Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-879-2025
https://doi.org/10.5194/nhess-25-879-2025
Research article
 | 
26 Feb 2025
Research article |  | 26 Feb 2025

Content analysis of multi-annual time series of flood-related Twitter (X) data

Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola

Related authors

BN-FLEMOΔ: a Bayesian-network-based flood loss estimation model for adaptation planning in Ho Chi Minh City, Vietnam
Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 2845–2861, https://doi.org/10.5194/nhess-25-2845-2025,https://doi.org/10.5194/nhess-25-2845-2025, 2025
Short summary
Modelling flood losses of micro-businesses in Ho Chi Minh City, Vietnam
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025,https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary
A multiscale modelling framework of coastal flooding events for global to local flood hazard assessments
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025,https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary
Assessing effects of nature-based and other municipal adaptation measures on insured heavy rain damages
Vylon Ooms, Thijs Endendijk, Jeroen C. J. H. Aerts, W. J. Wouter Botzen, and Peter Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1882,https://doi.org/10.5194/egusphere-2025-1882, 2025
Short summary
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025,https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary

Cited articles

Allaoui, M., Kherfi, M. L., and Cheriet, A.: Considerably improving clustering algorithms using UMAP dimensionality reduction technique: A comparative study, International conference on image and signal processing, 317–325 pp., https://doi.org/10.48550/arXiv.1810.04805, 2020. a
Anhalt, M., Bindick, S., and Meyer, S.: Das Juli-Hochwasser 2017 im südlichen Niedersachsen, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, https://www.nlwkn.niedersachsen.de/download/124949 (last access: 21 February 2025), 2017. a, b, c
Aubert, A. H., Tavenard, R., Emonet, R., de Lavenne, A., Malinowski, S., Guyet, T., Quiniou, R., Odobez, J.-M., Merot, P., and Gascuel-Odoux, C.: Clustering flood events from water quality time series using Latent Dirichlet Allocation model, Water Resour. Res., 49, 8187–8199, https://doi.org/10.1002/2013wr014086, 2013. a
Baldassarre, G. D., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., and Blöschl, G.: Debates-Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes, Water Resour. Res., 51, 4770–4781, https://doi.org/10.1002/2014wr016416, 2015. a
Barker, J. and Macleod, C.: Development of a national-scale real-time Twitter data mining pipeline for social geodata on the potential impacts of flooding on communities, Environ. Modell. Softw., 115, 213–227, https://doi.org/10.1016/j.envsoft.2018.11.013, 2019. a, b
Download
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Share
Altmetrics
Final-revised paper
Preprint