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Abstract. Hazards such as storms can create multiple per-
ils, such as windstorms and floods, that have correlated an-
nual losses. To better understand the drivers of such corre-
lations, this study explores three collective risk frameworks
with varying complexity.

Mathematical expressions are derived explaining how this
correlation depends on parameters such as event dispersion
(clustering), and the joint distribution of the two hazard vari-
ables. Hazard variables are first assumed independent, induc-
ing a positive correlation due to the shared positive depen-
dence on the total number of events. The next framework
allows for correlation between the hazard variables, which
can then capture negative correlation between accumulated
losses. The final framework builds on this by allowing for
between-year correlation caused by interannual modulation
of the hazard variables.

These frameworks are illustrated using European wind-
storm gust speeds and precipitation reanalyses from 1980—
2000. They are used to diagnose why the correlation between
annual wind and precipitation severity indices decreases as
thresholds are increased. Only the framework with interan-
nual modulation of the hazard variables quantitatively cap-
tures the negative correlations over Europe at high thresh-
olds. We propose that one plausible driver for the modulation
is the transit time that storms spend near locations.

1 Introduction

Environmental hazards can often lead to co-occurring perils.
For example, extratropical cyclones can lead to losses from
co-occurring extreme wind gusts and floods (Raveh-Rubin
and Wernli, 2015; Martius et al., 2016; Owen et al., 2021)

as well as from storm surges (Kendon and McCarthy, 2015).
Such events are also referred to as multivariate events since
the losses result from extremes in multiple hazard variables
(Zscheischler et al., 2020). Other examples include high tem-
peratures and low precipitation leading to wildfire in south
Australia (Richardson et al., 2022); storm surge and high pre-
cipitation leading to flooding after hurricanes (Juérez et al.,
2022) and the combined effect of a co-occurring heatwave
and drought in Africa and Asia (Wang et al., 2023). The im-
pact from these multi-peril events is often greater than from
the sum of impacts from the hazards separately (Hillier and
Dixon, 2020).

Multivariate compound weather hazards are receiving in-
creasing attention in studies using a variety of statistical
methods. Examples include copulas (Manning et al., 2024);
comparing co-occurrence relative to a bootstrapped event set
(Hillier et al., 2025), or use of extremal dependency mea-
sures (Zscheischler et al., 2021; Owen et al., 2021). These
methods generally aim to quantify the dependence between
hazard variables of individual events rather than diagnose the
drivers of such dependence (Hillier et al., 2020; Bevacqua et
al., 2021).

In addition to the individual risk of loss due to single
events, it is important for risk managers to also understand
the collective risk due to a set of events over the time pe-
riod that is insured. The annual aggregation over the calen-
dar year from January to December is particularly relevant
to the insurance industry as it aligns with typical reinsurance
contract timelines (CiZek, 2005). Collective risk not only de-
pends on the individual risk for each event but also on prop-
erties such as temporal clustering of the events (Mailier et
al., 2006; Vitolo et al., 2009; Hunter et al., 2015). Despite
increasing numbers of studies on clustering, much less re-
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search has been published on the collective risk of multivari-
ate hazards. It is common practice in insurance to model per-
ils separately and then assume that annual losses from differ-
ent perils are independent. For example, yearly losses from
wind and flood in Europe are modelled separately and then
assumed to be uncorrelated (Hadzilacos et al., 2021).

To better understand the correlation between accumulated
losses from different perils, this study explores and tests var-
ious collective risk modelling frameworks for diagnosing the
drivers of such correlation. The methods are demonstrated
by applying them to annually aggregated wind and precip-
itation severities caused by extratropical cyclones over the
North Atlantic and Europe from 1980-2020. In particular,
we use the frameworks to diagnose the negative correlation
noted between annual wind and precipitation severities that
was recently presented in Jones et al. (2024).

Damage from both extreme wind and precipitation can oc-
cur within the same season (Kendon and McCarthy, 2015).
As such the annual cost of extratropical cyclone damage in
Europe often reaches billions of Euros (Cusack, 2023). Con-
sequently, protection against wind damage constitutes over
15 % of global reinsurance purchases (Mitchell-Wallace et
al., 2017), while the UK needed a not-for-profit flood re-
insurance scheme to keep consumer premiums affordable
(Browning, 2020). As large loss events are more likely to
cluster (Vitolo et al., 2009; Priestley et al., 2018; Renggli
and Zimerli, 2016), understanding the relationship between
annual wind and precipitation hazards from extratropical cy-
clones is crucial for re-insurers to best diversify their risk
across hazards (Grossi and Kunreuther, 2005; Klugman et
al., 2019).

Hillier and Dixon (2020) found a positive relationship be-
tween seasonally aggregated extreme wind gusts and precipi-
tation, the wind hazard increases during the wettest years for
most of Europe. Almost triple the magnitude of aggregate
extreme wind severity (cubed exceedances above 20ms~!)
was occurs between the wettest and driest third of seasons.
Similarly, positive correlation was found to exist between
wind and precipitation aggregated across the UK from daily
to seasonal timescales (Bloomfield et al., 2023). This used
Spearman’s rank correlation, which is less sensitive to ex-
treme outlier values. However, when using Pearson’s corre-
lation, Jones et al. (2024) found that the positive correlation
between annual wind and precipitation severities decreased
and even became slightly negative over Europe for more ex-
treme severities as thresholds for the hazard variables were
increased. Both Hillier and Dixon (2020) and Bloomfield et
al. (2023) used the extended winter (October—March) season,
while Jones et al. (2024) uses the full calendar year, splitting
winters in two.

This study aims to answer the following questions:

— What assumptions are required for a collective risk

model to be able to capture the correlation between ag-
gregate losses at all spatial locations?
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— Can such a collective risk model quantitatively ac-
count for how the correlation changes for more extreme
events?

— What are the key drivers of the changes in correlation
with threshold?

Section 2 presents three collective risk models of increas-
ing complexity and shows how the correlation of aggregate
losses depends on parameters such as overdispersion (clus-
tering), skewness of the hazard variables, and correlation be-
tween the individual hazard variables. Section 3 then applies
and tests the frameworks on the storm data used in Jones et al.
(2024). Conclusions and ideas for future work are presented
in Sect. 4.

2 Collective risk modelling
2.1 Severity Indices

The damage or loss at a given location is often approximated
to be a function of the hazard variable, i.e. g(X) where X is
the hazard variable (e.g. wind gust speed). Idealised forms
of these functions are known as Severity Indices (SI). Nu-
merous SIs have been created for wind damage. Klawa and
Ulbrich (2003) use the cube of wind gust above the local 98th
percentile, with numerous other studies (e.g. Leckebusch et
al., 2007, 2008; Pinto et al., 2012; Little et al., 2023) using an
SI of similar form adapted to gridded data. Heneka and Ruck
(2008) presented an SI using the square of exceedances, al-
though this assumed the damage threshold was normally dis-
tributed. Bloomfield et al. (2023) introduced a flood severity
index, also using the exceedance over threshold approach,
using linear exceedances of river flow data. SIs of this form
are less influenced by outlier extreme events. This study uses
a simple exceedance over threshold SI defined a

X—ux X,‘>MX

g(X) ={ 0 Xy (1)

The threshold uy can be a fixed value for all locations (e.g.
20ms!; Jones et al., 2024) or a percentile of X that varies
with location (e.g. ux = X¢.9s; Klawa and Ulbrich, 2003).
Klawa and Ulbrich (2003) were one of the first to use this
threshold approach, noting German insurers usually pay for
damages if a nearby weather station records gusts above
20ms~!. This approach has since been used in many sub-
sequent studies and has been sensitivity tested (Hillier and
Dixon, 2020; Little et al., 2023; Leckebusch et al., 2007;
Pinto et al., 2012).

2.2 Aggregate Severity Indices

Accumulated losses over a given time period (e.g. a year)
are then approximated by the random sum of Severity In-
dices g(X;) over the set of events i =1,2,..., N that oc-
curred in the period. Aggregated Severity Indices (ASIs) are
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frequently used as a proxy for total damage. Correlation be-
tween ASIs can therefore be usefully translated into impact
on joint financial risk (Hillier et al., 2024). Hillier and Dixon
(2020) aggregated wind gust and total precipitation over the
extended winter season (October—March), concluding that
extreme precipitation winters results in an uplift of aggre-
gate extreme wind hazard for most of Europe. This com-
pared the relative value of wind ASIs for the top and bot-
tom thirds of winters ranked by precipitation ASI. Hunter
et al. (2015) used ASIs to investigate the relationship be-
tween frequency and mean intensity of windstorms, conclud-
ing the Scandinavian Pattern was a driver of this relationship.
Jones (2022) derived a framework to model the relationship
between frequency and wind ASI, while Jones et al. (2024)
found most of Europe have negative Pearson’s correlation be-
tween wind and precipitation ASIs at high thresholds. From
our SI Eq. (1), the ASI is defined as

sz{ g(Xl)—l-g(Xz)—i-...—lrg(XN) %18. )

where {X1, ..., Xy} are the hazard variables for each of the
N events. The distribution of Sy determines the collective
risk of accumulated losses over the chosen time period.

In this study, we shall consider events that have perils
caused by two hazard variables X and Y with thresholds u x
and uy, respectively, resulting in annual ASI Sy and Sy. The
total number of events, N, only includes events that increase
Sx or Sy (or both) i.e. events where X > ux or Y > uy. This
avoids having to model the bivariate distribution of sepa-
rate counts for extremes in wind and precipitation. The count
variable used in this study is an upper bound for these sep-
arate counts. For simplicity of notation, we shall refer to
X'=g(X)and Y'=g(Y) simply as X and Y, respectively.

2.3 ASI modelling frameworks

An ASI is the sum of a random number N of random vari-
ables {X, X»,..., Xy} and is known as a random sum in
actuarial science (Ambagaspitiya, 1999; Ren, 2012; Tang,
2001). Its distributional properties depend on the distribu-
tion of N, the distribution of the X variables, and the joint
distribution between N and the X. For example, the expec-
tation (E[Sx]) and variance (Var(Sy)) of random sums have
been derived long ago (Wald, 1945; Blackwell and Girshick,
1947). These results assume that the X variables are inde-
pendent of N, but this assumption can be relaxed (Cohen,
2019).

Far less attention has been given to correlations between
random sums. Mirzai (1999) used a simplified approach re-
lying on counts of extremes, although counts were restricted
to follow a Poisson distribution (something uncharacteristic
of European windstorms, Mailier et al., 2006). Kolev and
Paiva (2008) defined a more flexible framework, but this in-
cludes Sx and Sy as explanatory variables. Neither study ap-
plied their respective frameworks to real-world hazards. Only
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Jones (2022) has applied a similar correlation framework to
model hazard data, but this focused on frequency and aggre-
gate wind hazard.

This study considers 3 frameworks of increasing complex-
ity. The distinction between the frameworks are their choice
of independence assumptions:

— Frequency-Severity Independence (FS-Ind): the sever-
ity of hazards within a year are independent to the fre-
quency of events (e.g. storm counts and gust speeds for
a year have zero correlation).

— Hazard Independence (H-Ind): the wind and precipita-
tion SIs from the same event are assumed independent
(so have zero correlation).

— Serial Independence (S-Ind): hazard SIs from different
events are assumed independent (wind values from sep-
arate events have zero correlation with each other).

For simplicity, all the frameworks assume FS-Ind, i.e.,
Cov(N,X;)=0 and Cov(N,Y;)=0 for i €{1,2,...,N}.
The three frameworks are:

— Framework A: uncorrelated hazard variables [FS-Ind,
H-Ind and S-Ind].
Assumes Cov(X;,Y;)=0 (H-Ind), Cov(X;,X;)=
078ij (S-Ind) and Cov(Y;,Y;) = 028;; (S-Ind) for all
combinations of i, j € {1,2..., N}. As indices i and j
take any value from 1 to N, dependency between all
hazard pairs within a year is considered. Most hazard
pairs have zero covariance as §;;=1if i =j and is 0
otherwise. The standard deviations for hazards X and Y
are oy and oy. These are common assumptions often
used by actuaries (Kaas et al., 2008).

— Framework B: correlated hazard variables.

Assumes COV(X,', Yj) = QO'Xo'Ys,'j, COV(X,', Xj) =
038ij (S-Ind) and Cov(Y;,Y;)=028; (S-Ind)
for all i,je({l,2...,N}. Pearson’s correlation

6 =Cor(X;,Y;) e [—1,1] is the correlation between
the hazard variables for each event computed over all
hazard pairs at each gridpoint. This framework does not
assume H-Ind.

— Framework C: correlated hazard variables modulated
by Z.
Assumes Cov(X;,Y;) =0oxoydij+ Cov(X,Y),
Cov(X;, Xj) =0g8;j+ Var(X) and Cov(¥;,Yj)=
opdij+Var(Y) for all i, je{l,2....N} where
X=E(X|Z) and Y =E(Y|Z). Variable Z is a la-
tent variable that is considered to vary between but not
within years and can influence X and Y differently.
This framework does not assume H-Ind or S-Ind.

The dependency structure of each framework is summarised
in Fig. 1. Framework B is a special case of framework C hav-
ing Var(Z) =0 (i.e. no interannual modulation), and frame-
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Figure 1. Dependence assumptions for the three frameworks. Ar-
rows show which variables can causally influence others.

work A is a special case of framework B having 6 =0 (i.e.
no hazard correlation).

Using these assumptions it is possible to derive the Pear-
son’s correlation p =Cor(Sy, Sy) between the aggregate
severities for each of the three frameworks (see Appendix A).
For framework A, one obtains

¢JxJy
pa = ,
\/(1+¢J§)(1+¢J§)

3

where ¢ = Var(N)/E[N] is the dispersion in counts
(Mailier et al., 2006), and Jx = E[X]/+/Var(X) and Jy =
E[Y]/+/Var(Y) are the signal-to-noise ratios of the two haz-
ard variables. The correlation of framework A is always non-
negative and increases from O to 1 as the dispersion ¢ goes
from O to oo, and hence large amounts of clustering ¢ > 1
induce high correlation between the aggregated severities of
the two perils. Framework B gives

p 0+¢JxJy
B = y
Ja+8ID +677)

“

where 8 = Cor(X;, Y;) is the correlation between hazard vari-
ables for individual events. Unlike framework A, frame-
work B can produce negative correlations provided 6 <
¢Jx Jy. It should be noted that p > 6 when 8 < 0 and so p
can never be more negative than 6. Framework C gives

0+¢Jxy +AKxy
C =
\/(1 +GIE+AK2) (1 + I +AK2)
0 oJxy AKxy

= 5
ﬁ+ﬁ+ﬂ’ &)

where > =E[N], d = \/(1 +GIE+AK2)(1+ I3 +AK2),
g — __ElCov(X|Z.Y|2)]
\/ Ez[Var(X|2)Var(¥|2)

0

and

_ EZ[E[X|ZIE[Y|Z]] . Cov(E[X|Z],E[Y|Z])
\/EZ[Var(X|Z)VaI(Y\Z)] \/EZ[Var(X|Z)Va.r(Y\Z)]

»  Ez[BIx|zP] » Ez[ElYIz]

X Bz varx12) ] Y By var(riz)|

Var(E[X| Z]) Var(E[Y]2])

Ez[Var(x|2)] Ez[Var(v|2)]”

Jxy

2 _ 2 _
K5 = Ky =
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Physical explanation of these three components is provided
in Sect. 3.3. The variable Z is a latent variable that is consid-
ered to vary with the years and so then E[ X | Z] are the annual
means of X, and COV(E[X|Z], E[Y|Z]) is the covariance be-
tween the annual means of X and Y. This framework has the
advantage that the interannual modulation can allow p to be
more negative than 6.

3 Data example: correlation of wind and precipitation
storm severity indices

3.1 Storm data 1980-2020

The frameworks in this study are applied to the same data
and cyclone extraction procedures as detailed in Jones et al.
(2024). The cyclones and hazard variables are extracted from
I-hourly ERAS reanalysis at the native 0.25° spatial resolu-
tion from 1980-2020 (Hersbach et al., 2020). Using hourly
data is important for modelling sub-daily rainfall extremes
(Whitford et al., 2023).

Cyclones are first identified and tracked at 850 hPa us-
ing the TRACK algorithm (Hodges, 1994). This is a widely
adopted method for cyclone tracking (Hawcroft et al., 2012;
Manning et al., 2023; Priestley and Catto, 2022; Maddison et
al., 2020; Yu et al., 2023; Hay et al., 2023) and performs sim-
ilarly to other tracking algorithms (Bourdin et al., 2022). A
constant 5° radius is applied around the tracks to determine
the influence of the cyclone, which is comparable to what has
been used in previous studies (Hawcroft et al., 2015; Kodama
etal., 2019).

Wind and precipitation values are created at each grid
point for each cyclone using the maximum 3s wind gust
speeds (x;) and total accumulated precipitation (y;) over the
duration that each cyclone was within 5° of that grid point.
Severity indices are created using Eq. (1) by applying thresh-
olds to these event metrics. Annual ASIs Sx and Sy were
then created for every grid point and every calendar year
(1 January-31 December) using Eq. (2).

3.2 Framework skill at modelling correlation

Jones et al. (2024) describes how sample correlation be-
tween wind and precipitation ASIs decreases with increas-
ing thresholds, including differing behaviours between re-
gions. This study uses the same fixed thresholds to reproduce
the sample Pearsons correlations from Jones et al. (2024),
equivalent percentile thresholds are shown in Appendix B
(Fig. B1). The correlation between ASIs is not necessar-
ily a result of the correlation between individual wind and
precipitation severities, shared positive dependence on event
clustering could cancel this out. Frameworks are therefore
needed to understand the resulting correlation between ASIs.
Figure 2a—c reproduce the sample correlation values at each
grid point between wind and precipitation ASIs for different
threshold levels shown in Jones et al. (2024). Strong posi-
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tive correlation occurs across almost all of the domain when
thresholds are zero (Fig. 2a). Correlations then reduce for
higher thresholds, with regions of negative correlation ap-
pearing mostly over land (Fig. 2b). At the highest thresh-
olds, negative correlation becomes more widespread across
land and starts to appear in isolated locations in the Atlantic
Ocean (Fig. 2¢). This land-sea contrast is primarily caused by
wind speeds being generally greater over sea (reduced sur-
face roughness). Exceedances over a fixed threshold over sea
are therefore less in the extreme tail of the distribution than
those over land.

A difference in approaches means the relationships in this
study (and Jones et al., 2024) are inconsistent with existing
wind-precipitation research. This study uses aggregate scores
while Martius et al. (2016) and Owen et al. (2021) consider
daily co-occurence. Aggregation is computed over the calen-
dar year rather than seasons like Hillier and Dixon (2020).
This study also links wind and precipitation to tracked cy-
clones while Martius et al. (2016) and Hillier and Dixon
(2020) use daily data.

It is of interest to see how well the frameworks capture
these correlations at different thresholds. Correlations calcu-
lated using these frameworks are shown in the panels be-
low: Fig. 2d—f (framework A), Fig. 2g—i (framework B),
and Fig. 2j-1 (framework C). All the frameworks perform
similarly well at capturing the positive correlation when the
thresholds are zero (Fig. 2d, g, and j). Framework A shows
a decrease in correlation at higher thresholds (Fig. 2e and f),
but is unable to produce any of the negative correlations seen
in the sample correlations (Fig. 2b and c). Framework B
shows greater decrease at higher threshold (Fig. 2h and 1)
with some small negative correlations appearing but still
not as negative as in the sample correlations. Framework C
shows a stronger decrease (Fig. 2k and 1) with much more ex-
tensive negative correlations over land at the highest thresh-
old. The spatial structure of negative correlation over the
northwest of mainland Europe is broadly reproduced at the
highest thresholds (Fig. 2k). In summary, Framework C is
the only framework able to capture the correlations at each
of the thresholds.

3.3 Analysis of components in Framework C

The correlation in Eq. (5) is the sum of 3 components each
having the same denominator d. The terms can be interpreted
as follows:

— Within-year dependency: 6, the ‘“average” of yearly
wind-precipitation correlation, computed between haz-
ard pairs occurring from the same storm.

— Event dispersion: ¢ Jyy, the positive dependence in-
duced in Sy and Sy by their positive relationships with
counts. Larger dispersion (¢) in annual counts leads to
a greater effect.

https://doi.org/10.5194/nhess-26-775-2026

— Interannual dependency: AKxy, the relationship be-
tween yearly mean values of wind and precipitation,
scaled by the mean number of events per year (1).

Figure 3 shows the decomposition of the correlation p for
framework C. The event dispersion component is positive at
the lowest threshold but decreases towards zero for higher
thresholds (Fig. 3g—i). It is the main contributor to p at low
thresholds as can be seen in the similarity between panels (g)
and (a) in Fig. 3. The within-year dependency component is
also positive at the lowest threshold (Fig. 3d), but decreases
to negative over Europe at the highest threshold (Fig. 3f). The
interannual dependency component follows a similar pattern
but with a stronger decrease to more negative values at high
values of threshold (Fig. 3j—1). The interannual dependency
component is the main contributor to p at high thresholds
as can be seen in the similarity between panels (1) and (1) in
Fig. 3.

For more detail on how each of the components varies with
threshold, Fig. 4 shows the components versus threshold for a
region covering France (red box Fig. 5b). The threshold is set
to the same value for both wind and precipitation. For each
storm, the SI for the region is calculated by summing the SI
from all land and sea grid points in [4.75° W-8.5°E, 42.25-
51.75°N]. For a given storm most gridpoint SIs within the
region are zero, being > 5° from the storm track or below the
threshold. The number of storms is calculated for the entire
region by counting the number of events when SI is positive
at one or more of the grid points. Correlation, p, decreases
with increasing threshold and goes negative above 18 ms™!
and 18 mm (red line Fig. 4). This behaviour is generally well
captured by the framework (blue dashed line) which mostly
falls within the 95 % confidence interval (pink shaded area).
The positive event dispersion component (solid thin line) is
largely compensated at all thresholds by the negative within-
year dependency component (thin dashed line). This results
in the framework correlation closely following the interan-
nual dependency component (thin dotted line).

When aggregated over this region, the within-year depen-
dency component is more negative than it’s equivalent val-
ues at gridpoint scale. The large region is windier in its north
west due to the Atlantic storm track, but wetter in the south
east due to Mediterranean systems. As such the aggregated
SIs tend to be only large in one hazard, giving a larger nega-
tive within-year dependency component.

3.4 A potential driver: storm transit duration

Framework C introduced latent variable Z that was consid-
ered to be an interannual modulator of wind severity X and
precipitation severity Y. It is of interest to speculate as to
what this driver Z might be. One obvious candidate is how
fast storms propagate past each grid point location (Hillier
and Dixon, 2020; Rhodes, 2017). For a constant precipitation
rate, slower moving systems will have more time to precipi-
tate at a fixed location and so will lead to larger precipitation
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ux=0ms1, uy=0mm

ux=10ms= 1, uy=10mm
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Figure 2. Sample correlation between Sy and Sy (a—c) and estimates of the correlation from framework A (d-f), framework B (g-i), and

framework C (j-1). Columns represent different threshold combinations for (u y, uy): no thresholds (0 m s7Lo mm) (a,d, g, j), 10ms™",

1

10 mm) (b, e, h, k) and high thresholds (20 m s~1,20 mm) (c, f, i, 1). The statistical significance of sample correlation is shown in Fig. B3.

totals. Hillier and Dixon (2020) first proposed that a weaker
jet stream is conducive to precipitation-only extremes. Man-
ning et al. (2024) also concluded slow moving windstorms
and a weaker jet stream are favourable for precipitation-only
extremes. One might also expect slower storms to be ones
that do not have the strongest local wind speeds. Indeed, such
behaviour can be seen, for example, in the values of X; and
Y; shown for France in Fig. 5a. Grid point events with to-
tal rainfall exceeding 100 mm have long durations exceed-
ing 40 h, whereas events with extreme wind speeds exceed-
ing 37 ms~! have much shorter durations, typically less than
20h. Storm duration here is defined as the number of hours
a storm track is within 5° of the individual grid point. Fur-
thermore, the longest durations (slowest propagation speeds)
occur at lower intermediate wind speeds of 5-30ms~! in
agreement with Hillier and Dixon (2020).

In addition to duration, the previous path of the storm
affects moisture availability. Greater poleward propagation
speed can increase precipitation rates (Sinclair and Dacre,
2019). Figure 5b and ¢ show tracks of the 42 storms that led

Nat. Hazards Earth Syst. Sci., 26, 775-789, 2026

to extreme wind speeds > 37 m s~! and the tracks of the 57
storms that led to total precipitation > 100 mm in France. The
extreme wind speed storms tend to have more zonal tracks
coming across the Atlantic, whereas the extreme precipita-
tion storms are more meridional with many coming from the
south over the Mediterranean. Hence, the duration of storms
leading to extremes is also related to where the storms orig-
inate — longer duration ones appear to originate more from
the south where there is potentially more moisture avail-
ability over the warm Mediterranean Sea. Hillier and Dixon
(2020) found a similar contrast when considering wind di-
rection on windy and wet locations days. Wind directions at
a site on Scotland’s east coast were south-westerly on days
with extreme wind but north-easterly on days with extreme
rain. Hillier et al. (2025) linked this to the location of the jet
stream, windier extremes for the UK occurred when the jet
was more northerly position. Equivalently high river flows in
the UK were associated with a more southerly jet.

This difference may also occur due to the location of wind
and precipitation extremes within storm systems. Manning et

https://doi.org/10.5194/nhess-26-775-2026
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ux=0ms™ 1, uy=0mm ux=10ms!, uy=10mm ux=20ms=}, uy=20mm

Framework

o/d

dJxy/Vd

Value

AKsy/Vd

Figure 3. Decomposition of the correlation for framework C: the framework correlation p (a—c), ¢pJxy/~/d (d=F), 6//d (g-i),
AKxy/ Jd (j-i). Columns represent different threshold combinations for (uyx,uy): no thresholds (Om s—1 Omm) (a, d, g, j), (10m s—1

10 mm) (b, e, h, k) and high thresholds (20 m s—1, 20 mm) (¢, f, i, 1).

al. (2024) noticed the track density of precipitation extremes
was further south for a box covering the UK and Ireland.
This was attributed to wind extremes occurring to the south
of the cyclone centre while precipitation extremes occur to
the north. When considering a cyclone-centric perspective,
Owen (2022) found extremes were similarly located. Rela-
tive to a cyclone’s centre, wind extremes occur to the south
west while precipitation extremes wrap around the east side,
with greatest density directly to the east.

By considering annual means of storm duration for each
grid point, it is possible to investigate whether duration
might be able to account for the interannual dependency be-
tween wind and precipitation. Figure 6 shows the correla-
tions between annual mean storm duration D = Sp/N and
annual mean intensities, X = Sy /N and Y= Sy/N, at dif-
ferent thresholds. Annual mean duration has a mostly nega-
tive correlation with annual mean wind intensity especially
over European land regions (Fig. 6a—c), whereas it has a spa-
tially more uniform positive correlation with precipitation in-
tensity (Fig. 6d—f). The magnitudes of these correlations in-

https://doi.org/10.5194/nhess-26-775-2026

crease over Europe for increasing threshold, which helps to
account for why a negative correlation intensifies in the cor-
relation between annual mean wind and precipitation inten-
sities (Fig. 6g—i).

4 Conclusions

This study has explored collective risk frameworks to model
correlation between aggregate severities that occur from mul-
tivariate compound events. It has been found that to repro-
duce the correlation in the wind and precipitation ASIs, it
is necessary to include simultaneous correlation between the
hazard variables and interannual modulation of the mean
hazard variables. Of the three introduced frameworks, only
framework C was able to quantitatively capture the correla-
tions across Europe and the North Atlantic at different sever-
ity thresholds, including the higher thresholds where nega-
tive correlations emerge. Framework C (and the other frame-
works) assumed that the hazard variables are independent

Nat. Hazards Earth Syst. Sci., 26, 775-789, 2026
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Figure 5. (a) Heatscatter plot of wind gust and precipitation values for France region. Boxes are coloured by mean storm duration. Red
dashed lines depict thresholds of 37 m s~1 and 100 mm respectively. (b) Tracks for storms where a grid point had wind speed values above
37ms™ !, (¢) Tracks for storms where a grid point had precipitation values above 100 mm. Tracks are coloured by mean storm duration with
the same scale as panel (a).

of the counts and so it does not appear necessary to in- Local exposure does not always result in local damage,
clude severity dependence on frequency as was considered for example, heavy precipitation at one location may
in Hunter et al. (2015) and Cohen (2019). We hypothesise cause flooding much further downstream (Viglione and
that one of the possible drivers for the interannual modula- Rogger, 2015);

tion is the transit time spent by a storm near to a grid point:

total precipitation increases for slower transits, whereas gust — the SIs used here are highly idealised loss functions — a
speeds tend to increase. strict cut-off is an unrealistic representation of vulnera-

This study has several caveats such as: bility and therefore damage (Kaas et al., 2008);

— this study has, for simplicity, only considered correla- — absolute thresholds have been used across the whole do-
tion of ASI that are co-located at the same grid point, main. However, similar results are obtained when using
whereas the hazards can be displaced from one another relative thresholds defined by the local quantiles of the
but still lead to co-occuring losses for an insured region. hazard variables (not shown);
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Figure 6. Sample correlations between mean yearly duration and mean yearly wind speed (a—c), mean yearly duration and mean yearly
precipitation (d—f), mean yearly wind speed and mean yearly precipitation (g—i). Columns represent different threshold combinations for
(ux,uy): no thresholds (0 m s7ho mm) (a,d, g), (10m s~1 10 mm) (b, e, h) and high thresholds (20 m s~1, 20 mm) (c, f, i). The statistical

significance of sample correlation is shown in Fig. B4.

— the precipitation SI is a proxy for flood but does not
contain any information about soil moisture (De Luca et
al., 2017) or hydrology that are also required for flood
prediction;

— this study has chosen to use the annual aggregation pe-
riod typical of insurance contracts. Use of other periods,
such as individual winters, gives broadly similar results
(Fig. B2 in the Appendix);

— the data only spans a relatively short period of 40 years.
However, examination of reanalyses going back to 1940
show broadly similar behaviour (not shown due to data
quality being poorer in the pre-satellite period);

— ERADS precipitation is estimated rather than being ob-
served (Hersbach et al., 2020) meaning inaccuracies can
exist (Rhodes et al., 2014). Despite reasonable represen-
tation of extratropical precipitation (Lavers et al., 2022),
ERAS is not as accurate as station measurements;

— alternative storm tracking algorithms could have been
used (see Bourdin et al., 2022) as well as other meth-
ods of defining footprints e.g. Vitolo et al. (2009) and
Lockwood et al. (2022);

— Pearson’s correlation is used as a measure of depen-
dency, this measure can be influenced by outlier events.

https://doi.org/10.5194/nhess-26-775-2026

Furthermore, zero correlation does not always imply in-
dependence (Embrechts et al., 2002).

This research could be extended in several ways. It would
be of interest to test the effect of relaxing some of the
caveats such as the co-located hazard assumption. The frame-
work could also be extended to more than two hazards,
which would allow it to be used to investigate compound
wind/flood/storm surge losses. Finally, the framework could
be applied to output from climate change simulations to un-
derstand better how correlation between losses might change
in the future. It would also be of interest to better understand
what climatic conditions affect storm transit duration in dif-
ferent regions. The speed of the westerly jet and the North
Atlantic Oscillation are likely to play key roles, but there may
be other factors of interest.

Appendix A: Correlation between aggregated losses

Since frameworks A and B are special cases of framework
C, it suffices to derive the correlation for framework C. Us-
ing the Law of Total Covariance and the independence of the
hazard variables on counts N allows the covariance to be de-
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composed as follows:

Cov(Sy, Sy)

=Ez[Cov(Sx|Z, Sy|Z)] + Covz(E[Sx|Z]. E[Sy|Z])

=Ez[E[NI1Cov(X;|Z,Y;|Z) 4 Var(N)E[X;| ZIE[Y,|Z]]
+ Covz(E[N]E[X;|Z], E[N]E[Y;|Z])

=E[N]Ez[Cov(X;|Z, Y;|Z)] + Var(N)Ez[E[X;| ZIE[Y;| Z]]
+E[NT*Covz (E[X;|Z], E[Y,| Z]).

Using the Law of Total Variance, the variance can be decom-
posed as

Var(Sx)
= Ez[Var(Sx|Z)] + Varz (E[Sx|Z])

= Ez[E[N]Var(X;|Z) + Var(N)E[X;| Z1*]
+ Varz (E[N]E[X;|Z])

= E[NIEz[Var(X;|Z)] + Var(N)Ez[E[X;|Z]*]
+E[N]*Varz (E[X;|Z])

= E[N](Ez[Var(X;|2)] + ¢Ez[E[X;| Z]?]
+E[N]Varz(E[X;|Z])).

and a similar expression is obtained for Var(Sy). Therefore
the correlation between Sy and Sy can be written as

0= Cov(Sx. 5v) (Definition of correlation)
/Var(Sx)Var(Sy)
_ 0+ ¢Jxy +A1Kxy (A
VU +¢Jxx +2Kxx)(A+¢Jyy +AKyy)
where
5 = E[N] _ Var(N)
B » #= E[N]
o Ez[Cov(X;|Z,Yi|Z)]
\/EZ [Var(X;1Z)|Ez[Var(Y;|Z)]
Ez[E[X;|Z]E[Y;|Z]]
Jxy =
\/EZ [Var(X;|Z)|Ez[ Var(Y;|2)]
Covz (E[X;|Z],E[Y;|Z])
Kxy =

\/EZ [Var(X;|Z)]Ez[ Var(Y; |Z)]

The correlation for framework B is obtained by setting all
the K terms to zero and Jxy = JxJy, Jxx = Jf(, Jyy = J%
(because E[X;|Z] =E[X;] and E[Y;|Z] = E[Y;] are constants
and so no longer vary or co-vary). Framework A correlation
is obtained from that of framework B by simply setting the
event correlation 6 to zero.
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The parameters in the models are estimated by replacing
expectations by sample means:

T
A =E[N] — %ZN,:N
=1
1 &, A
Var(N) — (?ZNt)—(TZN,)

Ez[ELX;|ZIE[Y:|Z]] — —Z(SXZ/Nt)(SYt/Nt)
=1

1
Covz (E[X;|Z],E[Y;|Z]) — (; Z(SXI/Nt)(SYt/Nt))

() ren)

T
Ez[Cov(X;1Z,Y;12)] = ?; SXYt/Nt)*(SXt/Nt)(SYt/Nt)>
T

oo () ()

€
o= (G (52
(E) )

where t =1,2,...,T is the year and N;, Sx;, and SYt are
the counts and ASI for year ¢. Similarly Syy, = Zl 1 XiYi

and Sy x; = Zi:l X 12 Sample means of the quantities involv-
ing sums divided by N were only taken over the years when
N; > 0. Equivalent calculations were computed for E[Y] and
Var(Y).

Appendix B: Supplementary figures

Although fixed thresholds are used throughout this study,
the frameworks can be applied to SIs that use percentile
thresholds. Figure B1 shows the equivalent percentile val-
ues for wind gust and fixed precipitation threshold pairs
of (10ms~!, 10mm) and (20ms~—', 20mm). Percentiles
are calculated for each gridpoint as the proportion of wind
gust and precipitation values below the fixed threshold. The
10 mm threshold is more significant than the 10ms~! thresh-
old, as Fig. Blc has higher percentiles than Fig. Bla. Fig-
ure B1b shows how a 20ms~! wind gust threshold is at
least the 95th percentile for most land gridpoints. Figure B1d
shows 20 mm is at least the ~ 98th for most of Northern Eu-
rope.

Figure B2 shows framework performance ASIs are com-
puted over the extended winter (I October-31 March).
Storms with a genesis time within this period are included.
Statistically significant positive correlation occurs at low

https://doi.org/10.5194/nhess-26-775-2026
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Figure B2. Framework C estimate (a—c) of sample correlation (d—f) for ASIs calculated over the extended winter (1 October—31 March).

Sample correlation not significant at the 5 % level is shown by stippling.

thresholds (Fig. B2d) while negative values occur at high
thresholds (Fig. B2f). Framework C matches this decrease
well, although also overestimates negative correlation at the
highest threshold (as in Fig. 2I).

https://doi.org/10.5194/nhess-26-775-2026

Figure B3d—f shows the sample correlation in Fig. 2a—
¢ with stippling added for values not significant at the 5 %
level. The near-zero correlation is only significant for most
of the region at the lowest threshold. Figure B4 shows Fig. 6
with stippling added for values not significant at the 5 %
level. At the highest thresholds sample correlation is robust
over most of Europe.
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Correlation

Figure B3. Framework C performance and sample correlation between yearly ASIs. Panels (a)—(c) are the same as Fig. 2j-1. Panels (d)—(f)
are the same as Fig. 2a—c but sample correlation not significant at the 5 % level is shown by stippling.
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Figure B4. Correlation between mean gust SIs, mean precipitation SIs and mean duration. Same as Fig. 6 but sample correlation not

significant at the 5 % level is shown by stippling.
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