will also dis-
cuss the local impact of DEM uncertainty on dynamic flow
properties, focusing onHmax(x,y) and ‖Umax(x,y)‖ at loca-
tions along the channel bottom and the channel cross section
denoted in Fig. 7b.

6.2.1 Probabilistic hazard maps

Figure 8a and c show the probabilistic hazard map for both
the USSN=500 {RMSE= 3.3, d = 180} ensemble and the
CSSN=500 ensemble. It can be seen that the potential haz-
ard area is much larger than the deterministic hazard area
for both ensembles. The difference between the determinis-
tic and the ensemble-based hazard area is most pronounced
in area 1–3 for the USSN=500 {RMSE= 3.3, d = 180} en-
semble and in area 3 for the CSSN=500 ensemble. Fig. 8b
and d show boxplots of the apparent friction angle distribu-
tion for both ensembles. It is evident that the apparent fric-
tion angle of both ensembles varies largely with respect to
the apparent friction angle of the deterministic simulation
(16.80◦). The CSSN=500 ensemble-based apparent friction
angle (mean 15.39◦) is smaller than the USSN=500 {RMSE=
3.3, d = 180} ensemble-based apparent friction angle (mean
16.76◦).

As stated in Sect. 4, analyzing terrain characteristics of the
original DEM and DEM realizations may help us to interpret

simulation results. By a preliminary analysis, we did not find
obvious relationships between landslide run-out simulation
results and terrain characteristics at a specific location (on
the cell level). One obvious reason for this is that a simula-
tion result at one location is affected not only by terrain char-
acteristics at the specific location but also by the complete
upstream and surrounding terrain. Instead of discussing the
effects of terrain characteristics at the cell level, we there-
fore focus on several compound terrain characteristics that
help us to understand how DEM uncertainty may affect sim-
ulation results. The compound terrain characteristics include
banks of the channel, especially the north bank near area 1
and south bank near area 2; the relatively high elevation area
at the end part of the channel that holds back flow material as
shown in Fig. 7b; topographic roughness; and the relatively
flat area of area 3 (namely area with a relatively small slope).

Due to DEM uncertainty, topographic characteristics rep-
resented in DEM realizations vary from those represented in
the original DEM. Specifically, firstly, topographic details of
the deterministic channel tend to be dampened out in DEM
realizations. The topographic details include banks of the
channel as well as the relatively high elevation area at the end
part of the channel that holds back flow material. Secondly,
topographic roughness tends to increase.

Whether, where, and to what extent the topographic char-
acteristics in DEM realizations would differ from the original
DEM depend on (1) variability in DEM error – intuitively,
the larger the variability, the more likely that topographic de-
tails of the deterministic channel would be dampened out and
the larger the topographic roughness in DEM realizations –
and (2) topographic details of the original DEM. If subject to
the same DEM error, less well defined topographic charac-
teristics in the original DEM are more likely to be changed
in DEM realizations. For example, along the channel of the
HK-DTM, the north bank of the channel near area 1, and the
south bank of the channel near area 2, characteristics are less
well defined compared to other parts of the channel banks.
Flow material could be more easily diverted to area 1 and
area 2 where elevations are relatively low and some local
small channels exist. Area 3 could also be regarded as less
well defined since it is relatively flat and thus is sensitive to
DEM uncertainty (Temme et al., 2009).

The change in each topographic characteristic has a cor-
responding impact on landslide run-out behavior. Specifi-
cally (1) if banks of the deterministic channel are dampened
out in DEM realizations, flow material tends to spread out
along the channel cross-section direction and travel distance
is shorter; (2) if the relatively high elevation area that holds
back flow material is dampened out, flow material tends to
travel further; and (3) increasing topographic roughness leads
to higher simulated momentum losses and shorter travel dis-
tance as pointed out by McDougall (2017).

For the USSN=500 {RMSE= 3.3, d = 180} ensemble, the
variability in DEM error is relatively large, i.e., around
3.3 m governed by the non-bias-corrected RMSE based on
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Figure 8. (a) Probabilistic hazard map and (b) corresponding apparent friction angle distribution of the USSN=500 {RMSE= 3.3, d = 180}
ensemble; (c) probabilistic hazard map and (d) corresponding apparent friction angle distribution of the CSSN=500 ensemble. The black
outline plotted on the hazard maps represents the deterministic hazard area (see Fig. 7a). In the boxplots, the blue star denotes the apparent
friction angle of the deterministic simulation HK-DTM (see Sect. 6.1). The difference between the deterministic and the ensemble-based
hazard area is most pronounced in area 1–3 for the USSN=500 {RMSE= 3.3, d = 180} ensemble and in area 3 for the CSSN=500 ensemble.

ε∗KK{K = 180} (see Fig. 6c). In this situation, both the north
bank near area 1 and south bank near area 2 as well as the
relatively high elevation area at the end part of the chan-
nel can be dampened out in HK-DTM realizations. For the
CSSN=500 ensemble, the variability in DEM error is rela-
tively small, i.e., around 1.5 m governed by the standard de-
viation (σ ) based on ε∗KK{K = 180} (see Fig. 6d). In this
situation, the banks tend to remain well defined, while the
relatively high elevation area can be dampened out in HK-
DTM realizations. Thus, area 1 and area 2 are possibly sub-
ject to hazard in the USSN=500 {RMSE= 3.3, d = 180} en-
semble but less likely to be so in the CSSN=500 ensemble.
As mentioned above, area 3 is a flat area which is sensitive to
DEM uncertainty. Furthermore, it is located near the deposi-
tion, around which the impact of upstream DEM uncertainty
seems to accumulate. Thus, it is highly affected in both en-
sembles.

The apparent friction angle distribution is determined
by a combined effect of change in channel banks, change
in the relatively high elevation area at the end part of
the channel, and increasing topographic roughness. For
the USSN=500 {RMSE= 3.3, d = 180} ensemble, a dete-
riorated channel bank representation and increasing topo-
graphic roughness make flow material travel a shorter dis-
tance, i.e., larger apparent friction angle, while a deteriorated
relatively high elevation area representation allows flow ma-
terial to travel further, i.e., smaller apparent friction angle.

For the CSSN=500 ensemble, channel banks are likely to
remain well defined and the degree of topographic rough-
ness increase is lower due to its relatively small variabil-
ity in DEM error compared to the USSN=500 {RMSE= 3.3,
d = 180} ensemble. Thus, flow material in the CSSN=500
ensemble tends to travel a longer distance, i.e., smaller ap-
parent friction angle, compared to the flow material in the
USSN=500 {RMSE= 3.3, d = 180} ensemble.

In summary, we can conclude from the probabilistic haz-
ard maps and boxplots of apparent friction angle distribution
that (1) accounting for DEM uncertainty may significantly
increase the potential hazard area, (2) the potential hazard
area is highly related to the variability in DEM error and to-
pographic characteristics of the original DEM, and (3) USS
based on the RMSE only may overestimate the spread of po-
tential hazard area and underestimate travel distance due to a
non-bias-corrected RMSE that overestimates the variability
in DEM error.

It should be noted that the probabilistic hazard map here
is constructed based on maximum height and a predefined
threshold. In simulation-based hazard assessment practice,
one may indicate potential hazard using other indicators,
e.g., the maximum momentum that reflects the impact pres-
sure, and correspondingly modify the threshold value. In this
case, our workflow is easily extendible to account for other
indicators.
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6.2.2 Dynamic flow properties

Figure 9a, c, and e show elevation, maximum height, and
maximum velocity at locations along the channel bottom
based on the USSN=500 {RMSE= 3.3, d = 180} ensemble.
It is evident that both maximum height and maximum veloc-
ity at these locations largely vary from those of the determin-
istic simulation. Specifically, the mean of maximum height
(maximum velocity) values at all the locations based on the
deterministic simulation is 1.28 m (7.17 m s−1). The mean of
the ensemble-based 90 % confidence interval of maximum
height (maximum velocity) is [0.18 m, 2.17 m] ([0.99 m s−1,
7.89 m s−1]; the range between the mean of the ensemble-
based 5th percentile and the mean of the ensemble-based
95th percentile). Another observation is that the ensemble-
based mean of flow dynamic properties is generally smaller
than the mean of flow dynamic properties of the determin-
istic simulation (as seen by the dashed red line being gener-
ally under the black line in both Fig. 9c and e). The mean
of the ensemble-based mean of maximum height (maximum
velocity) is 0.85 m (4.57 m s−1), around 66 % (64 %) of the
mean of the deterministic simulation at 1.28 m (7.17 m s−1;
see Fig. 9c and e).

Figure 9b, d, and f show corresponding results based
on the CSSN=500 ensemble. Similar trends to those in the
USSN=500 {RMSE= 3.3, d = 180} ensemble can also be
observed. Namely, both maximum height and maximum ve-
locity at these locations largely vary from those of the de-
terministic simulation, and the ensemble-based mean of flow
dynamic properties is generally smaller than that of the de-
terministic results. The main differences are that the varia-
tion range of CSSN=500 ensemble-based flow dynamic prop-
erties is smaller and the CSSN=500 ensemble-based mean of
flow dynamic properties is larger compared to those of the
USSN=500 {RMSE= 3.3, d = 180} ensemble. More specif-
ically, the mean of the CSSN=500 ensemble-based 90 % con-
fidence interval of maximum height (maximum velocity) is
[0.5 m, 2.03 m] ([3.56 m s−1, 7.99 m s−1]). The mean of the
CSSN=500 ensemble-based mean of maximum height (max-
imum velocity) is 1.1 m (6.01 m s−1), around 86 % (84 %) of
the mean of the deterministic simulation 1.28 m (7.17 m s−1;
see Fig. 9d and f).

The above observations result from similar factors to those
discussed in Sect. 6.2.1. Due to DEM uncertainty, the follow-
ing statements can be made:

– Ensemble-based flow dynamic properties are likely to
vary from those of the deterministic simulation. Larger
variability in DEM error is likely to result in more
extreme results. As discussed in Sect. 6.2.1, the vari-
ability in DEM error for the USSN=500 {RMSE= 3.3,
d = 180} ensemble is larger than that for the CSSN=500
ensemble due to the unrepresentative RMSE issue. Thus
the variation range of USSN=500 {RMSE= 3.3, d =
180} ensemble-based flow dynamic properties is gen-

erally larger than that of CSSN=500 ensemble-based
flow dynamic properties, giving a larger mean of the
ensemble-based 90 % confidence interval (the trend
would be more clear if we also consider outliers outside
the 90 % confidence interval).

– Banks of the deterministic channel may be dampened
out in DEM realizations. Deteriorated channel bank
representation makes flow material more spread out
along the channel cross-section direction. This could
lead to a smaller ensemble-based mean of flow dy-
namic properties at channel bottom locations compared
to flow dynamic properties of the deterministic simula-
tion. This can be directly seen in Fig. 10, which dis-
plays results of one channel cross section. Also, due
to larger variability in DEM error, flow material in the
USSN=500 {RMSE= 3.3, d = 180} ensemble is more
spread along the channel cross-section direction, result-
ing in a smaller ensemble-based mean of flow dynamic
properties at channel bottom locations compared to that
of the CSSN=500 ensemble. This can also be seen in
Fig. 10.

– Topographic roughness in DEM realizations tends to
increase. As pointed out in Sect. 6.2.1, increasing to-
pographic roughness results in higher simulated mo-
mentum losses and thus smaller flow dynamic proper-
ties on average. The higher the degree of topographic
roughness increase, the higher the simulated momen-
tum losses and the smaller the flow dynamic proper-
ties. This also contributes to a smaller ensemble-based
mean of flow dynamic properties at channel bottom lo-
cations compared to flow dynamic properties of the de-
terministic simulation, as well as to a smaller USSN=500
{RMSE= 3.3, d = 180} ensemble-based mean of flow
dynamic properties at channel bottom locations com-
pared to the CSSN=500 ensemble.

Based on the ensembles’ dynamic flow properties we can
conclude that (1) accounting for DEM uncertainty may sig-
nificantly affect dynamic flow properties, e.g., maximum
height and maximum velocity, and hence any hazard assess-
ment that is based on landslide dynamics and (2) USS based
only on the RMSE may overestimate the range of dynamic
flow properties and underestimate the ensemble-based mean
of dynamic flow properties due to an unrepresentative RMSE
that overestimates the variability in DEM error.

6.3 Additional ensembles to investigate USS
sensitivities in RMSE and d

Here, we discuss the unrepresentative RMSE and subjective
d issues as introduced in Sect. 3.1 based on six additional
ensembles, USSN=500 {RMSE= 0.5, 1.5, 2.5, d = 180} and
{RMSE= 3.3, d = 0, 90, 270} (refer to Sect. 5.3.2), as well
as the USSN=500 {RMSE= 3.3, d = 180} ensemble. Results
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Figure 9. Elevation, maximum height, and maximum velocity at locations along the channel bottom (see Fig. 7b). Panels (a), (c), and
(e) correspond to the USSN=500 {RMSE= 3.3, d = 180} ensemble and panels (b), (d), and (f) to the CSSN=500 ensemble. In each panel,
dash-dotted blue lines represent the ensemble-based 5th and 95th percentiles of the quantity. The dashed red line represents the ensemble-
based mean of the quantity. The black line denotes corresponding results of the deterministic simulation. Annotated mean values are an
average of all the locations. Ensemble-based flow dynamic properties largely vary from deterministic simulation results. The variation range
of the USSN=500 {RMSE= 3.3, d = 180} ensemble is larger, while its ensemble-based mean is smaller, compared to counterparts of the
CSSN=500 ensemble.

of the CSSN=500 ensemble are used as a reference since
CSSN=500 incorporated more information on the DEM er-
ror. It is thus reasonable to assume that its results reflect the
reality better.

Figure 11 shows the consolidated results of the ensembles.
The left, middle, and right column correspond to the set of
USSN=500 {RMSE= 0.5, 1.5, 2.5, 3.3, d = 180} ensembles,
set of USSN=500 {RMSE= 3.3, d = 0, 90, 180, 270} en-
sembles, and CSSN=500 ensemble, respectively. The first row
shows stacked bar plots of the potential hazard area’s magni-
tude based on the probabilistic hazard map for each ensemble

(see Fig. 8a and c). The second row shows the apparent fric-
tion angle distribution. The last two rows show statistics of
maximum height and maximum velocity at channel bottom
locations (see Fig. 9c–f). Also, deterministic simulation re-
sults are included.

Focusing on the left column, it can be seen that with in-
creasing RMSE (1) low-probability (0–0.2) hazard area sig-
nificantly increases and high-probability (0.8–1) hazard area
gradually decreases, leading to increase in overall potential
hazard area if we keep the same threshold value; (2) except
for the RMSE= 0.5 m ensemble, the apparent friction an-
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Figure 10. Elevation, maximum height, and maximum velocity at locations along the channel cross section (see Fig. 7b). Panels (a), (c), and
(e) correspond to the USSN=500 {RMSE= 3.3, d = 180} ensemble and panels (b), (d), and (f) to the CSSN=500 ensemble. In each panel,
dash-dotted blue lines represent ensemble-based 5th and 95th percentiles of the quantity. The dashed red line represents the ensemble-based
mean of the quantity. The black line denotes corresponding results of the deterministic simulation. Annotated mean values are an average
of all the locations. Due to DEM uncertainty, flow material of both ensembles tends to spread out along the channel cross-section direction.
The ensemble-based mean of flow dynamic properties at the channel bottom location is smaller than flow dynamic properties at the channel
bottom location of the deterministic simulation (compare peak value of dashed red line with peak value of black line). The more the flow
material spreads out, the smaller the ensemble-based mean of flow dynamic properties at the channel bottom location (compare results of the
USSN=500 {RMSE= 3.3, d = 180} ensemble with those of the CSSN=500 ensemble).

gle steadily increases; and (3) the range of extreme values
of maximum height (maximum velocity) at channel bottom
locations increases while the average of maximum height
(maximum velocity) at channel bottom locations decreases.

For purely RMSE-based USS, the standard deviation of
DEM error is assumed to be determined by the RMSE. Hence
larger RMSE indicates larger variability in DEM error in
DEM realizations. The larger the variability in DEM error,
the more likely topographic details of the deterministic chan-

nel would be dampened out and the larger the topographic
roughness in DEM realizations. As discussed in Sect. 6.2.1,
this would make flow material more spread out along the
channel cross-section direction (namely larger potential haz-
ard area) and travel a shorter distance (namely larger appar-
ent friction angle). As discussed in Sect. 6.2.2, larger vari-
ability in DEM error is likely to result in more extreme values
of flow dynamic properties (namely larger range of extreme
values), while spreading of flow material along the channel
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Figure 11. Consolidated results of all ensembles. The left, middle,
and right columns correspond to the set of USSN=500 {RMSE=
0.5, 1.5, 2.5, 3.3, d = 180} ensembles, set of USSN=500 {RMSE=
3.3, d = 0, 90, 180, 270} ensembles, and CSSN=500 ensemble, re-
spectively. The first row shows stacked bar plots of the potential
hazard area’s magnitude based on the probabilistic hazard map for
each ensemble (see Fig. 8a and c). The second row shows appar-
ent friction angle distribution. The last two rows show statistics of
maximum height and maximum velocity at channel bottom loca-
tions (see Fig. 9c–f).

cross-section direction and larger topographic roughness lead
to a smaller ensemble-based mean of flow dynamic proper-
ties at channel bottom locations.

As discussed in Sect. 6.2.1, the apparent friction angle
distribution is determined by a combined effect of change
in channel banks, change in the relatively high elevation
area at the end part of the channel, and increasing topo-
graphic roughness. It naturally follows that for a small vari-
ability in DEM error (here RMSE= 0.5 m), all the changes
are less significant in DEM realizations, and thus the appar-
ent friction angle of the USSN=500{RMSE= 0.5, d = 180}
ensemble closely matches the deterministic simulation re-
sult. For an intermediate variability in DEM error (here
RMSE = 1.5 m), the relatively high elevation area at the end
part of the channel is subject to change, while channel banks
tend to remain well defined in DEM realizations. This leads
to a longer travel distance of the USSN=500{RMSE=1.5,
d = 180} ensemble (namely smaller apparent friction angle)
in comparison to that of the deterministic simulation result.

From the middle column of Fig. 11, we find that the re-
sults for a USS ensemble of vanishing spatial autocorrelation
USSN=500 {RMSE= 3.3, d = 0} consistently differ signif-
icantly from USS ensembles that include spatial autocorre-
lation, namely USSN=500{RMSE= 3.3, d = 90, 180, 270}
ensembles. This indicates that whether spatial autocorrela-
tion is considered or not may make a difference but the extent
of spatial autocorrelation has less influence on simulation re-
sults. As we know spatial autocorrelation to be present in
topographic data but often lack information on its exact au-
tocorrelation length, this is actually good news for practical
hazard assessment studies.

Comparing the left column of Fig. 11 with the right col-
umn, it can furthermore be seen that the results of the
USSN=500 {RMSE= 1.5, d = 180} ensemble are quite close
to the results of the CSSN=500 ensemble. The USSN=500
{RMSE= 1.5, d = 180} ensemble is informed of the bias-
corrected RMSE (namely the true standard deviation, in our
case 1.5 m; see Fig. 3b). It indicates that if a bias-corrected
RMSE is given, USS is able to provide reasonable results
considering that the extent of spatial autocorrelation has less
influence on simulation results.

All in all, we find that (1) the results of USS are in general
more sensitive to values of the RMSE and less sensitive to
values of d; (2) an unrepresentative RMSE that overestimates
the variability in DEM error may overestimate the potential
hazard area and extreme values of dynamic flow properties;
(3) whether or not spatial autocorrelation of DEM error is
considered can make a difference in ensemble-based simu-
lation results; and (4) if a bias-corrected RMSE is given, it
is possible to obtain reasonable ensemble-based simulation
results using USS.
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7 Conclusions

In this paper, we investigated different approaches to study-
ing the impact of topographic uncertainty on simulation-
based flow-like landslide run-out analyses. Based upon a his-
toric landslide event for which two DEM data sets of differ-
ent accuracy were available, we presented a series of compu-
tational scenarios. Unconditional and conditional stochastic
simulation are conducted to generate DEM realizations, both
for the case in which only the RMSE is available and for the
case in which reference data of higher accuracy are available.
The computational workflow including the stochastic sim-
ulation to generate the DEM realizations and the landslide
run-out simulation is implemented as a modular Python-
based package. How topographic uncertainty propagates in
the results of landslide run-out analysis is discussed in de-
tail. In addition, we addressed the two major issues of purely
RMSE-based unconditional stochastic simulation, i.e., the
fact that non-bias-corrected RMSE overestimates the vari-
ability in DEM error (referred to as unrepresentative RMSE
in our study) and the fact that determining the size of the spa-
tially moving filter in the absence of further information on
the spatial DEM error structure is often subjective (referred
to as subjective d in our study). Our main conclusions are as
follows:

– DEM uncertainty significantly affects simulation-based
landslide run-out modeling depending on how well the
underlying flow path is represented, which is deter-
mined by topographic characteristics of the original
DEM and the variability in DEM error. For the same
degree of variability in DEM error, the less well defined
parts of the flow path in the original DEM are more
likely to be affected and thus lead to change in flow be-
havior at these parts. Also, an increasing variability in
DEM error leads to an increased impact. More specifi-
cally, with increasing variability in the DEM error, the
potential hazard area and extreme values of dynamic
flow properties are likely to increase. This shows the
importance of considering topography-induced uncer-
tainty for simulation-based landslide hazard assessment
rather than simply trusting the results of a determinis-
tic simulation if a high accuracy of the DEM source is
not guaranteed. Also, a preliminary terrain analysis may
give some hints on areas that will potentially be affected
by a topographic uncertainty study.

– Both unconditional and conditional stochastic simu-
lation methods can be applied to study DEM uncer-
tainty propagation in landslide run-out modeling. Their
main difference is that the computationally performant
unconditional stochastic simulation can be conducted
based on RMSE information only, while the compu-
tationally costly conditional stochastic simulation re-
quires the availability of higher-accuracy reference data
and is thus more accurate. The higher-accuracy refer-

ence data provide additional information on the DEM
error structure, i.e., its spatial autocorrelation. If the
DEM does not contain systematic bias or alternatively
a bias-corrected RMSE is provided, the unconditional
stochastic simulation yields reasonable results. Oth-
erwise, the assumptions underlying the unconditional
stochastic simulation lead to an overestimation of the
DEM error variability, which leads to an increased po-
tential impact of DEM uncertainty on the potential haz-
ard area and to extreme values of dynamic flow prop-
erties. In particular, our study shows that if no higher-
accuracy reference data are available or if computa-
tional costs of a conditional stochastic simulation are
too large, the results of a RMSE-based unconditional
stochastic simulation can still be used to provide an up-
per bound on the potential hazard area as well as ex-
treme values of flow dynamic properties for a hazard as-
sessment to take topographic uncertainties into account.

– Results of an unconditional stochastic simulation are in
general sensitive to the RMSE value as well as sensitive
to whether or not the DEM error’s spatial autocorrela-
tion is considered. If the latter is taken into account, re-
sults are less sensitive to the actual value of the DEM
error’s maximum autocorrelation length. This indicates
that determining a representative RMSE may be more
important than finding a correct maximum autocorrela-
tion length, while the DEM error’s spatial autocorrela-
tion should not be ignored for simulation-based land-
slide hazard assessment.
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