Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-879-2025
https://doi.org/10.5194/nhess-25-879-2025
Research article
 | 
26 Feb 2025
Research article |  | 26 Feb 2025

Content analysis of multi-annual time series of flood-related Twitter (X) data

Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola

Related authors

Assessing effects of nature-based and other municipal adaptation measures on insured heavy rain damages
Vylon Ooms, Thijs Endendijk, Jeroen C. J. H. Aerts, W. J. Wouter Botzen, and Peter Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1882,https://doi.org/10.5194/egusphere-2025-1882, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025,https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Deciphering the drivers of direct and indirect damages to companies from an unprecedented flood event: A data-driven, multivariate probabilistic approach
Ravi Kumar Guntu, Guilherme Samprogna Mohor, Annegret H. Thieken, Meike Müller, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2025-1715,https://doi.org/10.5194/egusphere-2025-1715, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
FLEMOflash – Flood Loss Estimation MOdels for companies and households affected by flash floods
Apoorva Singh, Ravi Kumar Guntu, Nivedita Sairam, Kasra Rafiezadeh Shahi, Anna Buch, Melanie Fischer, Chandrika Thulaseedharan Dhanya, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2025-1512,https://doi.org/10.5194/egusphere-2025-1512, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Comparing Flood Forecasting and Early Warning Systems in Transboundary River Basins
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828,https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025,https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025,https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025,https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025,https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Flood exposure of environmental assets
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025,https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary

Cited articles

Allaoui, M., Kherfi, M. L., and Cheriet, A.: Considerably improving clustering algorithms using UMAP dimensionality reduction technique: A comparative study, International conference on image and signal processing, 317–325 pp., https://doi.org/10.48550/arXiv.1810.04805, 2020. a
Anhalt, M., Bindick, S., and Meyer, S.: Das Juli-Hochwasser 2017 im südlichen Niedersachsen, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, https://www.nlwkn.niedersachsen.de/download/124949 (last access: 21 February 2025), 2017. a, b, c
Aubert, A. H., Tavenard, R., Emonet, R., de Lavenne, A., Malinowski, S., Guyet, T., Quiniou, R., Odobez, J.-M., Merot, P., and Gascuel-Odoux, C.: Clustering flood events from water quality time series using Latent Dirichlet Allocation model, Water Resour. Res., 49, 8187–8199, https://doi.org/10.1002/2013wr014086, 2013. a
Baldassarre, G. D., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., and Blöschl, G.: Debates-Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes, Water Resour. Res., 51, 4770–4781, https://doi.org/10.1002/2014wr016416, 2015. a
Barker, J. and Macleod, C.: Development of a national-scale real-time Twitter data mining pipeline for social geodata on the potential impacts of flooding on communities, Environ. Modell. Softw., 115, 213–227, https://doi.org/10.1016/j.envsoft.2018.11.013, 2019. a, b
Download
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Share
Altmetrics
Final-revised paper
Preprint