Articles | Volume 18, issue 5
https://doi.org/10.5194/nhess-18-1297-2018
https://doi.org/10.5194/nhess-18-1297-2018
Research article
 | 
03 May 2018
Research article |  | 03 May 2018

Multi-model ensembles for assessment of flood losses and associated uncertainty

Rui Figueiredo, Kai Schröter, Alexander Weiss-Motz, Mario L. V. Martina, and Heidi Kreibich

Related authors

The potential of machine learning for weather index insurance
Luigi Cesarini, Rui Figueiredo, Beatrice Monteleone, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 21, 2379–2405, https://doi.org/10.5194/nhess-21-2379-2021,https://doi.org/10.5194/nhess-21-2379-2021, 2021
Short summary
The whole is greater than the sum of its parts: a holistic graph-based assessment approach for natural hazard risk of complex systems
Marcello Arosio, Mario L. V. Martina, and Rui Figueiredo
Nat. Hazards Earth Syst. Sci., 20, 521–547, https://doi.org/10.5194/nhess-20-521-2020,https://doi.org/10.5194/nhess-20-521-2020, 2020
Short summary
Natural hazard risk of complex systems – the whole is more than the sum of its parts: II. A pilot study in Mexico City
Marcello Arosio, Mario L. V. Martina, and Rui Figueiredo
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-278,https://doi.org/10.5194/nhess-2018-278, 2018
Revised manuscript has not been submitted
Short summary
INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis
Francesco Dottori, Rui Figueiredo, Mario L. V. Martina, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 16, 2577–2591, https://doi.org/10.5194/nhess-16-2577-2016,https://doi.org/10.5194/nhess-16-2577-2016, 2016
Short summary
Using open building data in the development of exposure data sets for catastrophe risk modelling
R. Figueiredo and M. Martina
Nat. Hazards Earth Syst. Sci., 16, 417–429, https://doi.org/10.5194/nhess-16-417-2016,https://doi.org/10.5194/nhess-16-417-2016, 2016
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024,https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Towards a global impact-based forecasting model for tropical cyclones
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024,https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024,https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024,https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024,https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary

Cited articles

Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H.: Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 79–98, https://doi.org/10.1007/s11069-008-9277-8, 2009.
Bröcker, J.: Evaluating raw ensembles with the continuous ranked probability score, Q. J. Roy. Meteor. Soc., 138, 1611–1617, https://doi.org/10.1002/qj.1891, 2012.
Buck, W. and Merkel, U.: Auswertung der HOWAS-Schadendatenbank, Institut für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe, 1999.
Budiyono, Y., Aerts, J., Brinkman, J. J., Marfai, M. A., and Ward, P.: Flood risk assessment for delta mega-cities: a case study of Jakarta, Nat. Hazards, 75, 389–413, https://doi.org/10.1007/s11069-014-1327-9, 2015.
Cammerer, H., Thieken, A. H., and Lammel, J.: Adaptability and transferability of flood loss functions in residential areas, Nat. Hazards Earth Syst. Sci., 13, 3063–3081, https://doi.org/10.5194/nhess-13-3063-2013, 2013.
Download
Short summary
Flood loss modelling is subject to large uncertainty that is often neglected. Most models are deterministic, and large disparities exist among them. Adopting a single model may lead to inaccurate loss estimates and sub-optimal decision-making. This paper proposes the use of multi-model ensembles to address such issues. We demonstrate that this can be a simple and pragmatic approach to obtain more accurate loss estimates and reliable probability distributions of model uncertainty.
Altmetrics
Final-revised paper
Preprint