Articles | Volume 17, issue 12
https://doi.org/10.5194/nhess-17-2213-2017
https://doi.org/10.5194/nhess-17-2213-2017
Research article
 | 
08 Dec 2017
Research article |  | 08 Dec 2017

Basic features of the predictive tools of early warning systems for water-related natural hazards: examples for shallow landslides

Roberto Greco and Luca Pagano

Related authors

Brief communication: Threshold not probability. The conceptual difference between ID thresholds for landslide initiation and IDF curves
Francesco Marra, Eleonora Dallan, Marco Borga, Roberto Greco, and Thom Bogaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3378,https://doi.org/10.5194/egusphere-2025-3378, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Large-scale assessment of rainfall-induced landslide hazard based on hydrometeorological information: application to Partenio Massif (Italy)
Daniel Camilo Roman Quintero, Pasquale Marino, Abdullah Abdullah, Giovanni Francesco Santonastaso, and Roberto Greco
EGUsphere, https://doi.org/10.5194/egusphere-2024-2329,https://doi.org/10.5194/egusphere-2024-2329, 2024
Short summary
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023,https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Effects of dynamic changes of desiccation cracks on preferential flow: experimental investigation and numerical modeling
Yi Luo, Jiaming Zhang, Zhi Zhou, Juan P. Aguilar-Lopez, Roberto Greco, and Thom Bogaard
Hydrol. Earth Syst. Sci., 27, 783–808, https://doi.org/10.5194/hess-27-783-2023,https://doi.org/10.5194/hess-27-783-2023, 2023
Short summary

Related subject area

Landslides and Debris Flows Hazards
Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025,https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
Landslide activation during deglaciation in a fjord-dominated landscape: observations from southern Alaska (1984–2022)
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025,https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary
Brief communication: Weak correlation between building damage and loss of life from landslides
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025,https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Comparative analysis of μ(I) and Voellmy-type grain flow rheologies in geophysical mass flows: insights from theoretical and real case studies
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 25, 1901–1912, https://doi.org/10.5194/nhess-25-1901-2025,https://doi.org/10.5194/nhess-25-1901-2025, 2025
Short summary
Exploring implications of input parameter uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025,https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary

Cited articles

Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-related hazards in Europe, Environ. Sci. Policy, 21, 35–49, https://doi.org/10.1016/j.envsci.2012.01.008, 2012.
Alfieri, L. and Thielen, J.: A European precipitation index for extreme rain-storm and flash flood early warning, Meteorol. Appl., 22, 3–13, https://doi.org/10.1002/met.1328, 2015.
Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L.: Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale, Geomorphology, 133, 121–131, https://doi.org/10.1016/j.geomorph.2011.03.019, 2011.
Bakkehoi, S.: Snow avalanche prediction using a probabilistic method, Avalanche Formation, Movement and Effects, Proceedings of the Davos Symposium, September 1986, IAHS Publ., 162, 1986.
Basher, R.: Global early warning systems for natural hazards: systematic and people centred, Philos. T. R. Soc. A, 364, 2167–2182, https://doi.org/10.1098/rsta.2006.1819, 2006.
Download
Short summary
The paper focuses on the main features characterizing predictive models working in early warning systems (EWS), by discussing their aims, the evolution stage of the phenomenon where they should be incardinated, and their architecture, regardless of the specific application field. With reference to flow-like landslide and earth flows, some alternative approaches to the development of the predictive tool and to its implementation in an EWS are described.
Share
Altmetrics
Final-revised paper
Preprint