Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3333-2025
https://doi.org/10.5194/nhess-25-3333-2025
Research article
 | 
11 Sep 2025
Research article |  | 11 Sep 2025

Can model-based avalanche forecasts match the discriminatory skill of human danger-level forecasts? A comparison from Switzerland

Frank Techel, Ross S. Purves, Stephanie Mayer, Günter Schmudlach, and Kurt Winkler

Related authors

The EAWS matrix, a look-up table to determine the regional avalanche danger level (Part B): Operational testing and use
Frank Techel, Karsten Müller, Christopher Marquardt, and Christoph Mitterer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3349,https://doi.org/10.5194/egusphere-2025-3349, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Tracking the slopes: A spatio-temporal prediction model for backcountry skiing activity in the Swiss Alps using UGC
Leonie Schäfer, Frank Techel, Günter Schmudlach, and Ross S. Purves
EGUsphere, https://doi.org/10.5194/egusphere-2025-2344,https://doi.org/10.5194/egusphere-2025-2344, 2025
Short summary
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024,https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
An updated EAWS matrix to determine the avalanche danger level: derivation, usage, and consistency
Karsten Müller, Frank Techel, and Christoph Mitterer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-48,https://doi.org/10.5194/nhess-2024-48, 2024
Revised manuscript accepted for NHESS
Short summary

Cited articles

avalanche.org: North American Public Avalanche Danger Scale, https://avalanche.org/avalanche-encyclopedia/human/resources/north-american-public-avalanche-danger-scale/, last access: 12 August 2024. a
Bouchayer, C.: Synthesis of distributed snowpack simulation relevant for avalanche hazard forecasting, MSc. thesis, University Grenoble Alpes, France, https://doi.org/10.13140/RG.2.2.21665.20329, 2017. a
Breiman, L.: Random forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
COSMO: COSMO – Consortium for small-scale modeling, https://www.cosmo-model.org/content/model/cosmo/overview.htm, last access: 6 May 2025. a
Degraeuwe, B., Schmudlach, G., Winkler, K., and Köhler, J.: SLABS: An improved probabilistic method to assess the avalanche risk on backcountry ski tours, Cold Reg. Sci. Technol., 221, 104169, https://doi.org/10.1016/j.coldregions.2024.104169, 2024. a, b, c
Download
Short summary
We tested how well fully data- and model-driven avalanche forecasts compare to human-made forecasts, which also integrate added context like field observations or model output. Using data from Switzerland over three winters, we found that models – even without this extra input – performed nearly as well. While human forecasts still have a slight edge, model predictions already offer reliable support for daily avalanche forecasting.
Share
Altmetrics
Final-revised paper
Preprint