Articles | Volume 20, issue 5
Nat. Hazards Earth Syst. Sci., 20, 1353–1367, 2020
https://doi.org/10.5194/nhess-20-1353-2020
Nat. Hazards Earth Syst. Sci., 20, 1353–1367, 2020
https://doi.org/10.5194/nhess-20-1353-2020

Research article 20 May 2020

Research article | 20 May 2020

Geo-climatic hazards in the eastern subtropical Andes: distribution, climate drivers and trends

Iván Vergara et al.

Related subject area

Landslides and Debris Flows Hazards
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Modelling landslide hazards under global changes: the case of a Pyrenean valley
Séverine Bernardie, Rosalie Vandromme, Yannick Thiery, Thomas Houet, Marine Grémont, Florian Masson, Gilles Grandjean, and Isabelle Bouroullec
Nat. Hazards Earth Syst. Sci., 21, 147–169, https://doi.org/10.5194/nhess-21-147-2021,https://doi.org/10.5194/nhess-21-147-2021, 2021
Short summary
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021,https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
The potential of Smartstone probes in landslide experiments: how to read motion data
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020,https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
INSPIRE standards as a framework for artificial intelligence applications: a landslide example
Gioachino Roberti, Jacob McGregor, Sharon Lam, David Bigelow, Blake Boyko, Chris Ahern, Victoria Wang, Bryan Barnhart, Clinton Smyth, David Poole, and Stephen Richard
Nat. Hazards Earth Syst. Sci., 20, 3455–3483, https://doi.org/10.5194/nhess-20-3455-2020,https://doi.org/10.5194/nhess-20-3455-2020, 2020
Short summary

Cited articles

AMC: Data of Lagunitas meteorological station, available at: https://www.codelco.com/andina, last access: 8 January 2018. 
Araneo, D., Simonelli, S., Norte, F., Viale, M., and Santos, R.: Caracterización de sondeos estivales del norte de Mendoza mediante el análisis de componentes principales y obtención de un índice de convección, Meteorologica, 36, 31–47, 2011. 
Barros, V. R., Boninsegna, J. A., Camilloni, I. A., Chidiak, M., Magrín, G. O., and Rusticucci, M.: Climate change in Argentina: trends, projections, impacts and adaptation, WIREs Clim. Change, 6, 151–169, https://doi.org/10.1002/wcc.316, 2015. 
Boisier, J. P., Rondanelli, R., Garreaud, R. D., and Muñoz, F.: Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile, Geophys. Res. Lett., 43, 413–421, 2016. 
Boisier, J. P., Alvarez-garreton, C., Cordero, R. R., Damiani, A., Gallardo, L., Garreaud, R., Lambert, F., Ramallo, C., and Rojas, M.: Anthropogenic Drying in Central-Southern Chile Evidenced by Long-Term Observations and Climate Model Simulations, Elementa Science of the Antropocene, 6, 1–20, https://doi.org/10.1525/elementa.328, 2018. 
Download
Short summary
Geo-climatic hazards usually cause large losses of human life and economic losses. As they are very susceptible to weather, in many regions of the world these hazards are changing in frequency and magnitude due to current climate change. The purpose of this paper is to understand if, in the subtropical Andes of Argentina, these phenomena are increasing or decreasing and subsequently to understand the causes of these possible changes.
Altmetrics
Final-revised paper
Preprint