Articles | Volume 26, issue 1
https://doi.org/10.5194/nhess-26-103-2026
https://doi.org/10.5194/nhess-26-103-2026
Research article
 | 
13 Jan 2026
Research article |  | 13 Jan 2026

FLEMOflash – Flood Loss Estimation MOdels for companies and households affected by flash floods

Apoorva Singh, Ravikumar Guntu, Nivedita Sairam, Kasra Rafiezadeh Shahi, Anna Buch, Melanie Fischer, Chandrika Thulaseedharan Dhanya, and Heidi Kreibich

Related authors

Deciphering the drivers of direct and indirect damages to companies from an unprecedented flood event: A data-driven, multivariate probabilistic approach
Ravikumar Guntu, Guilherme Samprogna Mohor, Annegret H. Thieken, Meike Müller, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 26, 163–186, https://doi.org/10.5194/nhess-26-163-2026,https://doi.org/10.5194/nhess-26-163-2026, 2026
Short summary
Invited perspectives: Redefining disaster risk – the convergence of natural hazards and health crises
Nivedita Sairam and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 26, 119–130, https://doi.org/10.5194/nhess-26-119-2026,https://doi.org/10.5194/nhess-26-119-2026, 2026
Short summary
Building-level exposed asset value modelling for Germany
Aaron Buhrmann, Cecilia I. Nievas, Nivedita Sairam, James E. Daniell, Heidi Kreibich, and Seth Bryant
EGUsphere, https://doi.org/10.5194/egusphere-2025-5172,https://doi.org/10.5194/egusphere-2025-5172, 2025
Short summary
Flood damage functions for rice: Synthesizing evidence and building data-driven models
Alina Bill-Weilandt, Nivedita Sairam, Dennis Wagenaar, Kasra Rafiezadeh Shahi, Heidi Kreibich, Perrine Hamel, and David Lallemant
EGUsphere, https://doi.org/10.5194/egusphere-2025-3706,https://doi.org/10.5194/egusphere-2025-3706, 2025
Short summary
BN-FLEMOΔ: a Bayesian-network-based flood loss estimation model for adaptation planning in Ho Chi Minh City, Vietnam
Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 2845–2861, https://doi.org/10.5194/nhess-25-2845-2025,https://doi.org/10.5194/nhess-25-2845-2025, 2025
Short summary

Cited articles

Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019. 
Barendrecht, M. H., Sairam, N., Cumiskey, L., Metin, A. D., Holz, F., Priest, S. J., and Kreibich, H.: Needed: A systems approach to improve flood risk mitigation through private precautionary measures, Water Secur., 11, 100080, https://doi.org/10.1016/j.wasec.2020.100080, 2020. 
Berghäuser, L., Bubeck, P., Hudson, P., and Thieken, A. H.: Identifying and characterising individual flood precautionary behaviour dynamics from panel data, Int. J. Disast. Risk Reduct., 94, 103835, https://doi.org/10.1016/j.ijdrr.2023.103835, 2023. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M., Heistermann, M., Köhn-Reich, L., López-Tarazón, J. A., Moran, T., Ozturk, U., Reinhardt-Imjela, C., and Wendi, D.: Forensic hydro-meteorological analysis of an extreme flash flood: The 2016-05-29 event in Braunsbach, SW Germany, Sci. Total Environ., 630, 977–991, https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018. 
Download
Short summary
We develop novel probabilistic models to estimate flash flood losses of companies and households in Germany. Using multiple flash flood events, we identify key drivers of flash floods loss. FLEMO flash model reveals that for companies, the effectiveness of emergency measures is crucial in mitigating losses. In contrast, household benefit more from knowledge about emergency action, suggesting adaptation strategies can effectively reduce flash flood losses.
Share
Altmetrics
Final-revised paper
Preprint