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Abstract. Social media can provide insights into natural haz-
ard events and people’s emergency responses. In this study,
we present a natural language processing analytic frame-
work to extract and categorize information from 43 287 tex-
tual Twitter (X) posts in German since 2014. We imple-
ment bidirectional encoder representations from transform-
ers in combination with unsupervised clustering techniques
(BERTopic) to automatically extract social media content,
addressing transferability issues that arise from commonly
used bag-of-words representations. We analyze the temporal
evolution of topic patterns, reflecting behaviors and percep-
tions of citizens before, during, and after flood events. Top-
ics related to low-impact riverine flooding contain descriptive
hazard-related content, while the focus shifts to catastrophic
impacts and responsibilities during high-impact events. Our
analytical framework enables the analysis of temporal dy-
namics of citizens’ behaviors and perceptions, which can fa-
cilitate lessons-learned analyses and improve risk communi-
cation and management.

1 Introduction

Flood frequency and the severity of their impacts are exacer-
bated by climate change and urbanization (Paprotny et al.,
2018). Developing new strategies to improve human re-
sponse to flooding is crucial to safeguard lives, protect prop-

erty, and enhance community resilience (Baldassarre et al.,
2015).

Human response to natural hazards improves with peo-
ple’s ability to communicate and share information and ex-
periences (Mileti, 1995; McCarthy et al., 2007; Giordano
et al., 2017; Hong et al., 2018; Sermet and Demir, 2018).
An emerging research topic is the role of social media in
the communication of disaster risk management (Sermet and
Demir, 2018; Zhang et al., 2019). Social media is used to
quickly distribute critical information; enable real-time com-
munication; aid in emergency response coordination; and
provide a platform for affected individuals to share first-
hand observations, insights, and personal experiences (Hous-
ton et al., 2015). Those mechanisms help enhance situational
awareness, support, and resilience (Houston et al., 2015). For
many years, individuals and organizations have engaged with
social media platforms alongside traditional means of com-
munication (Houston et al., 2015). This frequent usage of
social media provides new opportunities for risk assessment
and management (Fraternali et al., 2012; Lin et al., 2016).
Social media captures immediate personal experiences and
emotional impacts that might be overlooked in conventional
assessments but lacks the standardized methodology and de-
tailed technical measurements found in traditional sources.
Therefore, analyses of social media data should be seen not
in isolation but as complementary analyses that enhance tra-
ditional flood impact assessments by providing rapid situa-
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tional awareness and capturing the social dimensions of flood
impacts that might otherwise go undocumented.

Previous research has demonstrated correlations between
the number of tweets and hazard extent or impact (de Bruijn
et al., 2019; Barker and Macleod, 2019; Sodoge et al., 2024).
Furthermore, studies have developed methodologies to eval-
uate the content (topics) and function of social media posts
for specific hazard events (Kent and Capello, 2013; Cho
et al., 2013; Huang and Xiao, 2015; Spence et al., 2015;
Barker and Macleod, 2019; Donratanapat et al., 2020). Tem-
poral and spatial patterns of social media use during disas-
ters vary for different hazard types (Zhang et al., 2019). The
rise in tweets related to floods or hurricanes is shallower and
less abrupt than the spikes observed in relation to earthquakes
(Cresci et al., 2017). Several case studies have reported that
users located close to a natural hazard, for example, the
Horsethief Canyon Fire in 2012 (Kent and Capello, 2013)
or Hurricane Sandy (Huang and Xiao, 2015), are more likely
to post on social media than those at a distance. Huang and
Xiao (2015) evaluated Twitter posts during Hurricane Sandy
in 2012, showing that, before the hurricane, an increase in
sharing traditional news outlets that published warnings was
observed. During and after the event, the tweets focused on
reporting impact. Focusing on the 2011 earthquake in Japan,
Cho et al. (2013) assessed the content of tweets during a 40 h
period. They found that the tweets associated with emotional
content decreased from 23.0 % in the beginning to 5.3 % in
the aftermath of the earthquake. A study on Hurricane Sandy
in 2012 revealed that, as the event unfolded, the number of
tweets displaying emotional reactions increased, while those
providing information about the hurricane decreased (Spence
et al., 2015). Understanding the content of flood-related so-
cial media posts can be beneficial for risk management, but
challenges related to social media data reliability and retriev-
ing actionable information from social media (Gopal et al.,
2024), along with the lack of long-term evidence on the ef-
fectiveness of crisis communication on social media (Lin
et al., 2016), are still open. Furthermore, social media analy-
ses can provide a basis for validating flood risk models based
on reports and pictures of inundated areas and related im-
pacts (Fohringer et al., 2015; Rözer et al., 2021).

While the literature consistently shows that it is feasi-
ble to deduct information on disaster risk and management
from social media posts, the methodologies that are used
to extract the contents lack transferability and the under-
lying data are mostly event-specific (Zhang et al., 2019;
Gopal et al., 2024). Previously applied methodologies use
keyword-based pre-selection when retrieving content online
and apply methodologies that rely on manual labels or word
counts. Word meaning, word frequency, and specific key-
words change over time, making these approaches not adapt-
able to evolving language dynamics and new events. Addi-
tionally, the number of posts that can be analyzed is lim-
ited by either the availability of a labeled training dataset,
for example when using a supervised classification approach

such as logistic regression (Huang and Xiao, 2015), or the
feasibility of completely manual labeling (Cho et al., 2013;
Spence et al., 2015). Another common approach is latent
Dirichlet allocation (LDA) (Aubert et al., 2013; Han and
Wang, 2019; Wu et al., 2021). The hierarchical Dirichlet
process (HDP) extends LDA by automatically determining
the number of topics, enabling more flexible and scalable
topic discovery. Latent semantic analysis (LSA) utilizes sin-
gular value decomposition to reduce dimensionality and cap-
ture underlying relationships between terms and documents.
Non-negative matrix factorization (NNMF) decomposes the
term–document matrix into non-negative matrices (Churchill
and Singh, 2022). However, since language and word usage
can vary based on different events and places, these meth-
ods are not feasible for consistently studying multiple events.
Moreover, word-frequency-based methods do not account for
semantic relationships. Unsupervised approaches that do not
require labeling and context-dependent representation of the
input data are required to apply content modeling over longer
time spans automatically.

The recent development of open-source large-scale lan-
guage models that are pre-trained on a big corpus of text data
(see, for example, Reimers and Gurevych, 2019) provides an
opportunity to study multiple events; however, these models
are underrepresented in environmental modeling applications
(Konya and Nematzadeh, 2024). Transformer models outper-
formed other embedding-based content modeling approaches
that have extracted information from textual Twitter (X) data
on Covid-19 (Egger and Yu, 2022) and have been applied
to sentiment analysis on geolocated tweets from Hurricane
Ida (Tounsi et al., 2023). Based on these recent insights, the
objective of our research is to analyze the content of social
media posts to gain knowledge about citizens’ behavior and
their perceptions of floods over a long time period for multi-
ple heterogeneous flood events. In this study, we aim to de-
velop a transferable approach for the automatic extraction of
content from multi-annual social media posts and to derive
insights into the behaviors and perceptions of citizens before,
during, and after flood events.

2 Materials and methods

To track the content of flood-related textual Twitter (X) posts
before, during, and after several flood events in Germany
from 2014 to 2023, we employ a transformer-based model
as our topic detection method. First, the text data are em-
bedded into a high-dimensional vector space, leveraging the
context-dependent meaning of the words contained. This ap-
proach ensures applicability across various events and large
datasets in different languages. Next, utilizing the vectorized
representation of the text data, we perform clustering to ex-
tract topics. The resulting clusters serve as a meaningful rep-
resentation of the content in terms of topics within the data
(Grootendorst, 2022).
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Figure 1. Flowchart of the topic modeling analytic framework developed in this study.

We adapt the topic modeling pipeline proposed by Groo-
tendorst (2022) to analyze content and extract topics from
flood-related textual Twitter (X) posts. Figure 1 shows the
three main steps of our framework, which relies on textual
Twitter (X) data as input.

1. In a data preparation step, the input textual Twitter
(X) data are prepared by cleaning, for example remov-
ing URLs, and filtering out non-flood-related keywords
(step “Data preparation and filtering” in Fig. 1, Sect. 2.2,
and Sect. S1.2.1 in the Supplement).

2. The “Content modeling – extracting topics from tweets”
(Sect. 2.3) step is to extract a vectorized repre-
sentation of the text (embeddings) utilizing a sen-
tence transformer model (SBERT, version: paraphrase-
multilingual-MiniLM-L12-v2; Reimers and Gurevych,
2019). Here, the text data are transformed, capturing
the semantic meaning of sentences (middle box, step a,
in Fig. 1). This enables the model to understand the
contextual relationships between words and phrases. To
handle the high-dimensional nature of the embeddings,
we apply a dimensionality reduction technique: uni-
form manifold approximation and projection for dimen-
sion reduction (UMAP) (McInnes et al., 2018) (mid-
dle box, step b, in Fig. 1). This reduces the complex
data while preserving their essential structure and im-
proves the performance in the next steps. To this simpli-
fied representation, we apply the HDBSCAN clustering
algorithm to group similar embeddings together, form-
ing clusters that represent distinct topics within the data
(middle box, step c, in Fig. 1).

3. The last step (“Topic interpretation and inter-event
comparison”) facilitates the identification of common
themes and subjects discussed in the text. The clustered
topics are refined through post-processing, where unde-
tected noise and irrelevant information are further fil-
tered out (middle box, Fig. 1). This step ensures that
the extracted topics are meaningful and relevant to the

research objectives. For interpretation purposes, we ap-
ply a manual process to assign a meaningful category
to each cluster (right-hand box, Fig. 1). Here, we pro-
vide context for and interpretation of the identified top-
ics, aligning them with a state-of-the-art classification
framework (Houston et al., 2015).

Additional information on implementation and software is
available in Sect. S1.1.

2.1 Data collection

The specifics of data collection can be found in de Bruijn
et al. (2017, 2019). The following section describes the pro-
cessing performed by de Bruijn et al. (2017, 2019) followed
by an overview of the additional processing performed in
this study, which is described in detail in Sect. 2.2. The full
dataset was collected based on the former Twitter (X) API
in 11 languages (de Bruijn et al., 2019). The data collec-
tion and processing involve three main types of input data.
First, the authors of de Bruijn et al. (2017, 2019) used a
database of known geolocations, which contains over 4 mil-
lion geographical locations including cities, towns, villages,
and administrative divisions, along with alternative names
and translations. Second, they collected tweets and associ-
ated metadata in real time through the Twitter (X) streaming
API using flood-related keywords in 11 languages, gather-
ing 55.1 million tweets between July 2014 and July 2017.
The keywords included terms like “flood”, “flooding”, and
“inundation” and their equivalents in other languages. Third,
they utilized GIS shapefiles of global time zones and ana-
lyzed Wikipedia articles to obtain lists of the 1000 most com-
monly used words per language (excluding location names
with populations over 100 000). The data processing in-
volved matching tweet text to the gazetteer through toponym
recognition, scoring candidate locations based on spatial in-
dicators, grouping related tweets, and using a voting pro-
cess for toponym resolution. The system processes tweets in
24 h windows and maintains a toponym resolution table to
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enable real-time geoparsing of new incoming tweets. Rele-
vance to flooding was further ensured by classification and
pre-selection based on BERT.

Based on these data, we additionally performed a combi-
nation of keyword and geolocation searches during the data
pre-processing to obtain tweets related to flooding events
in our study areas. We analyze a sample of textual Twit-
ter (X) posts (n= 43 287) collected from 2014 to 2022.
Our sample includes all tweets posted during this time con-
taining one or more of the three flood-related keywords
(Hochwasser, Überflutung, Flut) written in German and geo-
tagged within Germany. The table for all keywords in other
languages is available at https://www.nature.com/articles/
s41597-019-0326-9/tables/2 (last access: 21 February 2025,
de Bruijn et al., 2019).

2.2 Data preparation and filtering

Before passing the data to our modeling pipeline, we per-
formed several cleaning, filtering, and pre-processing steps.
First, posts were eliminated based on 13 keywords that in-
dicate non-flood-related contexts. For example, any tweet
containing variations of the words “fachkräfte-flut” [flood
of skilled workers] was removed from the dataset. The key-
words were identified in the exploratory data analysis when
screening the texts. Second, we removed URLs and stop
words from the remaining tweets based on a dictionary of
German stop words. To avoid creating topics based on fre-
quently mentioned locations or users while keeping sentence
structure intact, we replaced mentions of locations of users
with general examples. We replaced locations with the Ger-
man word describing the NUTS 3 region associated with the
respective geotag. The geotags were linked to each tweet
available and extracted according to the method proposed
by de Bruijn et al. (2017). The removal was performed by
matching the identified words with the words within the
tweet. If a user was tagged specifically with their username
(@thisusernamewastagged), we replaced the username with
the German word for user (Benutzer). Details about how of-
ten Twitter users post are elaborated in Sect. S1.2.3. We re-
moved all other entities, such as names of people, places,
and organizations, automatically after named entity recogni-
tion was performed. In this pre-processing step, we tokenized
the tweets and performed part-of-speech tagging, where each
chunk of a sentence was labeled according to its grammatical
function. Those words labeled as entities were removed from
the text. The resulting pre-processed tweets were then passed
to the automated content model.

2.3 Content modeling

In the following we formulate and describe the methodolog-
ical details of the transformer embedding, clustering steps,
and class-based term frequency–inverse document frequency
(c-TF-IDF). The algorithm of bidirectional encoder represen-

tations from transformers in combination with unsupervised
clustering techniques (BERTopic) represents the fully auto-
mated core of our proposed framework. We interpret the au-
tomatically formulated topics in Figs. 3 and 4 and Sect. 3.2
and 3.3. Results in Figs. 3 and 4 are independent of the man-
ual classification that follows in the results of Sect. 3.4 and
Fig. 5.

(a) SBERT

We process the tweets with a pre-trained transformer
model (SBERT, version: paraphrase-multilingual-MiniLM-
L12-v2), which creates a 384-dimensional dense vector rep-
resentation of the tweets (Reimers and Gurevych, 2019).
SBERT is an extension of BERT (Devlin et al., 2019), which
is optimized for classification or clustering semantically sim-
ilar sentences. SBERT is suitable for our study, since we aim
to cluster the embeddings to extract topics which represent
tweets with similar content. While SBERT is pre-trained on
general-purpose datasets, we found its performance on our
disaster-related corpus to be robust. For verification, we con-
ducted an experiment where we compared a German model
(German BERT) (Darji et al., 2023) and a model trained
on tweets specifically (TwHIN-BERT) (Zhang et al., 2023),
where we found that the topics were less distinct and inter-
pretable. Thus, we proceeded with the pre-trained SBERT
model to maintain generalizability, aiming to demonstrate an
approach which, in the future, can be adapted to different
contexts and case studies.

(b) UMAP and (c) hierarchical density-based clustering

As clustering performance has been shown to decline in
high-dimensional space (Allaoui et al., 2020), we reduce
the embeddings to a three-dimensional space using UMAP
(McInnes et al., 2018). The reduced embeddings are cat-
egorized with hierarchical density-based clustering (HDB-
SCAN) (McInnes et al., 2017). More information on the hy-
perparameter tuning is described in Sect. S1.2.2. To evaluate
the quality of our HDBSCAN clustering, we calculate the
density-based clustering validation (DBCV) score (Moulavi
et al., 2014). Based on the definition whereby clusters rep-
resent areas of higher density amongst regions of lower den-
sity, a relative validity measure is calculated by combining
the shape and density properties of the cluster. The density
is evaluated relative to the density in a cluster representing
the background noise. We obtained a positive score of 0.24
within the DBCV range of −1 to 1, which validates the ef-
fectiveness of our clustering approach in identifying distinct
topics within the tweet corpus.

While the thorough pre-processing significantly improved
our textual data quality, some unstructured, non-actionable
textual Twitter (X) posts will still show up in clustering. The
chosen BERT embeddings are robust when confronted with
word substitution attacks (Hauser et al., 2021). Further, we
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chose HDBSCAN, which combines hierarchical clustering
to avoid ambiguity and density-based methods to account for
the noise in the dataset. In the first clustering step, the denser
areas are separated from the surrounding points to separate
areas of interest from the background noise, that is, in our
case, unstructured texts. Following the separation of unstruc-
tured text and clusters of similar content discussed often, a
minimum spanning tree is constructed based on a weighted
graph containing the embedded textual tweets as vertices and
their weighted connection based on the mutual reachability
distance. Based on this, we construct a hierarchy of con-
nected components, which is then used to cut the dataset into
clusters within the hierarchical structure. These steps mini-
mize ambiguity between the clusters by using a condensed
clustering tree and defining the clusters by minimum cluster
size (in this case 20). Our further analysis accounts for this
limitation by focusing on aggregate trends rather than indi-
vidual posts.

(d) Class-based term frequency–inverse document
frequency

In the next step we aim to understand the meaning of each
topic by representing a topic with 10 keywords. The repre-
sentative words may contain two consecutive words as one
keyword. To achieve this we use class-based term frequency–
inverse document frequency (c-TF-IDF) as proposed by
Grootendorst (2022). All tweets from the same cluster are
combined and treated as one document. With this representa-
tion, the c-TF-IDF of a word x in cluster c (Wx,c) is calculated
as described in Eq. (1). The c-TF-IDF is calculated based
on the frequency of a word in all classes (fx), frequency of
words (tfx,c) within a cluster, and mean number of words
(A) within a class.

Wx,c = |tfx,c| · log
(

1+
A

fx

)
(1)

Post-processing

With this approach we obtained a large number of topics that
were passed to a post-processing pipeline. Similarly to the
filtering steps in the pre-processing, we manually scanned
and excluded the topics based on whether the keywords in-
dicated flood-related content. Additionally, topics with fewer
than 50 instances over the whole time span were excluded in
this analysis. To aid the inter-event comparison, we adopted
a functional framework for social media use from Houston
et al. (2015). The authors proposed that social media can
have 15 types of functions that are associated with the three
phases of an event (pre-event, event, post-event). Pre-event,
the tweets can be used to spread preparedness information
or provide warnings. Shortly before the event or once the
event has started, users can signal and detect the disaster on
social media. During the event, requesting help and sharing
the condition and location of flood-affected individuals be-

come more important. Documentation, consuming news cov-
erage, receiving response information, volunteering, and re-
ceiving health support as well as expressing emotions and
sharing stories about the disaster happen during and after the
event. Post-event tweets can start discussions on scientific
and socio-political causes as well as connecting community
members and coordinating the implementation of traditional
crisis communication activities. We manually associate the
topics obtained from our model with their respective func-
tion in the framework. We refer to the direct model results as
topics and to the classified topics as topic groups. We man-
ually classify all topics with 50 instances or more into the
topic groups. To counteract confirmation bias, we assign the
topic groups before we examine the temporal results.

2.4 Topic interpretation and inter-event comparison

To evaluate our model we follow a “zoom-in” approach to
gain insights at varying levels of detail and context. Initially,
we analyze the entire time series but divide it into periods
of flooding and non-flooding as a baseline. We observe dis-
tinct topic patterns in Twitter (X) by comparing the topics
and topic diversity for the two subgroups. Next, we narrow
our focus to the weeks around five distinct flood events, com-
paring how individual topics evolve over time during these
periods. With this approach, we evaluate which topics arise
commonly and how they vary across different flood types
by looking at specific topics over time. Lastly, we aggre-
gate topics throughout the entire event duration to compare
broader categories. This allows us to compare the general
topics across different flood types.

2.5 Flood events

We analyze a sample of textual Twitter (X) posts (n=
43 287) collected from 2014 to 2022. Our sample includes
all tweets posted during this time containing one or more
of the three flood-related keywords in German (Hochwasser,
Überflutung, Flut). The table for all keywords in other
languages is available at https://www.nature.com/articles/
s41597-019-0326-9/tables/2 (last access: 21 February 2025,
de Bruijn et al., 2019). Figure 2 shows the number of daily
tweets we used for our analysis after the initial filtering steps.
We selected five events between 2016 and 2021 (Table 1).
Based on these events, we will qualitatively evaluate our ap-
proach and results. The most discussed flood in our dataset
(E5) occurred in July 2021 in Europe and western Germany.
This event was caused by the atmospheric low-pressure sys-
tem Bernd, which brought heavy rainfall to two German fed-
eral states as well as adjacent countries (Luxembourg, Bel-
gium, and the Netherlands) (Mohr et al., 2023). The flood
caused 189 fatalities and losses of around EUR 33 billion in
Germany, making it the most severe natural disaster in recent
German history (Munich Re, 2022). In 2016 persistent atmo-
spheric conditions triggered a large number of heavy con-
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Figure 2. Daily number of tweets over the observed time period
(black line). The gray lines labeled E1–E5 mark the occurrence of
the selected flood events within the time series, which are further
described in Table 1. The shaded areas show their time frames and
highlight the specific peak time we consider for the selected flood
events.

vective rainfall events, resulting in local but extreme flash
floods, particularly affecting the towns of Simbach am Inn in
Bavaria and Braunsbach in Baden-Württemberg (E1). These
events caused 54 fatalities in Simbach and substantial eco-
nomic damage in both towns (Laudan et al., 2017; Hübl and
Rimböck, 2018; Bronstert et al., 2018). The flood events
were associated with a return period above 100 years, and
the discharge of the Simbach Creek was further increased by
dam and dike failures (Hübl and Rimböck, 2018). E1 and E5
represent flash floods with high impact in terms of fatalities
as well as economic damage that occurred in our observation
period. During both events the peak daily tweet frequency
exceeded 1500 tweets per day.

On 25 July 2017, the area between Göttingen and Braun-
schweig in Lower Saxony was affected by a flood (E2)
caused by 3 d of continuous rain due to the low-pressure
system Alfred. In the Nette and Oker rivers, two gauges
reported return periods of 100 years, and on the Innerste
River, two gauges reported even higher return periods (An-
halt et al., 2017). No fatalities occurred; however, 12 indi-
viduals were displaced by the flood (Brakenridge, 2025) and
reported damages were on the order of millions of euros (An-
halt et al., 2017). In our topic analysis, E2 is evaluated sepa-
rately and represents a medium-impact event.

In January 2018, torrential rains and storms combined
with snowmelt resulted in high water levels in many Ger-
man regions, with moderate floods (maximum return period
of 10 years in Maxau, Rhine) (E3) (Helmke et al., 2018). In
the last week of January and the beginning of February 2021,
continuous rain along with a thaw period led to increasing
discharge in Hesse (E4) (Löns, 2021). In February 2018 the
municipality of Büdingen was affected increasingly by the
flood and 70 people were evacuated from the old town (Löns,
2021). The discharge in the river Nidder, which caused the
flooding, exceeded a return period of 100 years; most of the
other rivers in the region experienced maximum discharge
levels with return periods of between 2 and 50 years. E3
and E4 represent events that are expected to occur more fre-

quently with lower impact in terms of monetary damage and
fatalities.

To evaluate the topic model, we compare the topic group
frequency for the high-impact flash floods E1 and E5, mod-
erate flooding, and low-impact riverine flooding and the tem-
poral development of topics over time for E3 and E4.

Flood severity was classified based on official warning lev-
els by LUBW (2024) using return periods of water levels.
This classification corresponds to the official warning levels
in Germany.

3 Results

3.1 Full dataset results

Our first key finding from the tweet analysis shows that ap-
proximately 78 % of the analyzed tweets contain valuable in-
formation for disaster management. While this is a promis-
ing result to dig further into in the following topic extrac-
tion and analysis phase, it also shows that a non-negligible
portion of tweet posts in our dataset are classified as noise
or irrelevant information despite the thorough selection of
tweets according to flood-related keywords. A total of 10 183
tweets are identified as noise by the algorithm. Of these, 7233
tweets belonging to 34 topics were manually removed (post-
processing in Fig. 1). Those tweets were not considered for
our further analysis due to their lack of meaningful content
with respect to our research objective. Figure S2 in the Sup-
plement shows the temporal development of monthly tweets
that were not assigned to a relevant topic. Here, we find that
the progression of the noise in the data follows the path of
the daily time series (see Fig. 2). This leads to the conclusion
that noise is proportionally equally distributed during the se-
lected events and the baseline.

Over the whole time period of our analysis, we found 500
distinct topics in flood-related tweets. To refer to topics in
this section, we use the numerical topic ID followed by the
most accessible keyword or element from the representative
tweets reported in Tables S1 and S2 (for example topics “T-
0 information” and “T-1 weather extremes”). The topic ID
starts at 0 and is inversely correlated to the number of tweets
assigned to the topic across the entire temporal span. Con-
sequently, topic T-0 shows the highest tweet count, while
topic T-489 achieves the lowest incidence over the course of
5 years. Specific topics are analyzed in Figs. 3 and 4.

3.2 Aggregated topic analysis

As a first step to analyze the content of tweets, we focus on
the topics that were most frequently observed in a single day
(Fig. 3). The numbers on the bars represent the topic labels,
with labels increasing in value from the most to the least fre-
quent across the entire time period. Each bar shows an event
period or the event-free period. Therefore, if the same topic
numbers appear in different bars, the content of tweets dur-
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Table 1. Features of the five flood events selected for comparison in this study.

Date of Return
peak period Flood

ID Gauge, river discharge [years] type Reference

E1 Simbach, Simbach 1 June 2016 > 100 severe flash flood Hübl and Rimböck (2018)
E2 Ohrum, Oker 27 July 2017 50 medium-impact riverine flood Anhalt et al. (2017)
E3 Maxau, Rhine 25 Jan 2018 10 frequent riverine flood Helmke et al. (2018)
E4 Schotten I, Nidda 4 Feb 2021 25 frequent riverine flood Löns (2021)
E5 Ahrweiler, Ahr 15 July 2021 > 1000 severe flash flood Mohr et al. (2023)

ing these events is similar. Figure 3 shows that the most fre-
quent topics over the whole time period (“T-0 water author-
ities” and “T-1 weather extremes”) are also represented in
the maximum daily occurrence for E3 and E4, which is in
the low-impact event group. “T-0 water authorities” and “T-
1 weather extremes” primarily contain tweets that describe
reports of water levels (representative tweets: “pegel bundes-
land aktuelle hochwasser info liegt vor mehr unter” [water
gauge federal state current flood more info available below]).
These topics are mostly linked to generic posts on water lev-
els as posted by @hochwasserportal_de (flood portal) and
then shared among users. Event-free times are marked by a
consistent, small number of tweets related to “T-0 informa-
tion”, “T-1 weather extremes”, “T-3 meters mark”, and so on.
This pattern leads to a high overall sum (as shown in Fig. S1
in the Supplement) but with only a few daily occurrences.
Topics that received the highest daily attention on Twitter
(X) for E1 and E5, which represent high-impact flash floods,
are related to reports of fatalities and missing people (“T-
110 deaths”, representative tweet: “three dead in flood in dis-
trict”; “T-48 destruction”, representative tweet: “four dead in
flood disaster in federal state”; “T-7 disaster management”,
representative tweet: “civil protection rehearsed the emer-
gency months ago and failed flood”) as well as to political
implications (“T-24 chancellor”, representative tweet: “new
contribution after flood Merkel in city Tagesschau”; “T-122
euro”, representative tweet: “Soeder announces euro imme-
diate aid for flood victims federal state pays the affected”). A
full list of representative tweets and keywords of the topics
mentioned in this paragraph is included in Tables S1 and S2.
In contrast to the topics observed for E3 and E4, these are
event-specific topics that are most likely shared due to per-
sonal concern and shock. During E2 (medium-impact flood-
ing) the discussion on Twitter (X) focused on event-specific
topics that described impacts (“T-152 dam guards”, repre-
sentative tweet: “flood in country the night was calm flood in
federal state is somewhat relaxing”; “T-154 electronics fair”,
representative tweet: “flood district declares disaster alarm”;
“T-178 falling”, representative tweet: “flood in federal state
water levels are dropping only slowly”). The wording of top-
ics related to E2 is not predominantly generic like for the
low-impact flood events, but it still remains pragmatic, an-

Table 2. Number of different topics that occur in a 40 d time win-
dow enveloping the flood peak.

Number
ID of topics

E1 132
E2 109
E3 73
E4 89
E5 128

alytical, and descriptive compared to the wording of topics
related to E1 and E5.

Overall, we observe a shift in tweet topics from spreading
general information about water levels to discussing more
complex and impact-focused topics during events. To gain
a better understanding of this dynamic and particularly of
the content shared over time during the different phases of a
disaster, we further undertake a temporal analysis.

Additionally, aggregated topic patterns during floods are
characterized by the number of different topics that occur in
a 40 d time window enveloping the flood peak (see Table 2).
Events that are predominantly flash floods with a higher im-
pact result in a wide range of topics (E1: 132; E5: 128).
Lower-impact riverine flood events resulted in fewer differ-
ent topics discussed on Twitter (X) (E2: 109; E3: 73; E4: 89).
Moreover, the distribution of topic appearances related to
high-impact floods is more heterogeneous. Table 2 shows the
distribution of the count of all topics for E4 and E5, both of
which occurred within the same year and region. To mitigate
the potential noise introduced by topic diversity, we used the
HDBSCAN clustering algorithm, which contains a hierarchi-
cal topic extraction step. Primary topics, i.e., topics which
occur consistently, are given higher weights in the methodol-
ogy, based on their mutual reachability distance. Topics with
a lower relevance, while contributing to the overall under-
standing of the event, were given lower weights when con-
densing the clusters. This approach allows us to maintain fo-
cus on critical information while still capturing the broader
context of the event. For E4 there is one distinct peak in
Fig. 5, indicating a focus on few topics within the 89 total
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Figure 3. Stacked bar chart for topics that occurred most frequently in a day during the baseline period (no event) and the different flood
events (E1–E5). E4 and times without events show textual Twitter (X) posts with the topic administrative updates (T-0 water authorities),
weather conditions (T-1 weather extremes), and infrastructure status (T-3 meter marks); E5 also includes a topic related to infrastructure
status (T-114 power plants). During E1, disaster impacts (T-48 devastating damage, T-110 flooded) are discussed. E5 includes a topic on
emergency response (T-7 disaster relief), while the retreat of water levels (T-55 unchanged) is mentioned frequently during E3. The topics
presented in this figure are the results from the HDBSCAN clustering and c-TF-IDF analysis.

topics. For E5 we see many peaks, indicating frequent occur-
rence of many of the 128 topics. This shows that the tweet
content of high-impact events is more diverse and complex.
These findings suggest that topic diversity might be used as
an indicator to rapidly predict flood impact. We observe that
the presence of greater topic diversity in tweets may be in-
dicative of potential for high-impact events.

3.3 Temporal topic analysis

The temporal evolution of tweet activity and content on Twit-
ter (X) varies significantly depending on the type and impact
of the flooding event. Figure 4 shows the event time win-
dow for the events categorized as low-impact riverine flood-
ing and events categorized as predominantly flash floods with
high impact. Twitter (X) users engage differently on Twitter
(X) during flash floods compared to during riverine flooding.
When it comes to flash floods with a high impact, a surge
in tweet activity is observed shortly after the peak discharge
occurs. In contrast, for riverine flooding, we note a gradual
increase in tweet activity that begins days before the flood
event. Additionally, for high-impact flash floods we find a
sharp decline in the discussion of valuable topics following
the peak discharge. This indicates that social media platforms
may be exploited for immediate response and coordination,
with limited utility for preparedness or long-term recovery
activities.

The content of these flood-related tweets varies for the
different flood types. Table S2 offers detailed descriptions

of all topics including representative tweets. For E3 and E4
(Fig. 4), the progression of topics spans the entire duration of
the event, with a focus on aspects like water depths and natu-
ral processes (E3: “T-55 unchanged”; E4: “T-76 snowmelt”).
Especially “T-3 meter” and “T-94 updated” point towards
more generic Twitter (X) content. The consistent presence
of these topics throughout the event timeline suggests that,
during low-impact flooding, people tend to be more proac-
tive and prepared. They actively share information before,
during, and after the flood, in contrast to impulsive tweeting
when they are directly affected by the event. Here, “T-55 un-
changed”, referring to the stagnation of and decline in water
levels, is an exception since during the 2018 flood there was
a peak of tweets indicating that a previous warning or alarm
had been lifted.

During high-impact flood events, people start discussing
topics like reporting fatalities, offering help (“T-9 care
work”), disaster management (“T-7 disaster management”
and “T-168 fatalities”), and sharing traditional media like
newspaper articles (“T-12 news agency”). This shift is clear
in the lower plots in Fig. 4, which highlight the four most
common topics for E1 and E5. The wording in the topics for
high-impact flood events is more impact-focused (“damage”,
“fatalities”) and urgent (“missing”, “reserve”) or even catas-
trophic (“devastating”, “catastrophic”).

The progression of “T-9 care work” in Fig. 4 (extract from
representative tweet: “betrifft kreis stadt gezielte hilfsange-
bote werden unter URL gesammelt” [concerns city targeted
offers of help are collected under URL]) shows that Twit-
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Figure 4. Progression of tweet count per topic for low-impact river-
ine floods (E3, E4) and high-impact flash floods (E1, E5). The
dashed line in each panel represents the time of observed peak dis-
charge. The legend indicates different topics of textual Twitter (X)
posts, including weather conditions (T-1 weather extremes), admin-
istrative updates (T-0 water authorities), infrastructure status (T-3
meter marks), general information updates (T-94 updated info), dis-
aster impacts (T-48 devastating damage, T-110 flooding), and emer-
gency response (T-7 disaster relief). The topics are the result of the
HDBSCAN clustering and c-TF-IDF analysis.

ter (X) is used to coordinate response activities. The topic
emerges predominantly after the peak discharge of E5. This
self-organized disaster response on Twitter (X) can poten-
tially be channeled and used as an information source for
organizationally coordinated response activities.

For E5, we initially see fewer than 15 daily posts related
to “T-0 water authorities”, which is similar to the number
of textual Twitter (X) posts during non-flooding times. The
discussion on flood-related topics starts suddenly on the day
of the flood event. This timing matches previous evaluations
of how well the emergency management and warning system
worked, as discussed by Thieken et al. (2023). This finding
shows that the topics retrieved with our approach reveal real-
world flood aspect problems, with early warning reported in
this case.

Figure 5. Representation of topics categorized according to the 15
functions proposed in the functional framework for social media
usage types during disasters by Houston et al. (2015). The results
presented here are a manual aggregation of the topics presented in
previous figures.

3.4 Event comparison within a state-of-the-art
functional framework for topic classification

By grouping the topics within an established framework, we
qualitatively validate our results and put them in the context
of findings from other studies. In this step, we consider top-
ics with more than 50 instances over the whole time series.
Houston et al. (2015) outlined 15 distinct functions of social
media, as detailed in the “Materials and methods” section.
We categorize the topics we found in our previous analysis
according to these different functions and display the result-
ing functional distribution in Fig. 5. Within our dataset, we
did not find evidence of Twitter (X) being utilized for four
of these designated functions (implementing traditional com-
munication activities, (re)connecting community members,
health support, or generally expressing emotions).

A limitation to the applicability of our model to different
platforms and circumstances is the need for manual filter-
ing and the associated uncertainties. The manual steps limit
the transferability and may introduce a bias due to the indi-
vidual variability in keyword selection. This limitation can
be addressed by improved or combined embedding models
(Laskar et al., 2020) or embedding-based pre-selection.

E3 and E4 have the most tweets related to topics with
the function of signaling and detecting disasters. During E2,
which we view as a moderate-impact event, most of the
tweets were assigned to topics which had the function of doc-
umenting what is happening in the disaster, with a slight in-
dication of preparedness information being shared on social
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media. E1 shows a similar pattern with a higher magnitude
and an increasing interest in documenting the flood. During
E1, Twitter (X) users also started to discuss socio-political
impacts and responsibilities and shared links to traditional
news outlets.

Regarding E1, we also observe an emergence of topics that
indicate awareness and financial support. With the increasing
impact of the flood event, we can see the progression of this
trend for topic groups. For E5, we see that the focus is on
documenting the disaster and discussing socio-political re-
sponsibilities with a further increase in interest in the topic
groups that emerged for E1.

These findings underscore the substantial shifts in topics
and topic groups associated with events of varying impact
and magnitude.

4 Conclusions

In this study, we develop a transferable natural language pro-
cessing analytic approach for automatic extraction of con-
tent from flood-related social media posts collected over a
multi-annual time period. Our approach is based on openly
available software, data, and pre-trained models, making it
accessible to researchers and users.

Despite the general value and applicability of our proposed
approach, along with our key findings, our analysis is associ-
ated with uncertainties and can be further improved. The pre-
trained transformer model by Reimers and Gurevych (2019)
and the quality of the clustering of the embeddings extracted
from the transformer encoder provide the basis for the qual-
ity of topics that are extracted. Therefore, this methodology
may be improved with the development of large-scale lan-
guage models that focus on clustered encoding. The iden-
tification of distinct topics within tweets is susceptible to
the possibility of topic overlap and separation. By using the
HDBSCAN clustering approach, we are setting the level of
topic separation through the minimum cluster size, which is
a rigid threshold technique. Future model refinement should
emphasize strategies to allow more flexibility while ensur-
ing topic separation and improving the clarity and robust-
ness of topic-based interpretations. A similar issue arises
with topic representation. We represented the topics with
10 keywords alongside a representative tweet. Defining the
meaning of this combination of keywords is a subjective task
that leaves room for different interpretations, leading to un-
certainty. Here, the framework is also limited in terms of
expert-based manual steps, for example for topic exclusion
after modeling and for classification in an existing frame-
work. We acknowledge that this process would benefit from
multiple people labeling topics independently; however, the
team of authors continuously discussed the topic assignment
and exclusion in the process. The embeddings retrieved from
the sentence transformer model vary slightly for each run.
In more detail, this may cause slightly different results for

tweets at cluster borders when re-running the framework.
However, this does not notably affect the topic size and repre-
sentation in this study because of the robustness of the HDB-
SCAN algorithm. Furthermore, social media platforms like
Twitter (X) represent only a subset of society. Consequently,
insights drawn from textual Twitter (X) data may not fully
capture the different experiences, perspectives, and actions
present within the broader population. This limitation can be
addressed by evaluating the topics discussed on social media
platforms other than Twitter (X), which would also ensure
robustness towards the fluctuations in access to data from in-
dividual providers. In de Bruijn et al. (2019), their Fig. 3,
the textual Twitter (X) data are successfully validated against
NatCatSERVICE data provided by Munich Re, further en-
suring robustness. Additionally, we recommend conducting
an analysis that takes the geolocation of tweets into account
and evaluating to what extent the identified social media top-
ics can improve flood models and simulations predicting, for
example, flood impact measures such as expected damage
by including tweet topic distribution alongside tweet counts,
similar to, for example, Re et al. (2022). Non-textual infor-
mation contained in social media posts could be included to
reduce uncertainties associated with unstructured grammar
or spelling mistakes, for example by comparing the image
content and text content of a post.

We show that the proposed methodology and extracted
content allow discovery of citizens’ behavior and perception
of floods before, during, and after different disaster types. We
successfully validated our model results qualitatively, based
on previous knowledge about past events. Approximately
78 % of tweets contain potentially valuable information for
flood risk management, which indicates an opportunity to
encourage social media users to share flood-related content
online. Our results confirm that there are distinct topic pat-
terns in the Twitter (X) time series. These patterns are asso-
ciated with a shift from tweets focused on sharing generic
information and warning topics towards more diverse top-
ics including coordination of response activities and more
complex discussions surrounding the event. This shift is con-
firmed when looking at different event types. From low- to
high-impact events, we see a progression in the number of
topics as well as a progression in the content from signaling
the disaster to discussing causes and responsibilities in addi-
tion to documentation activities. This shows the importance
of social media in the response process. However, we see
that the potential for the coordination of immediate response
activities is the most promising risk management interven-
tion, as long-term activities such as rebuilding or remember-
ing floods are not visible in our dataset. During low-impact
riverine floods, citizens respond more routinely, and informa-
tion on water levels was effectively shared on Twitter during
E3 and E4. Therefore, we recommend including spreading
information on social media platforms for early warning and
risk management strategies. We show that risk management
interventions on social media can be supported through insti-
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tutional posts. This appears to be particularly helpful for im-
mediate response coordination, particularly during the time
shortly after a high-impact flood when citizen engagement
is high and organization-focused. Moreover, spreading water
level information as soon as it becomes available before the
event of flash flooding is recommended to shift awareness
dynamics towards those exposed during riverine floods with
lower impact. We find that we can partly reproduce functions
that were attributed to social media use during disasters in a
theoretical framework for flood events in Germany. However,
not all assumptions that Houston et al. (2015) made about so-
cial media usage during disasters can be shown in our dataset.
This might be because some functions of social media are
platform-dependent and therefore outside of our horizon of
observation. The proposed methodology, however, is not lim-
ited to be applied to tweets but can be applied to any text-
based social media platform with an accessible API, which
is extremely useful in the context of quickly evolving and
changing online platforms.

Code and data availability. The scripts used for the analysis
are available at https://github.com/SWN-group-at-TU-Berlin/
SocialMediaNLP_FloodTopics (de Bruijn et al., 2025). Tweet
location identification is based on an algorithm developed by
https://doi.org/10.1007/s41651-017-0010-6 (de Bruijn et al.,
2017). The dataset of flood-related Twitter posts is from
https://doi.org/10.1038/s41597-019-0326-9 (de Bruijn et al., 2019).
The data are available at https://www.globalfloodmonitor.org/ (last
access: 21 February 2025) upon request.
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line at https://doi.org/10.5194/nhess-25-879-2025-supplement.
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