Articles | Volume 17, issue 11
https://doi.org/10.5194/nhess-17-1923-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-17-1923-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Relationship between the accumulation of sediment storage and debris-flow characteristics in a debris-flow initiation zone, Ohya landslide body, Japan
Fumitoshi Imaizumi
CORRESPONDING AUTHOR
Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
Yuichi S. Hayakawa
Center for Spatial Information Science, The University of Tokyo,
Kashiwa, 277-0871, Japan
Norifumi Hotta
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
Haruka Tsunetaka
Graduate School of Life and Environmental Sciences, University of
Tsukuba, Tsukuba, 305-8572, Japan
Okihiro Ohsaka
Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
Satoshi Tsuchiya
Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
Related authors
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024, https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.
Fumitoshi Imaizumi, Atsushi Ikeda, Kazuki Yamamoto, and Okihiro Ohsaka
Earth Surf. Dynam., 9, 1381–1398, https://doi.org/10.5194/esurf-9-1381-2021, https://doi.org/10.5194/esurf-9-1381-2021, 2021
Short summary
Short summary
The rainfall threshold for debris flow occurrence was evaluated on Mt. Fuji, Japan. Debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. During unfrozen periods, the threshold of maximum hourly rainfall intensity triggering debris flow was higher when the volume of channel deposits was larger. The results suggest that the occurrence of frozen ground needs to be monitored for better debris flow disaster mitigation in cold regions.
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019, https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Short summary
We investigated seasonal changes in sediment transport activities following forest harvesting in a humid periglacial area. Removal of the forest canopy by forest harvesting alters the type of winter soil creep. Winter creep velocity of the ground surface sediment in the harvested site was significantly higher than that in the non-harvested site. Meanwhile, sediment flux on the hillslopes decreased in the harvested site because of capture of sediment by branches of harvested trees.
Azim Zulhilmi, Yuichi S. Hayakawa, and Daniel R. Newman
Geosci. Commun., 8, 197–211, https://doi.org/10.5194/gc-8-197-2025, https://doi.org/10.5194/gc-8-197-2025, 2025
Short summary
Short summary
We conducted an immersive virtual reality (VR) lecture to teach geoscience topics to middle-school students at an international school in Japan. The lecture proved both engaging and motivational for the students, with its primary strength lying in its ability to captivate their attention and foster a sense of freedom. While the results suggest that VR has the potential to be integrated into the broader geoscience curricula, further refinement is necessary to maximize its effectiveness.
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024, https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.
Slim Mtibaa and Haruka Tsunetaka
Earth Surf. Dynam., 11, 461–474, https://doi.org/10.5194/esurf-11-461-2023, https://doi.org/10.5194/esurf-11-461-2023, 2023
Short summary
Short summary
We explore the relation between the spatial patterns of rainfall return levels for various timespans (1–72 h) and landslide density during a rainfall event that triggered widespread landslides. We found that landslide density increases with increased rainfall return levels for the various examined timespans. Accordingly, we conclude that whether rainfall intensities reached exceptional return levels for a wide time range is a key determinant of the spatial distribution of landslides.
Haruka Tsunetaka, Norifumi Hotta, Yuichi Sakai, and Thad Wasklewicz
Earth Surf. Dynam., 10, 775–796, https://doi.org/10.5194/esurf-10-775-2022, https://doi.org/10.5194/esurf-10-775-2022, 2022
Short summary
Short summary
To assess the effects of differences in grain-size distribution within debris flows on the morphology of debris-flow fans, fan morphologies were modeled experimentally. Even if debris flows exhibited similar flow properties, their runout distance differed in response to differences in their grain-size distribution. Differences in runout distance were responsible for variations in the direction of the descending flow that resulted in different debris-flow fan morphology.
Fumitoshi Imaizumi, Atsushi Ikeda, Kazuki Yamamoto, and Okihiro Ohsaka
Earth Surf. Dynam., 9, 1381–1398, https://doi.org/10.5194/esurf-9-1381-2021, https://doi.org/10.5194/esurf-9-1381-2021, 2021
Short summary
Short summary
The rainfall threshold for debris flow occurrence was evaluated on Mt. Fuji, Japan. Debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. During unfrozen periods, the threshold of maximum hourly rainfall intensity triggering debris flow was higher when the volume of channel deposits was larger. The results suggest that the occurrence of frozen ground needs to be monitored for better debris flow disaster mitigation in cold regions.
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019, https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Short summary
We investigated seasonal changes in sediment transport activities following forest harvesting in a humid periglacial area. Removal of the forest canopy by forest harvesting alters the type of winter soil creep. Winter creep velocity of the ground surface sediment in the harvested site was significantly higher than that in the non-harvested site. Meanwhile, sediment flux on the hillslopes decreased in the harvested site because of capture of sediment by branches of harvested trees.
Daniele Giordan, Yuichi S. Hayakawa, Francesco Nex, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 3085–3087, https://doi.org/10.5194/nhess-18-3085-2018, https://doi.org/10.5194/nhess-18-3085-2018, 2018
Short summary
Short summary
In the special issue
The use of remotely piloted aircraft systems (RPAS) in monitoring applications and management of natural hazardswe propose a collection of papers that provide a critical description of the state of the art in the use of RPAS for different scenarios. In particular, the sequence of papers can be considered an exhaustive representation of the state of the art of the methodologies and approaches applied to the study and management of natural hazards.
Daniele Giordan, Yuichi Hayakawa, Francesco Nex, Fabio Remondino, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 1079–1096, https://doi.org/10.5194/nhess-18-1079-2018, https://doi.org/10.5194/nhess-18-1079-2018, 2018
Short summary
Short summary
Remotely piloted aerial systems can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes like landslides or volcanic activities but also for the definition of effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards.
Yuichi S. Hayakawa, Hidetsugu Yoshida, Hiroyuki Obanawa, Ryutaro Naruhashi, Koji Okumura, Masumi Zaiki, and Ryoichi Kontani
Nat. Hazards Earth Syst. Sci., 18, 429–444, https://doi.org/10.5194/nhess-18-429-2018, https://doi.org/10.5194/nhess-18-429-2018, 2018
Short summary
Short summary
This study assesses the applicability of the RPAS-based photogrammetric approach for a high-definition geomorphometry of hummocks, i.e., characteristic morphological features in the surface of debris avalanche deposits caused by a gigantic sector collapse of a volcanic mountain body. Satellite-based topographic data were also utilized to estimate the source volume of the sector collapse. We provide new, detailed insights into the characteristics of the debris avalanche and potential hazards.
Related subject area
Landslides and Debris Flows Hazards
Is higher resolution always better? A comparison of open-access DEMs for optimized slope unit delineation and regional landslide prediction
Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan
Landslide activation during deglaciation in a fjord-dominated landscape: observations from southern Alaska (1984–2022)
Brief communication: Weak correlation between building damage and loss of life from landslides
Comparative analysis of μ(I) and Voellmy-type grain flow rheologies in geophysical mass flows: insights from theoretical and real case studies
Exploring implications of input parameter uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow
Hillslope-Torrential Hazard Cascades in Tropical Mountains
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Constraining landslide frequency across the United States to inform county-level risk reduction
Topographic controls on landslide mobility: modeling hurricane-induced landslide runout and debris-flow inundation in Puerto Rico
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Debris Flow Susceptibility in the Jinsha River Basin, China: A Bayesian Assessment Framework Based on Geomorphodynamic Parameters
A participatory approach to determine the use of road cut slope design guidelines in Nepal to lessen landslides
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Identifying unrecognised risks to life from debris flows
Predicting the thickness of shallow landslides in Switzerland using machine learning
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
The Parraguirre ice-rock avalanche 1987, semi-arid Andes, Chile – A holistic revision
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Limit analysis of earthquake-induced landslides considering two strength envelopes
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Size scaling of large landslides from incomplete inventories
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
The dynamics of peak head responses at Dutch canal dikes and the impact of climate change
Transformations in Exposure to Debris Flows in Post-Earthquake Sichuan, China
Large-scale assessment of rainfall-induced landslide hazard based on hydrometeorological information: application to Partenio Massif (Italy)
Shaping shallow landslide susceptibility as a function of rainfall events
Temporal clustering of precipitation for detection of potential landslides
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Addressing class imbalance in soil movement predictions
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Assessing landslide damming susceptibility in Central Asia
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Evaluation of debris-flow building damage forecasts
Characteristics of debris-flow-prone watersheds and debris-flow-triggering rainstorms following the Tadpole Fire, New Mexico, USA
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Space–time landslide hazard modeling via Ensemble Neural Networks
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Mahnoor Ahmed, Giacomo Titti, Sebastiano Trevisani, Lisa Borgatti, and Mirko Francioni
Nat. Hazards Earth Syst. Sci., 25, 2519–2539, https://doi.org/10.5194/nhess-25-2519-2025, https://doi.org/10.5194/nhess-25-2519-2025, 2025
Short summary
Short summary
Elevation models are compared with a true dataset for terrain characteristics, which selects a better-ranking model to compare with different parameters to partition the terrain. The partitioning of the terrain is measured by how well a partitioned unit can support the mapped landslide area and number of landslides. The effect of this relationship is reflected with different metrics in the susceptibility maps.
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025, https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
Short summary
On 2 April 2024, a Mw 7.4 earthquake hit Taiwan's eastern coast, causing extensive landslides and damage. We used automated methods combining Earth observation (EO) data with AI to quickly inventory the landslides. This approach identified 7090 landslides over 75 km2 within 3 h of acquiring the EO imagery. The study highlights AI's role in improving landslide detection efforts in disaster response.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025, https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary
Short summary
We studied eight glacier-adjacent landslides in Alaska and found that slope movement increased at four sites as the glacier retreated past the landslide area. Movement at other sites may be due to heavy precipitation or increased glacier thinning, and two sites showed little to no motion. We suggest that landslides near waterbodies may be especially vulnerable to acceleration, which we guess is due to faster retreat rates of water-terminating glaciers and changing water flow in the slope.
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025, https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Short summary
Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability. In this study, we show that there is a poor correlation between building damage and deaths from landslides, such that the deadliest landslides do not always destroy the most buildings and vice versa. This has important implications for our management of landslide risk.
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 25, 1901–1912, https://doi.org/10.5194/nhess-25-1901-2025, https://doi.org/10.5194/nhess-25-1901-2025, 2025
Short summary
Short summary
The experimentally based μ(I) rheology, widely used for gravitational mass flows, is reinterpreted as a Voellmy-type relationship to highlight its link to grain flow theory. Through block modeling and case studies, we establish its equivalence to μ(R) rheology. μ(I) models shear thinning but fails to capture acceleration and deceleration processes and deposit structure. Incorporating fluctuation energy in μ(R) improves accuracy, refining mass flow modeling and revealing practical challenges.
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025, https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary
Short summary
We modelled multiple glacial lake outburst flood (GLOF) scenarios (84 simulations) and tested the effect of nine key input parameters on the modelling results using r.avaflow. Our results highlight that GLOF modelling results are subject to uncertainty from the multiple input parameters. The variation in the volume of mass movement entering the lake causes the highest uncertainty in the modelled GLOF, followed by the DEM dataset and the origin of mass movement.
Maria Isabel Arango-Carmona, Paul Voit, Marcel Hürlimann, Edier Aristizábal, and Oliver Korup
EGUsphere, https://doi.org/10.5194/egusphere-2025-1698, https://doi.org/10.5194/egusphere-2025-1698, 2025
Short summary
Short summary
We studied 22 cascading landslide and torrential events in tropical mountains to understand how rainfall, slopes, and soil types interact to trigger them. We found that extreme rainfall alone is not always the cause, but long wet periods and sediment type also play a role. Our findings can help improve warning systems and reduce disaster risks in vulnerable regions.
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025, https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger
Nat. Hazards Earth Syst. Sci., 25, 1425–1437, https://doi.org/10.5194/nhess-25-1425-2025, https://doi.org/10.5194/nhess-25-1425-2025, 2025
Short summary
Short summary
Communicating uncertainties is a crucial yet challenging aspect of spatial modelling – especially in applied research, where results inform decisions. In disaster risk reduction, susceptibility maps for natural hazards guide planning and risk assessment, yet their uncertainties are often overlooked. We present a new type of landslide susceptibility map that visualizes both susceptibility and associated uncertainty alongside guidelines for creating such maps using free and open-source software.
Lisa V. Luna, Jacob B. Woodard, Janice L. Bytheway, Gina M. Belair, and Benjamin B. Mirus
EGUsphere, https://doi.org/10.5194/egusphere-2025-947, https://doi.org/10.5194/egusphere-2025-947, 2025
Short summary
Short summary
Landslide frequency (how often landslides occur) is needed to assess landslide hazard and risk but has rarely been quantified at near continental scales. Here, we used statistical models to estimate landslide frequency across the United States while addressing gaps in landslide reporting. Our results showed strong variations in landslide frequency that followed topography, earthquake probability, and ecological region and highlighted areas with potential for widespread landsliding.
Dianne L. Brien, Mark E. Reid, Collin Cronkite-Ratcliff, and Jonathan P. Perkins
Nat. Hazards Earth Syst. Sci., 25, 1229–1253, https://doi.org/10.5194/nhess-25-1229-2025, https://doi.org/10.5194/nhess-25-1229-2025, 2025
Short summary
Short summary
Landslide runout zones are the areas downslope or downstream of landslide initiation. People often live and work in these areas, leading to property damage and deaths. Landslide runout may occur on hillslopes or in channels, requiring different modeling approaches. We develop methods to identify potential runout zones and apply these methods to identify susceptible areas for three municipalities in Puerto Rico.
Jonathan Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
Nat. Hazards Earth Syst. Sci., 25, 1037–1056, https://doi.org/10.5194/nhess-25-1037-2025, https://doi.org/10.5194/nhess-25-1037-2025, 2025
Short summary
Short summary
Rainfall-induced landslides result in deaths and economic losses annually across the globe. However, it is unclear how storm severity relates to landslide severity across large regions. Here we develop a method to dynamically map landslide-affected areas, and we compare this to meteorological estimates of storm severity. We find that preconditioning by earlier storms and the location of rainfall bursts, rather than atmospheric storm strength, dictate landslide magnitude and pattern.
Zhenkui Gu, Xin Yao, and Xuchao Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4164, https://doi.org/10.5194/egusphere-2024-4164, 2025
Short summary
Short summary
Debris flow susceptibility was assessed using erosion intensity, connectivity, and erodibility; A Bayesian model integrated precipitation and surface conditions to evaluate debris flow risks; Quantitative metrics elucidated debris flow likelihood across diverse spatiotemporal scales; The model accurately predicted a recent debris flow event, validating its disaster assessment.
Ellen B. Robson, Bhim Kumar Dahal, and David G. Toll
Nat. Hazards Earth Syst. Sci., 25, 949–973, https://doi.org/10.5194/nhess-25-949-2025, https://doi.org/10.5194/nhess-25-949-2025, 2025
Short summary
Short summary
Slopes excavated alongside roads in Nepal frequently fail (a landslide), resulting in substantial losses. Our participatory approach study with road engineers aimed to assess how road slope design guidelines in Nepal can be improved. Our study revealed inconsistent guideline adherence due to a lack of user-friendliness and inadequate training. We present general recommendations to enhance road slope management, as well as technical recommendations to improve the guidelines.
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci., 25, 709–726, https://doi.org/10.5194/nhess-25-709-2025, https://doi.org/10.5194/nhess-25-709-2025, 2025
Short summary
Short summary
We propose an integrated method using a combination of a physical vulnerability matrix and a machine learning model to estimate the potential physical damage and associated economic loss caused by future debris flows based on collected historical data on the Qinghai–Tibet Plateau region.
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025, https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Short summary
Debris flows occur infrequently, with average recurrence intervals (ARIs) ranging from decades to millennia. Consequently, they pose an underappreciated hazard. We describe how to make a preliminary identification of debris-flow-susceptible catchments, estimate threshold ARIs for debris flows that pose an unacceptable risk to life, and identify the “window of non-recognition” where debris flows are infrequent enough that their hazard is unrecognised yet frequent enough to pose a risk to life.
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025, https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Short summary
We developed a machine-learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables, including metrics on terrain, geomorphology, vegetation height, and lithology, and used data from two Swiss field inventories to calibrate and test the models. The best-performing machine learning model consistently reduced the mean average error by at least 20 % compared to previous models.
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025, https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Short summary
The study on the Cilan landslide (CL) demonstrates the utilization of seismic analysis results as preliminary data for geologists during field surveys. Spectrograms revealed that the first event of CL consisted of four sliding failures accompanied by a gradual reduction in landslide volume. The second and third events were minor toppling and rockfalls. Then combining the seismological-based knowledge and field survey results, the spatiotemporal variation in landslide evolution is proposed.
Johannes Jakob Fürst, David Farías-Barahona, Thomas Bruckner, Lucia Scaff, Martin Mergili, Santiago Montserrat, and Humberto Peña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3103, https://doi.org/10.5194/egusphere-2024-3103, 2025
Short summary
Short summary
The 1987 Parraguirre ice-rock avalanche developed into a devastating debris-flow causing loss of many lives and inflicting severe damage near Santiago, Chile. Here, we revise this event combining various observational records with modelling techniques. In this year, important snow cover coincided with warm days in spring. We further quantify the total solid volume, and forward important upward corrections for the trigger and flood volumes. Finally, river damming was key for high flow mobility.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025, https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this paper, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025, https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary
Short summary
This study enhances landslide prediction using advanced machine learning, including new algorithms inspired by historical explorations. The research accurately forecasts landslide movements by analyzing 8 years of data from Taiwan's Lushan, improving early warning and potentially saving lives and infrastructure. This integration marks a significant advancement in environmental risk management.
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024, https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
Short summary
This paper proposes a 3D limit analysis for seismic stability of soil slopes to address the influence of earthquakes on slope stabilities with nonlinear and linear criteria. Comparison results illustrate that the use of a linear envelope leads to the non-negligible overestimation of steep-slope stability, and this overestimation will be significant with increasing earthquakes. Earthquakes have a smaller influence on slope slip surfaces with a nonlinear envelope than those with a linear envelope.
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024, https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Short summary
The damage patterns of the buildings were classified into three types: (I) buried by primary debris flow, (II) inundated by secondary dam-burst flood, and (III) sequentially buried by debris flow and inundated by dam-burst flood. The threshold of the impact pressures in Zones (II) and (III) where vulnerability is equal to 1 is 84 kPa and 116 kPa, respectively. Heavy damage occurs at an impact pressure greater than 50 kPa, while slight damage occurs below 30 kPa.
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024, https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Short summary
Our research enhances landslide prevention using advanced machine learning to forecast heavy-rainfall-triggered landslides. By analyzing regions and employing various models, we identified optimal ways to predict high-risk rainfall events. Integrating multiple factors and models, including a neural network, significantly improves landslide predictions. Real data validation confirms our approach's reliability, aiding communities in mitigating landslide impacts and safeguarding lives and property.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024, https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024, https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
Short summary
This work examines the use of interferometric synthetic-aperture radar (InSAR) alongside in situ borehole measurements to assess the stability of deep-seated landslides for the case study of El Forn (Andorra). Comparing InSAR with borehole data suggests a key trade-off between accuracy and precision for various InSAR resolutions. Spatial interpolation with InSAR informed how many remote observations are necessary to lower error in a remote sensing re-creation of ground motion over the landslide.
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
Short summary
The initiation of debris flows is significantly influenced by rainfall-induced hydrological processes. We propose a novel framework based on an integrated hydrological and hydrodynamic model and aimed at estimating intensity–duration (ID) rainfall thresholds responsible for triggering debris flows. In comparison to traditional statistical approaches, this physically based framework is particularly suitable for application in ungauged catchments where historical debris flow data are scarce.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024, https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Short summary
The Himalayan road network links remote areas, but fragile terrain and poor construction lead to frequent landslides. This study on the NH-7 in India's Uttarakhand region analyzed 300 landslides after heavy rainfall in 2022 . Factors like slope, rainfall, rock type and road work influence landslides. The study's model predicts landslide locations for better road maintenance planning, highlighting the risk from climate change and increased road use.
Bart Strijker and Matthijs Kok
EGUsphere, https://doi.org/10.5194/egusphere-2024-1495, https://doi.org/10.5194/egusphere-2024-1495, 2024
Short summary
Short summary
This study examines how hydraulic head levels in canal dikes respond to heavy rainfall, potentially causing instabilities and flooding. Using time series models and simulating long-term head levels, we identified clusters of dikes where head peaks are driven by similar rainfall events. Statistical analyses show that extreme and yearly conditions are close. However, extreme conditions are expected to become more frequent due to climate change, though some dikes will be less affected than others.
Isabelle Utley, Tristram Hales, Ekbal Hussain, and Xuanmei Fan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2277, https://doi.org/10.5194/egusphere-2024-2277, 2024
Short summary
Short summary
We analysed debris flows in Sichuan, China, using satellite data and simulations to assess check dam efficacy. Our study found whilst check dams can mitigate smaller flows, they may increase exposure to extreme events, with up to 40 % of structures in some areas affected. Urban development and reliance on check dams can create a false sense of security, raising exposure during large debris flows and highlights the need for risk management and infrastructure planning in hazard-prone areas.
Daniel Camilo Roman Quintero, Pasquale Marino, Abdullah Abdullah, Giovanni Francesco Santonastaso, and Roberto Greco
EGUsphere, https://doi.org/10.5194/egusphere-2024-2329, https://doi.org/10.5194/egusphere-2024-2329, 2024
Short summary
Short summary
Local thresholds for landslide forecasting, combining hydrologic predisposing factors and rainfall features, are developed from a physically based model of a slope. To extend their application to a wide area, uncertainty due to spatial variability of geomorphological and hydrologic variables is introduced. The obtained hydrometeorological thresholds, integrating root zone soil moisture and aquifer water level with rainfall depth, outperform thresholds based on rain intensity and duration.
Micol Fumagalli, Alberto Previati, Paolo Frattini, and Giovanni B. Crosta
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-140, https://doi.org/10.5194/nhess-2024-140, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Shallow landslides are mass movements of limited thickness, mainly triggered by extreme rainfalls, that can pose a serious risk to the population. This study uses statistical methods to analyse and simulate the relationship between shallow landslides and rainfalls, showing that in the studied area shallow landslides are modulated by rainfall but controlled by lithology. A new classification method considering the costs associated with a misclassification of the susceptibility is also proposed.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024, https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Short summary
The Revised Infinite Slope Model (RISM) is proposed using the equal differential unit method and correcting the deficiency of the safety factor increasing with the slope increasing when the slope is larger than 40°, as calculated using the Taylor slope infinite model. The intensity–duration (I–D) prediction curve of the rainfall-induced shallow loess landslides with different slopes was constructed and can be used in forecasting regional shallow loess landslides.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024, https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Short summary
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments using models for debris-flow likelihood and volume. To refine these models they must be tested with datasets that clearly document rainfall, debris-flow response, and debris-flow volume. These datasets are difficult to obtain, but this study developed and analyzed a postfire dataset with more than 100 postfire storm responses over a 2-year period. We also proposed ways to improve these models.
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024, https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024, https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Short summary
With a simplified formula linking rainfall and groundwater level, the rise of the phreatic surface within the slope can be obtained. Then, a global analysis method that considers both seepage and seismic forces is proposed to determine the safety factor of slopes subjected to the combined effect of rainfall and earthquakes. By taking a slope in the Three Gorges Reservoir area as an example, the safety evolution of the slope combined with both rainfall and earthquake is also examined.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024, https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary
Short summary
We mapped potential for heavy rainfall to cause landslides in part of the central mountains of Puerto Rico using new tools for estimating soil depth and quasi-3D slope stability. Potential ground-failure locations correlate well with the spatial density of landslides from Hurricane Maria. The smooth boundaries of the very high and high ground-failure susceptibility zones enclose 75 % and 90 %, respectively, of observed landslides. The maps can help mitigate ground-failure hazards.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024, https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Short summary
We developed three rock bridge models to analyze 3D stability and deformation behaviors of the Tizicao landslide and found that the contact surface model with high strength parameters combines advantages of the intact rock mass model in simulating the deformation of slopes with rock bridges and the modeling advantage of the Jennings model. The results help in choosing a rock bridge model to simulate landslide stability and reveal the influence laws of rock bridges on the stability of landslides.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024, https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Short summary
We performed field investigations on a rockfall near Jiguanshan National Forest Park, Chengdu. Vital information was obtained from an unmanned aerial vehicle survey. A finite element model was created to reproduce the damage evolution. We found that the impact kinetic energy was below the design protection energy. Improper member connections prevent the barrier from producing significant deformation to absorb energy. Damage is avoided by improving the ability of the nets and ropes to slide.
Cited articles
Arattano, M.: On the use of seismic detectors as monitoring and warning system for debris flows, Nat. Hazards, 20, 197–213, 1999.
Arattano, M., Marchi, L., and Cavalli, M.: Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings, Nat. Hazards Earth Syst. Sci., 12, 679–686, https://doi.org/10.5194/nhess-12-679-2012, 2012.
Badoux, A., Graf, C., Ryhner, J., Kuntner, R., and McArdell, B. W.: A debris-flow alarm system for the Alpine Illgraben catchment: design and performance, Nat. Hazards, 49, 517–539, 2008.
Berger, C., McArdell, B. W., and Schlunegger, F.: Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities, Geomorphology, 125, 421–432, 2011a.
Berger, C., McArdell, B. W., and Schlunegger, F.: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J. Geophys. Res., 116, F01002, https://doi.org/10.1029/2010JF001722, 2011b.
Berti, M., Genevois, R., Simoni, A., and Tecca, P. R.: Field observations of a debris flow event in the Dolomites, Geomorphology, 29, 265–274, 1999.
Bovis, M. J. and Jakob, M.: The roll of debris supply conditions in predicting debris flow activity, Earth Surf. Process. Landf., 24, 1039–1054, 1999.
Carson, M. A.: Angle of repose, angle of shearing resistance and angle of talus slopes, Earth Surf. Process., 2, 368–380, 1977.
Chen, H. X., Zhang, L. M., Chang, D. S., and Zhang, S.: Mechanisms and runout characteristics of the rainfall triggered debris flow in Xiaojiagou in Sichuan Province, China, Nat. Hazards, 62, 1037–1057, 2012.
Coe, J. A., Kinner, D. A., and Godt, J. W.: Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270–297, 2008.
Coussot, P. and Meunier, M.: Recognition, classification and mechanical description of debris flows, Earth-Sci. Rev., 40, 209–227, 1996.
Cui, P., Hu, K., Zhuang, J., Yang, Y., and Zhang, J.: Prediction of debris-flow danger area by combining hydrological and inundation simulation methods, J. Moun. Sci., 8, 1–9, https://doi.org/10.1007/s11629-011-2040-8, 2011.
Degetto, M., Gregoretti, C., and Bernard, M.: Comparative analysis of the differences between using LiDAR contour-based DEMs for hydrological modeling of runoff generating debris flows in the Dolomites, Front. Earth Sci., 3, 21, https://doi.org/10.3389/feart.2015.00021, 2015.
Dorren, L. K. A.: A review of rockfall mechanics and modelling approaches, Prog. Phys. Geogr., 27, 69–87, 2003.
Drăguţ, L. and Eisank, C.: Object representations at multiple scales from digital elevation models, Geomorphology, 129, 183–189, 2011.
Egashira, S., Itoh, T., and Takeuchi, H.: Transition mechanism of debris flows over rigid bed to over erodible bed, Phys. Chem. Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 169–174, https://doi.org/10.1016/S1464-1909(00)00235-5, 2001.
Gabet, E. J.: Sediment transport by dry ravel, J. Geophys. Res., 108, 2049, https://doi.org/10.1029/2001JB001686, 2003.
Gregoretti, C.: Inception sediment transport relationships at high slopes, J. Hydraul. Eng., 134, 1620–1629, 2008.
Gregoretti, C. and Dalla Fontana, D.: The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff, Hydrol. Process., 22, 2248–2263, https://doi.org/10.1002/hyp.6821, 2008.
Gregoretti, C., Degetto, M., Bernard, M., Crucil, G., Pimazzoni, A., De Vido, G., Berti, M., Simoni, A., and Lanzoni, S.: Runoff of small rocky headwater catchments: Field observations and hydrological modeling, Water Resour. Res., 52, 8138–8158, https://doi.org/10.1002/2016WR018675, 2016.
Hayakawa Y., Imaizumi, F., Hotta, N., and Tsunetaka, H.: Towards Long-Lasting Disaster Mitigation Following a Mega-landslide: High-Definition Topographic Measurements of Sediment Production by Debris Flows in a Steep Headwater Channel, in: Geomorphology and Society, Springer, 2016.
Horn, B. K. P.: Hill shading and the reflectance map, Proc. IEEE, 69, 14–47, https://doi.org/10.1109/PROC.1981.11918, 1981.
Hu, K., Wei, F., and Li, Y.: Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China, Earth Surf. Process. Landf, 36, 1268–1278, 2011.
Hungr, O.: Classification and terminology, in: Debris-flow Hazards and Related Phenomena, Praxis, Springer, Berlin Heidelberg, 106–134, 2005.
Hungr, O., McDougall, S., Wise, M., and Cullen, M.: Magnitude–frequency relationships of debris flows and debris avalanches in relation to slope relief, Geomorphology, 96, 355–365, 2008.
Hürlimann, M., Abancó, C., Moya, J., and Vilajosana, I.: Results and experiences gathered at the Rebaixader debris-flow monitoring site, Central Pyrenees, Spain, Landslides, 11, 939–953, https://doi.org/10.1007/s10346-013-0452-y, 2014.
Hürlimann, M., McArdell, B. W., and Rickli, C.: Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland, Geomorphology, 232, 20–32, https://doi.org/10.1016/j.geomorph.2014.11.030, 2015.
Imaizumi, F., Tsuchiya, S., and Ohsaka, O.: Behaviour of debris flows located in a mountainous torrent on the Ohya landslide, Japan, Can. Geotech. J., 42, 919–931, 2005.
Imaizumi, F., Sidle, R. C., Tsuchiya, S., and Ohsaka, O.: Hydrogeomorphic processes in a steep debris flow initiation zone, Geophys. Res. Lett., 33, L10404, https://doi.org/10.1029/2006GL026250, 2006.
Imaizumi, F., Nishii, R., Murakami, W., and Daimaru, H.: Parallel retreat of rock slopes underlain by alternation of strata, Geomorphology, 238, 27–36, 2015.
Imaizumi, F., Trappman, D., Matsuoka, N., Tsuchiya, S., Ohsaka, O., and Stoffel, M.: Biographical sketch of a giant: deciphering recent debris-flow dynamics from Ohya landslide body (Japanese Alps), Geomorphology, 272, 102–114, https://doi.org/10.1016/j.geomorph.2015.11.008, 2016a.
Imaizumi, F., Tsuchiya, S., and Ohsaka, O.: Behavior of boulders within a debris flow initiation zone, Int. J. Erosion Control Eng., 9, 91–100, https://doi.org/10.13101/ijece.9.91, 2016b.
Imaizumi F., Tsuchiya, S., and Ohsaka, O.: Field observations of debris-flow initiation processes on sediment deposits in a previous deep-seated landslide site, J. Mount. Sci, 13, 213–222, https://doi.org/10.1007/s11629-015-3345-9, 2016c.
Jakob, M., Bovis, M., and Oden, M.: The significance of channel recharge rates for estimating debris-flow magnitude and frequency, Earth Surf. Process. Landf., 30, 755–766, 2005.
Kean, J. W., McCoy, S. W., Tucker, G. E., Staley, D. M., and Coe, J. A.: Runoff-generated debris flows: Observations and modeling of surge initiation, magnitude, and frequency, J. Geophys. Res., 18, 2190–2207, https://doi.org/10.1002/jgrf.20148, 2013.
Kirkby, M. J. and Statham, I.: Surface stone movement and scree formation, J. Geology, 83, 349–362, 1975.
Lanzoni, S. Gregoretti, C., and Stancanelli, L. M.: Coarse-grained debris flow dynamics on erodible beds, J. Geophys. Res., 122, 592–614, https://doi.org/10.1002/2016JF004046, 2017.
Lin, P. S., Lin, J. Y., Hung, J. C., and Yang, M. D.: Assessing debris-flow hazard in a watershed in Taiwan, Eng. Geol., 66, 295–313, https://doi.org/10.1016/S0013-7952(02)00105-9, 2002.
Loye, A., Jaboyedoff, M., and Pedrazzini, A.: Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis, Nat. Hazards Earth Syst. Sci., 9, 1643–1653, https://doi.org/10.5194/nhess-9-1643-2009, 2009.
Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P., and Bristeau, M. O.: Numerical modeling of self-channeling granular flows and of their levee-channel deposits, J. Geophys. Res, 112, F02017, https://doi.org/10.1029/2006JF000469, 2007.
March, L., Arattano, M., and Deganutti, A. M.: Ten years of debris-flow monitoring in the Morcardo Torrent (Italian Alps), Geomorphology, 46, 1–17, 2002.
McArdell, B. W., Bartelt, P., and Kowalski, J.: Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res Lett., 34, L07406, https://doi.org/10.1029/2006GL029183, 2007.
McCoy, S. W., Kean, J. W., Coe, J. A., Staley, D. M., Wasklewicz, T. A., and Tucker, G. E.: Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning, Geology, 38, 735–738, 2010.
McCoy, S. W., Kean, J. W., Coe, J. A., Tucker, G. E., Staley, D. M., and Wasklewicz, T. A.: Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment, J. Geophys. Res., 117, F03016, https://doi.org/10.1029/2011JF002278, 2012.
McCoy, S.W., Tucker, G. E., Kean, J. W., and Coe, J. A.: Field measurement of basal forces generated by erosive debris flows, J. Geophys. Res., 118, 589–602, https://doi.org/10.1002/jgrf.20041, 2013.
Obanawa, H. and Matsukura, Y.: Cliff retreat and talus development at the caldera wall of Mount St. Helens: Computer simulation using a mathematical model, Geomorphology, 97, 697–711, 2008.
Okano, K., Suwa, H., and Kanno, T.: Characterization of debris flows by rainstorm condition at a torrent on the Mount Yakedake volcano, Japan, Geomorphology, 136, 88–94, 2012.
Pareschi, M. T., Santacroce, R., Sulpizio, R., and Zanchetta, G.: Volcaniclastic debris flows in the Clanio Vally (Campania, Italy): insights for the assessment of hazard potential, Geomorphology, 43, 219–231, 2002.
Pirotti, F. and Tarolli, P.: Suitability of LiDAR point density and derived landform curvature maps for channel network extraction, Hydrol. Process., 24, 1187–1197, https://doi.org/10.1002/hyp.7582, 2010.
Prancevic, J. P., Lamb, M. P., and Fuller, B. M.: Incipient sediment motion across the river to debris-flow transition, Geology, 41, 191–194, https://doi.org/10.1130/G34927.1, 2014.
Schlunegger, F., Badoux, A., McArdell, B. W., Gwerder, C., Schnydrig, D., Rieke-Zapp, D., and Molnar, P.: Limits of sediment transfer in an alpine debris-flow catchment, Illgraben, Switzerland, Quat. Sci. Rev., 28, 1097–1105, 2009.
Schmidt, J. and Andrew, R.: Multi-scale landform characterization, Area, 37.3, 341–350, 2005.
Staley, D. N., Wasklewicz, T. A., and Blaszczynsk, J. S.: Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data, Geomorphology, 74, 152–163, 2006.
Staley, D. N., Wasklewicz, T. A., and Kean, J. W.: Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data, Geomorphology, 214, 324–338, 2014.
Takahashi, T.: An occurrence mechanism of mud-debris flows, and their characteristics in motion, Annuals, DPRI, 23B2, 405–435, 1977 (in Japanese).
Takahashi, T.: Mechanical characteristics of debris flow, J. Hydraul. Div., ASCE, 104, 1153–1169, 1978.
Takahashi, T.: Debris flow, IAHR Monograph, A.A. Balkema, Rotterdam, 1991.
Takahashi, T.: Debris flow: Mechanics, Prediction and Countermeasures, Taylor & Francis, Leiden, 448 p., 2007.
Takahashi, T.: Debris flow, CRC Press/Balkema, EH Leiden, the Netherlands, 2014.
Takahashi, T. and Tsujimoto, H.: A mechanical model for Merapi-type pyroclastic flow, J. Volcanol. Geotherm. Res., 98, 91–115, https://doi.org/10.1016/S0377-0273(99)00193-6, 2000.
Theule, J. I., Liébault, F., Loye, A., Laigle, D., and Jaboyedoff, M.: Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France, Nat. Hazards Earth Syst. Sci., 12, 731–749, https://doi.org/10.5194/nhess-12-731-2012, 2012.
Tsuchiya, S. and Imaizumi, F.: Large sediment movement caused by the catastrophic Ohya-kuzure landslide, J. Dis. Sci., 3, 257–263, 2010.
VanDine, D. F.: Debris flows and debris torrents in the southern Canadian Cordillera, Can. Geotech. J., 22, 44–62, 1985.
Watanabe, S.: Influence of the mixing ratio of water to sediment on the threshold slope of debris flow: a laboratory experiment, Trans. Jpn. Geomorph. Union, 15, 349–369, 1994 (in Japanese with English abstract).
Whipple, K. X. and Dunne, T.: The influence of debris-flow rheology on fan morphology, Owens Valley, California, Geol. Soc. Am. Bull., 104, 887–900, 1992.
Yamashita, S. and Miyamoto, K.: Sediment Problems: Strategies for Monitoring, Prediction and Control, Proceedings of the Yokohama Symposium, IAHS Publ., 217, 67–74, 1993.
Zhang, S.: A comprehensive approach to the observation and prevention of debris flows in China, Nat. Hazards, 7, 1–23, 1993.
Zhou, G. G. D., Cui, P., Tang, J. B., Chen, H. Y., Zou, Q., and Sun, Q. C.: Experimental study on the triggering mechanisms and kinematic properties of large debris flows in Wenjia Gully, Eng. Geol., 194, 52–61, https://doi.org/10.1016/j.enggeo.2014.10.021, 2015
Short summary
Debris flow characteristics in the initiation zones are poorly understood because of the difficulty in monitoring. We studied the relationship between the flow characteristics and the accumulation conditions of the storage in an initiation zone of debris flow. Our study clarified that both partly and fully saturated flows are important processes in the initiation zones of debris flow. The predominant type of flow varied temporally and was affected by the volume of storage and rainfall patterns.
Debris flow characteristics in the initiation zones are poorly understood because of the...
Altmetrics
Final-revised paper
Preprint