Articles | Volume 16, issue 11
https://doi.org/10.5194/nhess-16-2391-2016
https://doi.org/10.5194/nhess-16-2391-2016
Research article
 | 
21 Nov 2016
Research article |  | 21 Nov 2016

An analysis of uncertainties and skill in forecasts of winter storm losses

Tobias Pardowitz, Robert Osinski, Tim Kruschke, and Uwe Ulbrich

Related authors

A statistical model to estimate the local vulnerability to severe weather
Tobias Pardowitz
Nat. Hazards Earth Syst. Sci., 18, 1617–1631, https://doi.org/10.5194/nhess-18-1617-2018,https://doi.org/10.5194/nhess-18-1617-2018, 2018
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Compound winter low-wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
Nat. Hazards Earth Syst. Sci., 25, 843–856, https://doi.org/10.5194/nhess-25-843-2025,https://doi.org/10.5194/nhess-25-843-2025, 2025
Short summary
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025,https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025,https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
The record-breaking precipitation event of December 2022 in Portugal
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025,https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary

Cited articles

Bröcker, J. and Smith, L.: From ensemble forecasts to predictive distribution functions, Tellus A, 60, 663–678, https://doi.org/10.1111/j.1600-0870.2008.00333.x, 2008.
Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. Roy. Meteorol. Soc., 125, 2887–2908, https://doi.org/10.1002/qj.49712556006, 1999.
Doms, G.: A Description of the Nonhydrostatic Regional COSMO-Model – Part I: Dynamics and Numerics Consortium for Small-Scale Modelling, Deutscher Wetterdienst, Offenbach, Germany, 2011.
Donat, M. G., Pardowitz, T., Leckebusch, G. C., Ulbrich, U., and Burghoff, O.: High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany, Nat. Hazards Earth Syst. Sci., 11, 2821–2833, https://doi.org/10.5194/nhess-11-2821-2011, 2011.
ECMWF: Operational archive for the Ensemble prediction system, available at: http://apps.ecmwf.int/archive-catalogue/?class=od&stream=enfo&expver=1 (last access: 1 April 2016), 2016.
Download
Short summary
This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences. Such predictions are subject to large uncertainty due to meteorological forecast uncertainty and uncertainties in modelling weather impacts. The paper aims to quantify these uncertainties and demonstrate that valuable predictions can be made on the district level several days ahead.
Share
Altmetrics
Final-revised paper
Preprint