Articles | Volume 17, issue 9
https://doi.org/10.5194/nhess-17-1595-2017
https://doi.org/10.5194/nhess-17-1595-2017
Research article
 | 
22 Sep 2017
Research article |  | 22 Sep 2017

A modified tank model including snowmelt and infiltration time lags for deep-seated landslides in alpine environments (Aggenalm, Germany)

Wen Nie, Michael Krautblatter, Kerry Leith, Kurosch Thuro, and Judith Festl

Related authors

Decadal in situ hydrological observations and empirical modeling of pressure head in a high-alpine, fractured calcareous rock slope
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
Earth Surf. Dynam., 13, 295–314, https://doi.org/10.5194/esurf-13-295-2025,https://doi.org/10.5194/esurf-13-295-2025, 2025
Short summary
Progressive destabilization of a freestanding rock pillar in permafrost on the Matterhorn (Swiss Alps): Field observations, laboratory experiments and mechanical modeling
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151,https://doi.org/10.5194/egusphere-2025-1151, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025,https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Massive permafrost rock slide under a warming polythermal glacier deciphered through mechanical modeling (Bliggspitze, Austria)
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025,https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024,https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary

Related subject area

Landslides and Debris Flows Hazards
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger
Nat. Hazards Earth Syst. Sci., 25, 1425–1437, https://doi.org/10.5194/nhess-25-1425-2025,https://doi.org/10.5194/nhess-25-1425-2025, 2025
Short summary
Topographic controls on landslide mobility: modeling hurricane-induced landslide runout and debris-flow inundation in Puerto Rico
Dianne L. Brien, Mark E. Reid, Collin Cronkite-Ratcliff, and Jonathan P. Perkins
Nat. Hazards Earth Syst. Sci., 25, 1229–1253, https://doi.org/10.5194/nhess-25-1229-2025,https://doi.org/10.5194/nhess-25-1229-2025, 2025
Short summary
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Jonathan Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
Nat. Hazards Earth Syst. Sci., 25, 1037–1056, https://doi.org/10.5194/nhess-25-1037-2025,https://doi.org/10.5194/nhess-25-1037-2025, 2025
Short summary
A participatory approach to determine the use of road cut slope design guidelines in Nepal to lessen landslides
Ellen B. Robson, Bhim Kumar Dahal, and David G. Toll
Nat. Hazards Earth Syst. Sci., 25, 949–973, https://doi.org/10.5194/nhess-25-949-2025,https://doi.org/10.5194/nhess-25-949-2025, 2025
Short summary
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci., 25, 709–726, https://doi.org/10.5194/nhess-25-709-2025,https://doi.org/10.5194/nhess-25-709-2025, 2025
Short summary

Cited articles

Abebe, N. A., Ogden, F. L., and Pradhan, N. R.: Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: implications for parameter estimation, J. Hydrol., 389, 301–310, 2010.
Agliardi, F., Crosta, G. B., Zanchi, A., and Ravazzi, C.: Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy, Geomorphology, 103, 113–129, 2009.
Ahrens, C. D.: Meteorology Today: an Introduction to Weather, Climate, and the Environment, Cengage Learning, California, USA, 2007.
Angeli, M. G., Gasparetto, P., Silano, S., and Tonnetti, G.: An automatic recording system to detect critical stability conditions in slopes, in: Proc. of the 5th ISL, Lausanne, 375–378, 1988.
Angeli, M. G., Gasparetto, P., Menotti, R. M., Pasuto, A., and Silvano, S.: A visco-plastic model for slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy, Q. J. Eng. Geol. Hydroge., 29, 233–240, 1996.
Download
Short summary
Deep-seated landslides are an important and widespread natural hazard within alpine regions and can have a massive impact on infrastructure. Pore water pressure plays an important role in determining the stability of hydro-triggered deep-seated landslides. Here we demonstrate a modified tank model for deep-seated landslides that includes snow and infiltration effects and can effectively predict changes in pore water pressure in alpine environments.
Share
Altmetrics
Final-revised paper
Preprint