Articles | Volume 13, issue 8
Nat. Hazards Earth Syst. Sci., 13, 1945–1958, 2013
https://doi.org/10.5194/nhess-13-1945-2013
Nat. Hazards Earth Syst. Sci., 13, 1945–1958, 2013
https://doi.org/10.5194/nhess-13-1945-2013

Research article 06 Aug 2013

Research article | 06 Aug 2013

Automated classification of Persistent Scatterers Interferometry time series

M. Berti et al.

Related authors

Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy
S. Jeffrey Underwood, Michael D. Schultz, Metteo Berti, Carlo Gregoretti, Alessandro Simoni, Thomas L. Mote, and Anthony M. Saylor
Nat. Hazards Earth Syst. Sci., 16, 509–528, https://doi.org/10.5194/nhess-16-509-2016,https://doi.org/10.5194/nhess-16-509-2016, 2016
Short summary

Related subject area

Landslides and Debris Flows Hazards
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Modelling landslide hazards under global changes: the case of a Pyrenean valley
Séverine Bernardie, Rosalie Vandromme, Yannick Thiery, Thomas Houet, Marine Grémont, Florian Masson, Gilles Grandjean, and Isabelle Bouroullec
Nat. Hazards Earth Syst. Sci., 21, 147–169, https://doi.org/10.5194/nhess-21-147-2021,https://doi.org/10.5194/nhess-21-147-2021, 2021
Short summary
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021,https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
The potential of Smartstone probes in landslide experiments: how to read motion data
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020,https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
INSPIRE standards as a framework for artificial intelligence applications: a landslide example
Gioachino Roberti, Jacob McGregor, Sharon Lam, David Bigelow, Blake Boyko, Chris Ahern, Victoria Wang, Bryan Barnhart, Clinton Smyth, David Poole, and Stephen Richard
Nat. Hazards Earth Syst. Sci., 20, 3455–3483, https://doi.org/10.5194/nhess-20-3455-2020,https://doi.org/10.5194/nhess-20-3455-2020, 2020
Short summary

Cited articles

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on small baseline differential interferograms, IEEE Trans. Geosci. Rem. Sens., 40, 2375–2383, 2002.
Calabro, M. D., Schmidt, D. A., and Roering, J. J.: An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry, J. Geophys. Res., 115, 1–10, https://doi.org/10.1029/2009JF001314, 2010.
Catani, F., Canuti, P., and Casagli, N.: The Use of Radar Interferometry in Landslide Monitoring, paper presented at 1st Meeting of Cold Region Landslides Network and 1st Symposium on Landslides in Cold Region, Harbin, China, 2012.
Cigna, F., Del Ventisette, C., Liguori, V., and Casagli, N.: Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes, Nat. Hazards Earth Syst. Sci., 11, 865–881, https://doi.org/10.5194/nhess-11-865-2011, 2011.
Cigna, F., Tapete, D., and Casagli, N.: Semi-automated extraction of Deviation Indexes (DI) from satellite Persistent Scatterers time series: tests on sedimentary volcanism and tectonically-induced motions, Nonlin. Processes Geophys., 19, 643–655, https://doi.org/10.5194/npg-19-643-2012, 2012.
Download
Altmetrics
Final-revised paper
Preprint