Articles | Volume 26, issue 1
https://doi.org/10.5194/nhess-26-187-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-26-187-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rockfall triggering and meteorological variables in the Dolomites (Italian Eastern Alps)
Francesca N. Bonometti
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences – DISAT, Università degli Studi di Milano-Bicocca, Milano, 20126, Italy
Giuseppe Dattola
Department of Earth and Environmental Sciences – DISAT, Università degli Studi di Milano-Bicocca, Milano, 20126, Italy
Paolo Frattini
Department of Earth and Environmental Sciences – DISAT, Università degli Studi di Milano-Bicocca, Milano, 20126, Italy
Giovanni B. Crosta
Department of Earth and Environmental Sciences – DISAT, Università degli Studi di Milano-Bicocca, Milano, 20126, Italy
Related authors
No articles found.
Micol Fumagalli, Alberto Previati, Paolo Frattini, and Giovanni B. Crosta
Nat. Hazards Earth Syst. Sci., 25, 4405–4422, https://doi.org/10.5194/nhess-25-4405-2025, https://doi.org/10.5194/nhess-25-4405-2025, 2025
Short summary
Short summary
Shallow landslides are mass movements of limited thickness, mainly triggered by extreme rainfalls, that can pose a serious risk to the population. This study uses statistical methods to analyse and simulate the relationship between shallow landslides and rainfalls, showing that in the studied area shallow landslides are modulated by rainfall but controlled by lithology. A new classification method considering the costs associated with a misclassification of the susceptibility is also proposed.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Cited articles
Adler, S., Chimani, B., Drechsel, S., Haslinger, K., Hiebl, J., Meyer, V., Resch, G., Rudolph, J., Vergeiner, J., Zingerle, C., Marigo, G., Fischer, A., and Seiser, B.: Il clima del Tirolo-Alto Adige-Bellunese. Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Ripartizione Protezione antincendi e civile – Provincia Autonoma di Bolzano, http://www.3pclim.eu/images/Il_clima_del_Tirolo-Alto_Adige-Bellunese.pdf (last access: 10 September 2024), 2015.
Allen, S. and Huggel, C.: Extremely warm temperatures as a potential cause of recent high mountain rockfall, Global and Planetary Change, 107, 59–69, 2013.
Bajni, G., Camera, C. A., and Apuani, T.: Deciphering meteorological influencing factors for Alpine rockfalls: a case study in Aosta Valley, Landslides, 18, 3279–3298, 2021.
Bassetti, M. and Borsato, A.: Evoluzione geomorfologica della Bassa Valle dell'Adige dall'Ultimo Massimo Glaciale: sintesi delle conoscenze e riferimenti ad aree limitrofe, Acta Geologica, 82, e42, https://www.researchgate.net/publication/255632538_Evoluzione_geomorfologica_della_Bassa_Valle_dell'Adige_dall'Ultimo_Massimo_Glaciale_sintesi_delle_conoscenze_e_riferimenti_ad_aree_limitrofe (last access: 14 January 2026), 2005.
Bayes, R. T.: Bayes' Theorem. An essay towards solving a problem in the doctrine of chances, Philosophical, 370–418, https://doi.org/10.1098/rstl.1763.0053, 1763.
Bengtsson, L., Semenov, V. A., and Johannessen, O. M.: The early twentieth-century warming in the Arctic – A possible mechanism, Journal of Climate, 17, 4045–4057, 2004.
Beniston, M.: Climatic change in mountain regions: a review of possible impacts, Climatic Change, 59, 5–31, 2003.
Beniston, M.: Mountain weather and climate: a general overview and a focus on climatic change in the Alps, Hydrobiologia, 562, 3–16, 2006.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, Journal of Geophysical Research: Earth Surface, 117, https://doi.org/10.1029/2012JF002367, 2012.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012.
Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., and Schöner, W.: Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series, International Journal of Climatology: A Journal of the Royal Meteorological Society, 21, 1779–1801, 2001.
Bosellini, A., Gianolla, P., and Stefani, M.: Geology of the Dolomites, Episodes Journal of International Geoscience, 26, 181–185, 2003.
Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Auer, I., Bohm, R., and Schoner, W.: Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis, International Journal of Climatology, 29, 2197–2225, 2009.
Bunce, C. M., Cruden, D. M., and Morgenstern, N. R.: Assessment of the hazard from rock fall on a highway, Canadian Geotechnical Journal, 34, 344–356, 1997.
Ceppi, P., Scherrer, S. C., Fischer, A. M., and Appenzeller, C.: Revisiting Swiss temperature trends 1959–2008, International Journal of Climatology, 32, 203–213, 2012.
Christensen, J. H. and Christensen, O. B: Severe summertime flooding in Europe, Nature, 421, 805–806, 2003.
Corò, D., Galgaro, A., Fontana, A., and Carton, A.: A regional rockfall database: the Eastern Alps test site, Environmental Earth Sciences, 74, 1731–1742, 2015.
Collins, B. D. and Stock, G. M.: Rockfall triggering by cyclic thermal stressing of exfoliation fractures, Nature Geoscience, 9, 395–400, 2016.
Courtial-Manent, L., Ravanel, L., Mugnier, J. L., Deline, P., Lhosmot, A., Rabatel, A., Duvillard, P. A., and Batoux, P.: 18-years of high-Alpine rock wall monitoring using terrestrial laser scanning at the Tour Ronde east face, Mont-Blanc massif, Environmental Research Letters, 19, 034037, https://doi.org/10.1088/1748-9326/ad281d, 2024.
Crosta, G. B. and Agliardi, F.: Parametric evaluation of 3D dispersion of rockfall trajectories, Nat. Hazards Earth Syst. Sci., 4, 583–598, https://doi.org/10.5194/nhess-4-583-2004, 2004.
D'Amato, J., Hantz, D., Guerin, A., Jaboyedoff, M., Baillet, L., and Mariscal, A.: Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff, Nat. Hazards Earth Syst. Sci., 16, 719–735, https://doi.org/10.5194/nhess-16-719-2016, 2016.
Dal Piaz, G. V., Bistacchi, A., and Massironi, M.: Geological outline of the Alps, Episodes Journal of International Geoscience, 26, 175–180, 2003.
Davies, M. C., Hamza, O., and Harris, C.: The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities, Permafrost and Periglacial Processes, 12, 137–144, 2001.
Delonca, A., Gunzburger, Y., and Verdel, T.: Statistical correlation between meteorological and rockfall databases, Nat. Hazards Earth Syst. Sci., 14, 1953–1964, https://doi.org/10.5194/nhess-14-1953-2014, 2014.
Desiato, F., Lena, F., Baffo, F., Suatoni, B., and Toreti, A.: Indicatori del clima in Italia. Ecologia Agraria, U. C., & Romagna, A. E. APAT, Roma, https://scia.isprambiente.it/wp-content/uploads/2024/03/Indicatori-del-clima-in-Italia.pdf (last access: 16 June 2024), 2005.
Desiato, F., Fioravanti, G., Fraschetti, P., Perconti, W., and Toreti, A.: Climate indicators for Italy: calculation and dissemination, Adv. Sci. Res., 6, 147–150, 2011.
Doglioni, C.: Tectonics of the Dolomites (southern Alps, northern Italy), Journal of Structural Geology, 9, 181–193, 1987.
Douglas, G. R.: Magnitude frequency study of rockfall in Co. Antrim, N. Ireland, Earth Surface Processes, 5, 123–129, 1980.
Draebing, D. and Krautblatter, M.: The efficacy of frost weather processes in alpine rockwalls, Geophysical Research Letters, 46, 6516–6524, 2019.
Đurin, B., Kranjčić, N., Kanga, S., Singh, S. K., Sakač, N., Pham, Q. B., Hunt, J., Dogančić, D., and Di Nunno, F.: Application of Rescaled Adjusted Partial Sums (RAPS) method in hydrology – an overview, Advances in Civil and Architectural Engineering, 13, 58–72, 2022.
Fei, L., Jaboyedoff, M., Derron, M. H., Choanji, T., and Sun, C.: Multiscale observations of diurnal thermal effects on rock failure and crack dynamics in soft marl layers (La Cornalle molasse rock wall, Switzerland), Engineering Geology, 108159, https://doi.org/10.1016/j.enggeo.2025.108159, 2025.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Frattini, P., Crosta, G., Carrara, A., and Agliardi, F.: Assessment of rockfall susceptibility by integrating statistical and physically-based approaches, Geomorphology, 94, 419–437, 2008.
Frayssines, M. and Hantz, D.: Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges (French Alps), Engineering Geology, 86, 256–270, 2006.
Garbrecht, J. and Fernandez, G. P.: Visualization of trends and fluctuations in climatic records 1, JAWRA Journal of the American Water Resources Association, 30, 297–306, 1994.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Science Reviews, 162, 227–252, 2016.
Gasc-Barbier, M., Merrien-Soukatchoff, V., Krzewinski, V., Azemard, P., and Genois, J. L.: Assessment of the influence of natural thermal cycles on dolomitic limestone rock columns: A 10-year monitoring study, Geomorphology, 464, 109353, https://doi.org/10.1016/j.geomorph.2024.109353, 2024.
Gelman, A.: Objections to Bayesian statistics, Bayesian Anali., 3, 445–449, https://doi.org/10.1214/08-BA318, 2008.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in the European Alps – A review, Science of the total Environment, 493, 1138–1151, 2014.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, Journal of Geophysical Research: Earth Surface, 112, https://doi.org/10.1029/2006JF000547, 2007.
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009.
Huggel, C., Allen, S., Deline, P., Fischer, L., Noetzli, J., and Ravanel, L.: Ice thawing, mountains falling – are alpine rock slope failures increasing?, Geology Today, 28, 98–104, 2012.
Krautblatter, M. and Moser, M.: A nonlinear model coupling rockfall and rainfall intensity based on a four year measurement in a high Alpine rock wall (Reintal, German Alps), Nat. Hazards Earth Syst. Sci., 9, 1425–1432, https://doi.org/10.5194/nhess-9-1425-2009, 2009.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space, Earth Surf. Process. Landf., 38, 876–887, 2013.
Letortu, P.: Le recul des falaises crayeuses haut-normandes et les inondations par la mer en Manche centrale et orientale: de la quantification de l'aléa à la caractérisation des risques induits, PhD thesis, Université de Caen, https://theses.hal.science/tel-01018719 (last access: 16 December 2024), 2013.
Luethi, R., Gruber, S., and Ravanel, L.: Modelling transient ground surface temperatures of past rockfall events: towards a better understanding of failure mechanisms in changing periglacial environments, Geogr. Ann. Ser. A Phys. Geogr., 97, 753–767, 2015.
Macciotta, R., Martin, C. D., Edwards, T., Cruden, D. M., and Keegan, T. Quantifying weather conditions for rock fall hazard management, Georisk: Assessment and management of risk for Engineered Systems and Geohazards, 9, 171–186, 2015.
Matsuoka, N. and Sakai, H.: Rockfall activity from an alpine cliff during thawing periods, Geomorphology, 28, 309–328, 1999.
Nigrelli, G., Fratianni, S., Zampollo, A., Turconi, L., and Chiarle, M.: The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps, Theoretical and Applied Climatology, 131, 1479–1491, 2018.
Nigrelli, G. and Chiarle, M.: 1991–2020 climate normal in the European Alps: focus on high-elevation environments, Journal of Mountain Science, 20, 2149–2163, 2023.
Nigrelli, G., Paranunzio, R., Turconi, L., Luino, F., Mortara, G., Guerini, M., Giardino, M., and Chiarle, M.: First national inventory of high-elevation mass movements in the Italian Alps, Computers & Geosciences, 184, 105520, https://doi.org/10.1016/j.cageo.2024.105520, 2024.
Nissen, K. M., Rupp, S., Kreuzer, T. M., Guse, B., Damm, B., and Ulbrich, U.: Quantification of meteorological conditions for rockfall triggers in Germany, Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022, 2022.
Noetzli, J., Hoelzle, M., and Haeberli, W.: Mountain permafrost and recent Alpine rock-fall events: a GIS-based approach to determine critical factors. in: Proceedings of the 8th International Conference on Permafrost, Vol. 2, Zürich: Swets & Zeitlinger Lisse, 827–832, https://doi.org/10.5167/uzh-33321, 2003.
Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Padulano, R., Rianna, G., and Santini, M.: Datasets and approaches for the estimation of rainfall erosivity over Italy: A comprehensive comparison study and a new method, Journal of Hydrology: Regional Studies, 34, 100788, https://doi.org/10.1016/j.ejrh.2021.100788, 2021.
Palau, R. M., Gisnås, K. G., Solheim, A., and Gilbert, G. L.: Regional-scale analysis of weather-related rockfall triggering mechanisms in Norway, and its sensitivity to climate change, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2024-46, 2024.
Palladino, M. R., Viero, A., Turconi, L., Brunetti, M. T., Peruccacci, S., Melillo, M., Luino, F., Deganutti, A. M., and Guzzetti, F.: Rainfall thresholds for the activation of shallow landslides in the Italian Alps: the role of environmental conditioning factors, Geomorphology, 303, 53–67, 2018.
Paranunzio, R. and Marra, F.: Open gridded climate datasets can help investigating the relation between meteorological anomalies and geomorphic hazards in mountainous areas, Global and Planetary Change, 232, 104328, https://doi.org/10.1016/j.gloplacha.2023.104328, 2024.
Paranunzio, R., Laio, F., Nigrelli, G., and Chiarle, M.: A method to reveal climatic variables triggering slope failures at high elevation, Natural Hazards, 76, 1039–1061, 2015.
Paranunzio, R., Laio, F., Chiarle, M., Nigrelli, G., and Guzzetti, F.: Climate anomalies associated with the occurrence of rockfalls at high-elevation in the Italian Alps, Nat. Hazards Earth Syst. Sci., 16, 2085–2106, https://doi.org/10.5194/nhess-16-2085-2016, 2016.
Paranunzio, R., Chiarle, M., Laio, F., Nigrelli, G., Turconi, L., and Luino, F.: New insights in the relation between climate and slope failures at high-elevation sites, Theoretical and Applied Climatology, 137, 1765–1784, 2019.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., and Yang, D. Q.: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Chang., 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015.
Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., and Adler, C.: Climate changes and their elevational patterns in the mountains of the world, Reviews of Geophysics, 60, e2020RG000730, https://doi.org/10.1029/2020RG000730, 2022.
Perret, S., Stoffel, M., and Kienholz, H.: Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – a dendrogeomorphological case study, Geomorphology, 74, 219–231, 2006.
Ravanel, L., Magnin, F., and Deline, P.: Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif, Sci. Total Environ., 609, 132–143, 2017.
Rupp, S. and Damm, B.: A national rockfall dataset as a tool for analysing the spatial and temporal rockfall occurrence in Germany, Earth Surface Processes and Landforms, 45, 1528–1538, 2020.
Salzmann, N., Nötzli, J., Hauck, C., Gruber, S., Hoelzle, M., and Haeberli, W.: Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results, Journal of Geophysical Research: Earth Surface, 112, https://doi.org/10.1029/2006JF000527, 2007.
Sandersen, F., Bakkehøi, S., Hestnes, E., and Lied, K.: The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability, Publikasjon-Norges Geotekniske Institutt, 201, 97–114, 1997.
Sass, O. and Oberlechner, M.: Is climate change causing increased rockfall frequency in Austria?, Nat. Hazards Earth Syst. Sci., 12, 3209–3216, https://doi.org/10.5194/nhess-12-3209-2012, 2012.
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, 427, 332–336, 2004.
Schmidli, J. and Frei, C.: Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century, International Journal of Climatology: A Journal of the Royal Meteorological Society, 25, 753–771, 2005.
Stoffel, M. and Huggel, C.: Effects of climate change on mass movements in mountain environments, Progress in Physical Geography, 36, 421–439, 2012.
Stoffel, M., Trappmann, D. G., Coullie, M. I., Ballesteros Cánovas, J. A., and Corona, C.: Rockfall from an increasingly unstable mountain slope driven by climate warming, Nature Geoscience, 17, 249–254, 2024.
Stull, R. B.: Meteorology for scientists and engineers: a technical companion book with Ahrens' Meteorology Today, 2nd edn., Brooks/Cole Thomson Learning, Pacific Grove, ISBN 9780534372149, 2000.
Trigila, A., Iadanza, C., and Guerrieri, L.: The IFFI project (Italian landslide inventory): Methodology and results, Guidelines for mapping areas at risk of landslides in Europe, 23, 15, https://doi.org/10.2788/63147, 2007.
Valagussa, A., Frattini, P., and Crosta, G. B.: Earthquake-induced rockfall hazard zoning, Engineering Geology, 182, 213–225, 2014.
Varnes, D. J.: Slope movement types and processes, Special Report, 176, 11–33, https://onlinepubs.trb.org/Onlinepubs/sr/sr176/176-002.pdf (last access: 4 May 2024), 1978.
Viani, C., Chiarle, M., Paranunzio, R., Merlone, A., Musacchio, C., Coppa, G., and Nigrelli, G.: An integrated approach to investigate climate-driven rockfall occurence in high alpine slope: the Bessanese glacial basin, Western Italian Alps, Journal of Mountain Sience, 17, https://doi.org/10.1007/s11629-020-6216-y, 2020.
Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., and Jaboyedoff, M.: Rockfall characterisation and structural protection – a review, Nat. Hazards Earth Syst. Sci., 11, 2617–2651, https://doi.org/10.5194/nhess-11-2617-2011, 2011.
Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W., and Zhang, B.: Changing lengths of the four seasons by global warming, Geophysical Research Letters, 48, e2020GL091753.7-2651, https://doi.org/10.1029/2020GL091753, 2021.
Widmann, M. and Schär, C.: A principal component and long-term trend analysis of daily precipitation in Switzerland, International Journal of Climatology: A Journal of the Royal Meteorological Society, 17, 1333–1356, 1997.
World Meteorological Organization: World Meteorological Organization, 10th edn., Calcolation of monthly and annual 30 year standard normals, Washington, D.C., USA, https://posmet.ufv.br/wp-content/uploads/2017/04/MET-481-WMO-341.pdf (last access: 10 September 2024), 1989.
Zhao, T., Crosta, G. B., Utili, S., and De Blasio, F. V.: Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses, J. Geophys. Res. Earth Surf., 122, 678–695, 2017.
Short summary
Alpine areas are experiencing substantial changes in temperature and rainfall, both critical triggers for rockfall events. This article proposes a novel approach based on the frequency of meteorological variables to comprehend implication between climatic scenarios and rockfall events in the Dolomites. Several climate variables were considered and the outcomes reveal warming trend, reduction in icing and freeze-thaw cycles leading to an earlier summer onset and a delayed winter end.
Alpine areas are experiencing substantial changes in temperature and rainfall, both critical...
Altmetrics
Final-revised paper
Preprint