Articles | Volume 26, issue 2
https://doi.org/10.5194/nhess-26-775-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-26-775-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Collective risk modelling of multi-peril events: correlation of European windstorm gust and precipitation annual severity
Department of Mathematics & Statistics, University of Exeter, Exeter, United Kingdom
David B. Stephenson
Department of Mathematics & Statistics, University of Exeter, Exeter, United Kingdom
Matthew D. K. Priestley
Department of Mathematics & Statistics, University of Exeter, Exeter, United Kingdom
Related authors
No articles found.
Peter W. Thorne, John M. Nicklas, John J. Kennedy, Bruce Calvert, Baylor Fox-Kemper, Mark T. Richardson, Adrian Simmons, Ed Hawkins, Robert Rhode, Kathryn Cowtan, Nerilie J. Abram, Axel Andersson, Simon Noone, Phillipe Marbaix, Nathan Lenssen, Dirk Olonscheck, Tristram Walsh, Stephen Outten, Ingo Bethke, Bjorn H. Samset, Chris Smith, Anna Pirani, Jan Fuglestvedt, Lavanya Rajamani, Richard A. Betts, Elizabeth C. Kent, Blair Trewin, Colin Morice, Tim Osborn, Samantha N. Burgess, Oliver Geden, Andrew Parnell, Piers M. Forster, Chris Hewitt, Zeke Hausfather, Valerie Masson-Delmotte, Jochem Marotzke, Nathan Gillett, Sonia I. Seneviratne, Gavin A. Schmidt, Duo Chan, Stefan Brönnimann, Andy Reisinger, Matthew Menne, Maisa Rojas Corradi, Christopher Kadow, Peter Huybers, David B. Stephenson, Emily Wallis, Joeri Rogelj, Andrew Schurer, Karen McKinnon, Panmao Zhai, Fatima Driouech, Wilfran Moufouma Okia, Saeed Vazifehkhah, Sophie Szopa, Christopher J. Merchant, Shoji Hirahara, Masayoshi Ishii, Francois A. Engelbrecht, Qingxiang Li, June-Yi Lee, Alex J. Cannon, Christophe Cassou, Karina von Schuckmann, Amir H. Delju, and Ellie Murtagh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-825, https://doi.org/10.5194/essd-2025-825, 2026
Preprint under review for ESSD
Short summary
Short summary
We reassess the basis for determining the present level of long-term global warming. Unbiased estimates of both realised warming and anthropogenic warming are possible that approximate a 20-year retrospective mean. Our resulting estimates of 1.40 [1.23–1.58] °C (realised) and 1.34 [1.18–1.50] °C (anthropogenic) as at end of 2024 highlight the urgency of immediate, far-reaching and sustained climate mitigation actions if we are to meet the long term temperature goal of the Paris Agreement.
Amanda C. Maycock, Christine M. McKenna, Matthew D. K. Priestley, Jacob Perez, and Julia F. Lockwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-1131, https://doi.org/10.5194/egusphere-2025-1131, 2025
Short summary
Short summary
Winter North Atlantic storms cause significant financial losses and damage in Europe. This study shows that modes of seasonal large-scale climate variability called the North Atlantic Oscillation and East Atlantic Pattern modulate the exposure to cyclone related extreme wind, precipitation and storm surge hazards across many parts of Europe. The results have the potential to be combined with skilful seasonal climate forecasts of climate modes to inform the insurance sector.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023, https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Short summary
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability of the models to represent the key physical processes that are important for representing European climate. Filtering the models with the assessment leads to more models with less global warming being removed, and this shifts the lower part of the projected temperature range towards greater warming. This is in contrast to the affect of weighting the ensemble using global temperature trends.
Matthew D. K. Priestley and Jennifer L. Catto
Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022, https://doi.org/10.5194/wcd-3-337-2022, 2022
Short summary
Short summary
We use the newest set of climate model experiments from CMIP6 to investigate changes to mid-latitude storm tracks and cyclones from global warming. The overall number of cyclones will decrease. However in winter there will be more of the most intense cyclones, and these intense cyclones are likely to be stronger. Cyclone wind speeds will increase in winter, and as a result the area of strongest wind speeds will increase. By 2100 the area of strong wind speeds may increase by over 30 %.
Cited articles
Ambagaspitiya, R. S.: On the distributions of two classes of correlated aggregate claims, Insur. Math. Econ., 24, 301–308, https://doi.org/10.1016/s0167-6687(99)00006-2, 1999. a
Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., van der Wiel, K., Wu, W., Zhang, T., and Zscheischler, J.: Guidelines for Studying Diverse Types of Compound Weather and Climate Events, Earth's Future, 9, e2021EF002340, https://doi.org/10.1029/2021EF002340, 2021. a
Blackwell, D. and Girshick, M. A.: A Lower Bound for the Variance of Some Unbiased Sequential Estimates, Ann. Math. Stat., 18, 277–280, https://doi.org/10.1214/aoms/1177730444, 1947. a
Bloomfield, H. C., Hillier, J., Griffin, A., Kay, A., Shaffrey, L., Pianosi, F., James, R., Kumar, D., Champion, A., and Bates, P.: Co-occurring wintertime flooding and extreme wind over Europe, from daily to seasonal timescales, Weather and Climate Extremes, 39, 100550, https://doi.org/10.1016/j.wace.2023.100550, 2023. a, b, c
Bourdin, S., Fromang, S., Dulac, W., Cattiaux, J., and Chauvin, F.: Intercomparison of four algorithms for detecting tropical cyclones using ERA5, Geosci. Model Dev., 15, 6759–6786, https://doi.org/10.5194/gmd-15-6759-2022, 2022. a, b
Browning, S.: Affordable insurance for flood-risk properties: Flood Re, https://commonslibrary.parliament.uk/affordable-insurance-for-flood-risk-properties-flood-re/ (last access: 26 June 2025), 2020. a
Čížek, P., Weron, R., and Härdle, W.: Tools for Finance and Insurance, Vol. 1, Springer Berlin, Heidelberg, https://doi.org/10.1007/b139025, 2005. a
Cohen, J. E.: Sum of a Random Number of Correlated Random Variables that Depend on the Number of Summands, Am. Stat., 73, 56–60, https://doi.org/10.1080/00031305.2017.1311283, 2019. a, b
Cusack, S.: A long record of European windstorm losses and its comparison to standard climate indices, Nat. Hazards Earth Syst. Sci., 23, 2841–2856, https://doi.org/10.5194/nhess-23-2841-2023, 2023. a
De Luca, P., Hillier, J. K., Wilby, R. L., Quinn, N. W., and Harrigan, S.: Extreme multi-basin flooding linked with extra-tropical cyclones, Environ. Res. Lett., 12, 114009, https://doi.org/10.1088/1748-9326/aa868e, 2017. a
Embrechts, P., McNeil, A., and Straumann, D.: Correlation and Dependence in Risk Management: Properties and Pitfalls, in: Risk Management: Value at Risk and Beyond, edited by: Dempster, M., Cambridge University Press, https://doi.org/10.1017/CBO9780511615337.008, 2002. a
Grossi, P. and Kunreuther, H.: Catastrophe Modeling: A New Approach to Managing Risk, Huebner International Series on Risk, Insurance, and Economic Security, Springer, ISBN 0-387-23082-3, 2005. a
Hadzilacos, G., Li, R., Harrington, P., Latchman, S., Hillier, J., Dixon, R., New, C., Alabaster, A., and Tsapko, T.: It's windy when it's wet: why UK insurers may need to reassess their modelling assumptions, https://bankunderground.co.uk/2021/04/08/
its-windy-when-its-wet-why-uk-insurers-may-need-to-reassess-their-modelling-assumptions/ (last access: 26 June 2025), 2021. a
Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I., and Dacre, H. F.: How much Northern Hemisphere precipitation is associated with extratropical cyclones?, Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012gl053866, 2012. a
Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I., and Dacre, H. F.: Can climate models represent the precipitation associated with extratropical cyclones?, Clim. Dynam., 47, 679–695, https://doi.org/10.1007/s00382-015-2863-z, 2015. a
Hay, S., Priestley, M. D. K., Yu, H., Catto, J. L., and Screen, J. A.: The Effect of Arctic Sea‐Ice Loss on Extratropical Cyclones, Geophys. Res. Lett., 50, e2023GL102840, https://doi.org/10.1029/2023gl102840, 2023. a
Heneka, P. and Ruck, B.: A damage model for the assessment of storm damage to buildings, Eng. Struct., 30, 3603–3609, https://doi.org/10.1016/j.engstruct.2008.06.005, 2008. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023. a
Hillier, J., Champion, A., Perkins, T., Garry, F., and Bloomfield, H.: GC Insights: Open-access R code for translating the co-occurrence of natural hazards into impact on joint financial risk, Geosci. Commun., 7, 195–200, https://doi.org/10.5194/gc-7-195-2024, 2024. a
Hillier, J. K., Matthews, T., Wilby, R. L., and Murphy, C.: Multi-hazard dependencies can increase or decrease risk, Nat. Clim. Change, 10, 595–598, https://doi.org/10.1038/s41558-020-0832-y, 2020. a
Hillier, J. K., Bloomfield, H. C., Manning, C., Garry, F., Shaffrey, L., Bates, P., and Kumar, D.: Increasingly Seasonal Jet Stream Raises Risk of Co‐Occurring Flooding and Extreme Wind in Great Britain, Int. J. Climatol., 45, e8763, https://doi.org/10.1002/joc.8763, 2025. a, b
Hodges, K. I.: A General Method for Tracking Analysis and Its Application to Meteorological Data, Mon. Weather Rev., 122, 2573–2586, https://doi.org/10.1175/1520-0493(1994)122<2573:agmfta>2.0.co;2, 1994. a
Hunter, A., Stephenson, D., Economou, T., Holland, M., and Cook, I.: New perspectives on the collective risk of extratropical cyclones, Q. J. Roy. Meteor. Soc., 142, 243–256, https://doi.org/10.1002/qj.2649, 2015. a, b, c
Jones, T. P.: The distribution of aggregate storm risk in a changing climate, Masters thesis, University of Exeter, arXiv [preprint], https://doi.org/10.48550/arXiv.2211.08058, 15 November 2022. a, b
Juárez, B., Stockton, S. A., Serafin, K. A., and Valle‐Levinson, A.: Compound Flooding in a Subtropical Estuary Caused by Hurricane Irma 2017, Geophys. Res. Lett., 49, e2022GL099360, https://doi.org/10.1029/2022gl099360, 2022. a
Kaas, R., Goovaerts, M., Dhaene, J., and Denuit, M.: Modern Actuarial Risk Theory, vol. 2, Springer Berlin, Heidelberg, Chap. 3, https://doi.org/10.1007/978-3-540-70998-5, 2008. a, b
Kendon, M. and McCarthy, M.: The UK's wet and stormy winter of 2013/2014, Weather, 70, 40–47, https://doi.org/10.1002/wea.2465, 2015. a, b
Klawa, M. and Ulbrich, U.: A model for the estimation of storm losses and the identification of severe winter storms in Germany, Nat. Hazards Earth Syst. Sci., 3, 725–732, https://doi.org/10.5194/nhess-3-725-2003, 2003. a, b, c
Klugman, S., Panjer, H., and Willmot, G. (Eds.): Loss Models, Wiley, 5th edn., https://doi.org/10.1002/9780470391341, 2019. a
Kodama, C., Stevens, B., Mauritsen, T., Seiki, T., and Satoh, M.: A New Perspective for Future Precipitation Change from Intense Extratropical Cyclones, Geophys. Res. Lett., 46, 12435–12444, https://doi.org/10.1029/2019gl084001, 2019. a
Kolev, N. and Paiva, D.: Random sums of exchangeable variables and actuarial application, Insur. Math. Econ., 42, 147–153, https://doi.org/10.1016/j.insmatheco.2007.01.010, 2008. a
Lavers, D. A., Simmons, A., Vamborg, F., and Rodwell, M. J.: An evaluation of ERA5 precipitation for climate monitoring, Q. J. Roy. Meteor. Soc., 148, 3152–3165, https://doi.org/10.1002/qj.4351, 2022. a
Leckebusch, G. C., Ulbrich, U., Fröhlich, L., and Pinto, J. G.: Property loss potentials for European midlatitude storms in a changing climate, Geophys. Res. Lett., 34, L05703, https://doi.org/10.1029/2006gl027663, 2007. a, b
Leckebusch, G. C., Renggli, D., and Ulbrich, U.: Development and application of an objective storm severity measure for the Northeast Atlantic region, Meteorol. Z., 17, 575–587, https://doi.org/10.1127/0941-2948/2008/0323, 2008. a
Little, A. S., Priestley, M. D. K., and Catto, J. L.: Future increased risk from extratropical windstorms in northern Europe, Nat. Commun., 14, 4434, https://doi.org/10.1038/s41467-023-40102-6, 2023. a, b
Lockwood, J. F., Guentchev, G. S., Alabaster, A., Brown, S. J., Palin, E. J., Roberts, M. J., and Thornton, H. E.: Using high-resolution global climate models from the PRIMAVERA project to create a European winter windstorm event set, Nat. Hazards Earth Syst. Sci., 22, 3585–3606, https://doi.org/10.5194/nhess-22-3585-2022, 2022. a
Maddison, J. W., Gray, S. L., Martínez‐Alvarado, O., and Williams, K. D.: Impact of model upgrades on diabatic processes in extratropical cyclones and downstream forecast evolution, Q. J. Roy. Meteor. Soc., 146, 1322–1350, https://doi.org/10.1002/qj.3739, 2020. a
Mailier, P. J., Stephenson, D. B., Ferro, C. A. T., and Hodges, K. I.: Serial Clustering of Extratropical Cyclones, Mon. Weather Rev., 134, 2224–2240, https://doi.org/10.1175/MWR3160.1, 2006. a, b, c
Manning, C., Kendon, E. J., Fowler, H. J., and Roberts, N. M.: Projected increase in windstorm severity and contribution from sting jets over the UK and Ireland, Weather and Climate Extremes, 40, 100562, https://doi.org/10.1016/j.wace.2023.100562, 2023. a
Manning, C., Kendon, E. J., Fowler, H. J., Catto, J. L., Chan, S. C., and Sansom, P. G.: Compound wind and rainfall extremes: Drivers and future changes over the UK and Ireland, Weather and Climate Extremes, 44, 100673, https://doi.org/10.1016/j.wace.2024.100673, 2024. a, b, c
Martius, O., Pfahl, S., and Chevalier, C.: A global quantification of compound precipitation and wind extremes, Geophys. Res. Lett., 43, 7709–7717, https://doi.org/10.1002/2016gl070017, 2016. a, b, c
Mirzai, B.: On the Rating of Dependent Risks, in: Proceedings ASTIN 1999, XXXth International ASTIN Colloquium, Tokyo, Japan, 22–25 August 1999, Swiss Re New Markets, 8022 Zurich, Switzerland, 1999. a
Mitchell-Wallace, K., Foote, M., Hillier, J., and Jones, M. (Eds.): Natural Catastrophe Risk Management and Modelling: A Practitioner's Guide, John Wiley & Sons, Ltd, https://doi.org/10.1002/9781118906057, 2017. a
Owen, L.: Compound Precipitation and Wind Extremes over Europe and their relationship to Extratropical Cyclones, PhD thesis, University of Exeter, https://ore.exeter.ac.uk/articles/thesis/Compound_Precipitation_and_Wind_Extremes_over_Europe_and_their_relationship_to_Extratropical_Cyclones/29789450 (last access: 26 June 2025), 2022. a
Owen, L. E., Catto, J. L., Stephenson, D. B., and Dunstone, N. J.: Compound precipitation and wind extremes over Europe and their relationship to extratropical cyclones, Weather and Climate Extremes, 33, 100342, https://doi.org/10.1016/j.wace.2021.100342, 2021. a, b, c
Pinto, J. G., Karremann, M. K., Born, K., Della-Marta, P. M., and Klawa, M.: Loss potentials associated with European windstorms under future climate conditions, Clim. Res., 54, 1–20, https://doi.org/10.3354/cr01111, 2012. a, b
Priestley, M. D. K. and Catto, J. L.: Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure, Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022, 2022. a
Priestley, M. D. K., Dacre, H. F., Shaffrey, L. C., Hodges, K. I., and Pinto, J. G.: The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data, Nat. Hazards Earth Syst. Sci., 18, 2991–3006, https://doi.org/10.5194/nhess-18-2991-2018, 2018. a
Raveh‐Rubin, S. and Wernli, H.: Large‐scale wind and precipitation extremes in the Mediterranean: a climatological analysis for 1979–2012, Q. J. Roy. Meteor. Soc., 141, 2404–2417, https://doi.org/10.1002/qj.2531, 2015. a
Ren, J.: A multivariate aggregate loss model, Insur. Math. Econ., 51, 402–408, https://doi.org/10.1016/j.insmatheco.2012.06.009, 2012. a
Renggli, D. and Zimerli, P.: Misfortune seldom comes alone: Winter storm clusters in Europe, Tech. rep., Swiss Re, https://www.researchgate.net/publication/311081749_Misfortune_seldom_comes_alone_Winter_storm_clusters_in_Europe (last access: 26 June 2025), 2016. a
Rhodes, R. I.: Clustering and stalling of North Atlantic cyclones: The influence on precipitation in England and Wales, PhD thesis, University of Reading, https://centaur.reading.ac.uk/77911/ (last access: 26 June 2025), 2017. a
Rhodes, R. I., Shaffrey, L. C., and Gray, S. L.: Can reanalyses represent extreme precipitation over England and Wales?, Q. J. Roy. Meteor. Soc., 141, 1114–1120, https://doi.org/10.1002/qj.2418, 2014. a
Richardson, D., Black, A. S., Irving, D., Matear, R. J., Monselesan, D. P., Risbey, J. S., Squire, D. T., and Tozer, C. R.: Global increase in wildfire potential from compound fire weather and drought, npj Climate and Atmospheric Science, 5, 23, https://doi.org/10.1038/s41612-022-00248-4, 2022. a
Sinclair, V. A. and Dacre, H. F.: Which Extratropical Cyclones Contribute Most to the Transport of Moisture in the Southern Hemisphere?, J. Geophys. Res.-Atmos., 124, 2525–2545, https://doi.org/10.1029/2018jd028766, 2019. a
Tang, Q.: Large deviations for heavy-tailed random sums in compound renewal model, Stat. Probabil. Lett., 52, 91–100, https://doi.org/10.1016/s0167-7152(00)00231-5, 2001. a
Viglione, A. and Rogger, M.: Flood Processes and Hazards, Elsevier, 3–33, https://doi.org/10.1016/b978-0-12-394846-5.00001-1, ISBN 9780123948465, 2015. a
Vitolo, R., Stephenson, D., Cook, I. M., and Mitchell-Wallace, K.: Serial Clustering of intense European Storms, Meteorol. Z., 18, 411–424, https://doi.org/10.1127/0941-2948/2009/0393, 2009. a, b, c
Wald, A.: Some Generalizations of the Theory of Cumulative Sums of Random Variables, Ann. Math. Stat., 16, 287–293, https://doi.org/10.1214/aoms/1177731092, 1945. a
Wang, C., Li, Z., Chen, Y., Ouyang, L., Li, Y., Sun, F., Liu, Y., and Zhu, J.: Drought-heatwave compound events are stronger in drylands, Weather and Climate Extremes, 42, 100632, https://doi.org/10.1016/j.wace.2023.100632, 2023. a
Whitford, A. C., Blenkinsop, S., Pritchard, D., and Fowler, H. J.: A gauge-based sub-daily extreme rainfall climatology for western Europe, Weather and Climate Extremes, 41, 100585, https://doi.org/10.1016/j.wace.2023.100585, 2023. a
Yu, H., Screen, J. A., Hay, S., Catto, J. L., and Xu, M.: Winter Precipitation Responses to Projected Arctic Sea Ice Loss and Global Ocean Warming and Their Opposing Influences over the Northeast Atlantic Region, J. Climate, 36, 4951–4966, https://doi.org/10.1175/jcli-d-22-0774.1, 2023. a
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nature Reviews Earth & Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020. a
Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.: Evaluating the dependence structure of compound precipitation and wind speed extremes, Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, 2021. a
Short summary
Some hazards bring multiple perils, meaning their yearly losses are correlated. For example, storms cause losses from both wind and rain damage each year. Three models to understand the drivers of the relationship between these yearly losses are explored. These models can be applied to other hazards, but this study focuses on understanding drivers of wind and rain from windstorms. Storm duration near a location is important, having a positive/negative effect on windspeed/rainfall respectively.
Some hazards bring multiple perils, meaning their yearly losses are correlated. For example,...
Altmetrics
Final-revised paper
Preprint