Articles | Volume 16, issue 11
Nat. Hazards Earth Syst. Sci., 16, 2391–2402, 2016
https://doi.org/10.5194/nhess-16-2391-2016

Special issue: Risk and uncertainty estimation in natural hazards

Nat. Hazards Earth Syst. Sci., 16, 2391–2402, 2016
https://doi.org/10.5194/nhess-16-2391-2016
Research article
21 Nov 2016
Research article | 21 Nov 2016

An analysis of uncertainties and skill in forecasts of winter storm losses

Tobias Pardowitz et al.

Related authors

A statistical model to estimate the local vulnerability to severe weather
Tobias Pardowitz
Nat. Hazards Earth Syst. Sci., 18, 1617–1631, https://doi.org/10.5194/nhess-18-1617-2018,https://doi.org/10.5194/nhess-18-1617-2018, 2018
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Time of emergence of compound events: contribution of univariate and dependence properties
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023,https://doi.org/10.5194/nhess-23-21-2023, 2023
Short summary
Skillful decadal prediction of German Bight storm activity
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022,https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Droughts in Germany: performance of regional climate models in reproducing observed characteristics
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 22, 3875–3895, https://doi.org/10.5194/nhess-22-3875-2022,https://doi.org/10.5194/nhess-22-3875-2022, 2022
Short summary
Analysis of the relationship between yield in cereals and remotely sensed fAPAR in the framework of monitoring drought impacts in Europe
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022,https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022,https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary

Cited articles

Bröcker, J. and Smith, L.: From ensemble forecasts to predictive distribution functions, Tellus A, 60, 663–678, https://doi.org/10.1111/j.1600-0870.2008.00333.x, 2008.
Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. Roy. Meteorol. Soc., 125, 2887–2908, https://doi.org/10.1002/qj.49712556006, 1999.
Doms, G.: A Description of the Nonhydrostatic Regional COSMO-Model – Part I: Dynamics and Numerics Consortium for Small-Scale Modelling, Deutscher Wetterdienst, Offenbach, Germany, 2011.
Donat, M. G., Pardowitz, T., Leckebusch, G. C., Ulbrich, U., and Burghoff, O.: High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany, Nat. Hazards Earth Syst. Sci., 11, 2821–2833, https://doi.org/10.5194/nhess-11-2821-2011, 2011.
ECMWF: Operational archive for the Ensemble prediction system, available at: http://apps.ecmwf.int/archive-catalogue/?class=od&stream=enfo&expver=1 (last access: 1 April 2016), 2016.
Download
Short summary
This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences. Such predictions are subject to large uncertainty due to meteorological forecast uncertainty and uncertainties in modelling weather impacts. The paper aims to quantify these uncertainties and demonstrate that valuable predictions can be made on the district level several days ahead.
Altmetrics
Final-revised paper
Preprint