Articles | Volume 18, issue 5
https://doi.org/10.5194/nhess-18-1395-2018
https://doi.org/10.5194/nhess-18-1395-2018
Research article
 | 
17 May 2018
Research article |  | 17 May 2018

Rainfall threshold calculation for debris flow early warning in areas with scarcity of data

Hua-Li Pan, Yuan-Jun Jiang, Jun Wang, and Guo-Qiang Ou

Related authors

A long-term dataset of debris-flow and hydrometeorological observations from 1961 to 2024 at Jiangjia Ravine, China
Li Wei, Dongri Song, Peng Cui, Lijun Su, Gordon G. D. Zhou, Kaiheng Hu, Fangqiang Wei, Yong Hong, Guoqiang Ou, Jun Zhang, Zhicheng Kang, Xiaojun Guo, Wei Zhong, Xiaoyu Li, Yaonan Zhang, and Hui Tang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-190,https://doi.org/10.5194/essd-2025-190, 2025
Preprint under review for ESSD
Short summary
Experimental study on granite weathered crust landslides with different residual layer thicknesses under heavy rainfall
Jingye Chen, Qinghua Gong, Jun Wang, and Shaoxiong Yuan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2138,https://doi.org/10.5194/egusphere-2024-2138, 2025
Short summary
Real-time monitoring and FEMLIP simulation of a rainfall-induced rockslide
Zhaohua Li, Zhigang Tao, Yuanjun Jiang, Qian Lv, Felix Darve, and Manchao He
Nat. Hazards Earth Syst. Sci., 19, 153–168, https://doi.org/10.5194/nhess-19-153-2019,https://doi.org/10.5194/nhess-19-153-2019, 2019
Hazard assessment comparison of Tazhiping landslide before and after treatment using the finite-volume method
Dong Huang, Yuan Jun Jiang, Jian Ping Qiao, and Meng Wang
Nat. Hazards Earth Syst. Sci., 17, 1611–1621, https://doi.org/10.5194/nhess-17-1611-2017,https://doi.org/10.5194/nhess-17-1611-2017, 2017

Related subject area

Landslides and Debris Flows Hazards
Brief communication: Weak correlation between building damage and loss of life from landslides
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025,https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Comparative analysis of μ(I) and Voellmy-type grain flow rheologies in geophysical mass flows: insights from theoretical and real case studies
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 25, 1901–1912, https://doi.org/10.5194/nhess-25-1901-2025,https://doi.org/10.5194/nhess-25-1901-2025, 2025
Short summary
Exploring implications of input parameter uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025,https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025,https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger
Nat. Hazards Earth Syst. Sci., 25, 1425–1437, https://doi.org/10.5194/nhess-25-1425-2025,https://doi.org/10.5194/nhess-25-1425-2025, 2025
Short summary

Cited articles

Althuwaynee, O. F., Pradhan, B., and Ahmad, N.: Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas, Landslides, 12, 861–875, https://doi.org/10.1007/s10346-014-0512-y, 2015. 
Armanini, A., Capart, H., Fraccarollo, L., and Larcher, M.: Rheological stratification in experimental free-surface flows of granular-liquid mixtures, J. Fluid Mech., 532, 269–319, https://doi.org/10.1017/S0022112005004283, 2005. 
Bai, L. P., Sun, J. L., and Nan, Y.: Analysis of thecritical rainfall thresholds for mudflow in Beijing, China, Geological Bulletin of China, 27, 674–680, 2018 (in Chinese). 
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, 2010. 
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018. 
Download
Short summary
Debris flow early warning has always been based on well-calibrated rainfall thresholds. For areas where historical data are insufficient, to determine a rainfall threshold, it is necessary to develop a method to obtain the threshold by using limited data. A quantitative method, a new way to calculate the rainfall threshold, is developed in this study, which combines the initiation mechanism of hydraulic-driven debris flow with the runoff yield and concentration laws of the watershed.
Share
Altmetrics
Final-revised paper
Preprint