Articles | Volume 24, issue 2
https://doi.org/10.5194/nhess-24-355-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-24-355-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, 34100, Italy
Alberto Tamaro
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, 34100, Italy
Baurzhan Adilkhan
Institute of Seismology, Ministry of Emergency Situations, Almaty, 050060/A15E3F9, Kazakhstan
Satbek Sarzhanov
Institute of Seismology, Ministry of Emergency Situations, Almaty, 050060/A15E3F9, Kazakhstan
Zukhritdin Ergashev
Tashkent State Transport University, Tashkent, Uzbekistan
Ruslan Umaraliev
Institute of Seismology, National Academy of Sciences of the Kyrgyz Republic, Bishkek, 720060, Kyrgyz Republic
Mustafo Safarov
Research Center for Ecology and Environment of Central Asia, Dushanbe, 734063, Tajikistan
Vladimir Belikov
Independent consultant, Turkmenistan
Japar Karayev
Independent consultant, Turkmenistan
Ettore Fagà
RED Risk Engineering + Development, Pavia, 27100, Italy
Related authors
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Antonella Peresan, Chiara Scaini, Sergey Tyagunov, and Paola Ceresa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-156, https://doi.org/10.5194/nhess-2023-156, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The experience collected during a capacity building experience in Central Asia is illustrated, which consisted in the organization of a series of training workshops devoted to the different components of risk assessment, focused on earthquakes, floods and selected landslide scenarios. The activity consisted of five country-based workshops on exposure assessment in each of the Countries of Central Asia, plus three regional scale thematic workshops on hazard, vulnerability and risk modelling.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, Marco Santulin, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 25, 817–842, https://doi.org/10.5194/nhess-25-817-2025, https://doi.org/10.5194/nhess-25-817-2025, 2025
Short summary
Short summary
A regionally consistent probabilistic risk assessment for multiple hazards and assets was developed under the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) programme, supported by the European Union, the World Bank, and the Global Facility for Disaster Reduction and Recovery. This paper outlines the preparation of the source model and presents key results of the probabilistic earthquake hazard analysis for the Central Asian countries.
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025, https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Short summary
A fully probabilistic flood risk assessment was carried out for five Central Asian countries to support regional and national risk financing and insurance applications. The paper presents the first high-resolution regional-scale transboundary flood risk assessment study in the area aiming to provide tools for decision-making.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024, https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary
Short summary
As part of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) programme, funded by the European Union in collaboration with the World Bank and GFDRR, a regionally consistent probabilistic multi-hazard and multi-asset risk assessment has been developed. This paper describes the preparation of the input datasets (earthquake catalogue and active-fault database) required for the implementation of the probabilistic seismic hazard model.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Antonella Peresan, Chiara Scaini, Sergey Tyagunov, and Paola Ceresa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-156, https://doi.org/10.5194/nhess-2023-156, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The experience collected during a capacity building experience in Central Asia is illustrated, which consisted in the organization of a series of training workshops devoted to the different components of risk assessment, focused on earthquakes, floods and selected landslide scenarios. The activity consisted of five country-based workshops on exposure assessment in each of the Countries of Central Asia, plus three regional scale thematic workshops on hazard, vulnerability and risk modelling.
Cited articles
Argyroudis, S. A., Mitoulis, S. A., Hofer, L., Zanini, M. A., Tubaldi, E., and Frangopol, D. M.: Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on transport assets, Sci. Total Environ., 714, 136854, https://doi.org/10.1016/j.scitotenv.2020.136854, 2020.
Baker, M. S., Nurudeen, E., Guzmán, E., and Soto-Viruet, Y.: Mineral Facilities of Northern and Central Eurasia, USGS [data set], https://pubs.usgs.gov/of/2010/1255/ (last access: 20 October 2021), 2010.
Batista e Silva, F., Forzieri, G., Marin Herrera, M. A., Bianchi, A., Lavalle, C., and Feyen, L.: HARCI-EU, a harmonized gridded dataset of critical infrastructures in Europe for large-scale risk assessments, Sci. Data, 6, 126, https://doi.org/10.1038/s41597-019-0135-1, 2019.
Bindi, D., Abdrakhmatov, K., Parolai, S., Mucciarelli, M., Grünthal, G., Ischuk, A., Mikhailova, N., and Zschau, J.: Seismic hazard assessment in Central Asia: Outcomes from a site approach, Soil Dynam. Earthq. Eng., 37, 84–91, 2012.
Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N.-E., Masiliunas, D., Linlin, L., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover 100 m: Collection 3: epoch 2019: Globe (Version V3.0.1) [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.3939050, 2020.
Calderón, A., Silva, V., Avilés, M., Castillo, R., Gil, J. C., and Lopez, M. A.: Toward a uniform earthquake loss model across Central America, Earthq. Spectra, 38, 178–199, https://doi.org/10.1177/87552930211043894, 2022.
CIESIN – Center for International Earth Science Information Network: Global Rural-Urban Mapping Project (GRUMP), Columbia University, CUNY Institute for Demographic Research (CIDR), City University of New York, https://sedac.ciesin.columbia.edu/data/collection/grump-v1 (last access: 10 December 2021), 2021.
CAIAG – Central Asian Institute for Applied Geosciences: GeoNode-Based Geodata Repository, https://geonode.caiag.kg/ (last access: 10 November 2022), 2022.
Crowley, H., Despotaki, V., Rodrigues, S., Silva, V., Toma-Danila, D., Riga, E., Karatzetzou, A., Fotopoulou, S., Zugic, A., Sousa, L., Ozcebe, S., and Gamba, P.: Exposure model for European seismic risk assessment, Earthq. Spectra, 36, 875529302091942, https://doi.org/10.1177/8755293020919429, 2020.
De Bono, A. and Mora, M. G.: A global exposure model for disaster risk assessment, Int. J. Disast. Risk Reduct., 10, 442–451, https://doi.org/10.1016/j.ijdrr.2014.05.008, 2014.
EuroCommerce: Analysis Of The Labour Market In Retail And Wholesale, 232 pp., https://www.bollettinoadapt.it/wp-content/uploads/2018/10/Ricerca-Eurocommerce-Analysis-of-the-labour-market-in-retail (last access: 20 October 2021), 2017.
Eurostat: Data on employment by sex, age, occupation and economic activity, Statistical Office of the European Communities, Luxembourg-Kirchberg, Eurostat [data set], https://ec.europa.eu/eurostat/databrowser/view/LFSQ_EISN2__custom_1304651/default/table?lang=en (last access: 31 January 2022), 1980.
FAO – Food and Agriculture Organization of the United Nations: Statistical Database, https://www.fao.org/faostat/en/#data (last access: 20 October 2021), 2019.
Fekete, A., Tzavella, K., and Baumhauer, R.: Spatial exposure aspects contributing to vulnerability and resilience assessments of urban critical infrastructure in a flood and blackout context, Nat. Hazards, 86, 151–176, https://doi.org/10.1007/s11069-016-2720-3, 2017.
FEMA – United States Federal Emergency Management Agency: HAZUS inventory technical manual, 185 pp., https://www.fema.gov/sites/default/files/documents/fema_hazus-inventory-technical-manual-4.2.3.pdf (last access: 20 October 2021), 2021.
Forzieri, G., Bianchi, A., Batista e Silva, F., Marin Herrera, M. A., Leblois, A., Lavalle, C., Aerts, J. C. J. H., and Feyen, L.: Escalating impacts of climate extremes on critical infrastructures in Europe, Global Environ. Change, 48, 97–107, https://doi.org/10.1016/j.gloenvcha.2017.11.007, 2018.
GFDRR: Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia, https://www.gfdrr.org/en/program/SFRARR-Central-Asia (last access: 1 February 2024), 2024.
Global Healthsites Mapping Project: https://www.healthsites.io/ (last access: 10 November 2023), 2023.
GloBio: GRIP global roads database, https://www.globio.info/download-grip-dataset (last access: 10 November 2022), 2022.
Gomez-Zapata, J. C., Brinckmann, N., Harig, S., Zafrir, R., Pittore, M., Cotton, F., and Babeyko, A.: Variable-resolution building exposure modelling for earthquake and tsunami scenario-based risk assessment: an application case in Lima, Peru, Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, 2021.
Karatzetzou, A., Stefanidis, S., Stefanidou, S., Tsinidis, G., and Pitilakis, D.: Unified hazard models for risk assessment of transportation networks in a multi-hazard environment, Int. J. Disast. Risk Reduct., 75, 102960, https://doi.org/10.1016/j.ijdrr.2022.102960, 2022.
Kienzler, K. M., Lamers, J. P. A., McDonald, A., Mirzabaev, A., Ibragimov, N., Egamberdiev, O., Ruzibaev, E., and Akramkhanov, A.: Conservation agriculture in Central Asia – What do we know and where do we go from here?, Field Crops Res., 132, 95–105, 2012.
Koks, E. E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S. A., Hall, J. W., and Hallegatte, S.: A global multi-hazard risk analysis of road and railway infrastructure assets, Nat. Commun., 10, 2677, https://doi.org/10.1038/s41467-019-10442-3, 2019.
Koks, E. E., van Ginkel, K. C. H., van Marle, M. J. E., and Lemnitzer, A.: Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event, Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, 2022.
Krausmann, E. and Cruz, A. M.: Natech risk management in Japan after Fukushima – What have we learned?, Loss Prevention Bulletin 277, © Institution of Chemical Engineers, https://www.icheme.org/media/15301/krausmannnew.pdf (last access: 10 December 2021), 2021.
Li, Z., Fang, G., Yaning, C., Duan, W., and Mukanov. Y.: Agricultural Water Demands in CentralAsia Under 1.5 and 2.0 ∘C Global Warming, Agr. Water Manage., 231, 106020, https://doi.org/10.1016/j.agwat.2020.106020, 2020.
Libert, B., and Trombitcaia, I.: Advancing Dam Safety in Central Asia: The Contribution of the UNECE Water Convention, in: The UNECE Convention on the Protection and Use of Transboundary Watercourses and International Lakes – Its Contribution to International Water Cooperation, edited by: Tanzi, A., McIntyre, O., Kolliopoulos, A., Rieu-Clarke, A., and Kinna, R., Brill|Nijhoff, Leiden, the Netherlands, 394–407, https://doi.org/10.1163/9789004291584_028, 2015
Meijer, J. R., Huijbregts, M. A. J., Schotten, C. G. J., and Schipper, A. M.: Global patterns of current and future road infrastructure, Environ. Res. Lett., 13, 064006, https://doi.org/10.1088/1748-9326/aabd42, 2018.
Mukherjee, M., Abhinay, K., Rahman, M. M., Yangdhen, S., Sen, S., Adhikari, B. R., Nianthi, R., Sachdev, S., and Shaw, R.: Extent and evaluation of critical infrastructure, the status of resilience and its future dimensions in South Asia, Prog. Disast. Sci., 17, 100275, https://doi.org/10.1016/j.pdisas.2023.100275, 2023.
Murnane, R. J., Allegri, G., Bushi, A., Dabbeek, J., de Moel, H., Duncan, M., Fraser, S., Galasso, C., Giovando, C., Henshaw, P., Horsburgh, K., Huyck, C., Jenkins, S., Johnson, C., Kamihanda, G., Kijazi, J., Kikwasi, W., Kombe, W., Loughlin, S., Løvholt, F., Masanja, A., Mbongoni, G., Minas, S., Msabi, M., Msechu, M., Mtongori, H., Nadim, F., O'Hara, M., Pagani, M., Phillips, E., Rossetto, T., Rudari, R., Sangana, P., Silva, V., Twigg, J., Uhinga, G., and Verrucci, E.: Data schemas for multiple hazards, exposure and vulnerability, Disast. Prev. Manage., 28, 752–763, https://doi.org/10.1108/DPM-09-2019-0293, 2019.
NASA: Global Food Security Support Analysis Data (GFSAD) Crop Dominance 2010 Global 1 km V001, NASA [data set], https://lpdaac.usgs.gov/products/gfsad1kcdv001/ (last access: 5 November 2021), 2021.
Nirandjan, S., Koks, E. E., Ward, P. J., and Aerts, J. C. J. H.: A spatially-explicit harmonized global dataset of critical infrastructure, Sci. Data, 9, 150, https://doi.org/10.1038/s41597-022-01218-4, 2022.
OpenStreetMap contributors: Planet dump, Data licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF), https://planet.openstreetmap.org (last access: 20 November 2023), 2023.
OXIRM – Oxford Institute of Retail Management, Saïd Business School, University of Oxford: Retail & Wholesale: Key Sectors For The European Economy, Understanding The Role Of Retailing And Wholesaling Within The European Union, https://www.eurocommerce.eu/media/87967/eurocommerce_study_v2_hd.pdf (last access: 20 October 202), 2014.
Pant, R., Thacker, S., Hall, J. W., Alderson, D., and Barr, S.: Critical infrastructure impact assessment due to flood exposure, J. Flood Risk Manage., 11, 22–33, https://doi.org/10.1111/jfr3.12288, 2018.
Peresan, A., Scaini, C., Tyagunov, S., and Ceresa, P.: Capacity Building Experience for Disaster Risk Reduction in Central Asia, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2023-156, in review, 2023.
Pittore, M., Haas, M., and Silva, V.: Variable resolution probabilistic modeling of residential exposure and vulnerability for risk applications', Earthq. Spectra, 36, 321–344, https://doi.org/10.1177/8755293020951582, 2020.
Punkari, M., Droogers, P., Immerzeel, W., Korhonen, N., Lutz, A., and Venäläinen, A.: Climate Change and Sustainable Water Management in Central Asia, Asian Development Bank (ADB), https://www.carecinstitute.org/wp-content/uploads/2014/05/2014-PUBL-climate-change-and-sustainable-water-management.pdf (last access: 10 December 2023), 2014.
Rathnayaka, B., Siriwardana, C., Robert, D., Amaratunga, D., and Setunge, S.: Improving the resilience of critical infrastructures: Evidence-based insights from a systematic literature review, Int. J. Disast. Risk Reduct., 78, 103123, https://doi.org/10.1016/j.ijdrr.2022.103123, 2022.
Saponaro, A., Pilz, M., Wieland, M., Bindi, D., Moldobekov, B., and Parolai, S.: Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan, Bull. Eng. Geol. Environ., 74, 1117–1136, https://doi.org/10.1007/s10064-014-0709-2, 2014.
Scaini, C., Peresan, A., Tamaro, A., Poggi, V., and Barnaba, C.: Can high-school students contribute to seismic risk mitigation? Lessons learned from the development of a crowd-sourced exposure database, Int. J. Disast. Risk Reduct., 69, 102755, https://doi.org/10.1016/j.ijdrr.2021.102755, 2022.
Scaini, C., Tamaro, A., Adilkhan, B., Sarzhanov, S., Ismailov, V., Umaraliev, R., Safarov, M., Belikov, V., Karayev, J., and Fagà, E.: A new regionally consistent exposure database for Central Asia: population and residential buildings, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2023-94, in review, 2023.
Schorlemmer, D., Beutin, T., Cotton, F., Garcia Ospina, N., Hirata, N., Ma, K.-F., Nievas, C., Prehn, K., and Wyss, M.: Global Dynamic Exposure and the OpenBuildingMap – A Big-Data and Crowd-Sourcing Approach to Exposure Modeling, in: EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18920, https://doi.org/10.5194/egusphere-egu2020-18920, 2020.
Shaikova, A. Y., Dronzina, T. A., and Zholdasbekova, A. N.: “One Belt, One Road” initiative: a comparative analysis of the project implementation in the Central Asian countries, Dspace repository, https://rep.enu.kz/handle/enu/4526 (last access: 30 January 2023), 2023.
Silva, V., Brzev, S., Scawthorn, C., Yepes, C., Dabbeek, J., Crowley, H.: A Building Classification System for Multi-hazard Risk Assessment, Int. J. Disast. Risk Sci., 13, 161–177, https://doi.org/10.1007/s13753-022-00400-x, 2022.
Strom, A. and Abdrakhmatov, K.: Large-Scale Rockslide Inventories: From the Kokomeren River Basin to the Entire Central Asia Region, WCoE 2014–2017, IPL-106-2, in: Workshop on World Landslide Forum, Springer, Cham, 339–346, https://doi.org/10.1007/978-3-319-59469-9_28, 2017.
Tajikistan Geonode: https://geonode.wfp.org/ (last access: 2 August 2021), site inactive since December 2023.
Taubenbock, H. and Geiß, C.: Vulnerability and resilience research: a critical perspective, Int. J. Disast. Risk Sci., 5, 86–87, 2014.
Teluguntla, P., Thenkabail, P. S., Xiong, J., Gumma, M. K., Chandra, G., Milesi, C., Ozdogan, M., Congalton, R. G., Tilton, J., Sankey, T. T., Massey, R., Phalke, A., Yadav, K., and Massey, K.: Global Food Security Support Analysis Data (GFSAD) at Nominal 1-km (GCAD) derived from Remote Sensing in Support of Food Security in the Twenty-first Century: Current Achievements and Future Possibilities, in: Remote Sensing Handbook: Land Resources: Monitoring, Modelling, and Mapping, Volume II, Chapter 6, CRC Press, Boca Raton, FL, https://oar.icrisat.org/9181/1/05_K22130_C006_Glo.pdf (last access: 15 December 2022), 2015.
Tilloy, A., Malamud, B. D., Winter, H., and Laugel, A. J.: A review of quantification methodologies for multi-hazard interrelationships, Earth Sci. Rev., 196, 102881, https://doi.org/10.1016/j.earscirev.2019.102881, 2019.
Ullah, S., Bindi, D., Pilz, M., Danciu, L., Weatherill, G., Zuccolo, E., Ischuk, A., Mikhailova, N. N., Abdrakhmatov, K., and Parolai, S.: Probabilistic seismic hazard assessment for Central Asia, Ann. Geophys., 58, S0103, https://doi.org/10.4401/ag-6687, 2015.
Ulomov, V. I. and the GSHAP Region 7 Working Group: Seismic hazard of Northern Eurasia, Ann. Geophys., 42, 1023–1038, 1999.
UNECE – United Nations Economic Commission for Europe: Strengthening Water ManageMent and tranSboundary Water Cooperation in Central aSia: the role of unEcE Environmental conventions, Printed at United Nations, Geneva, ECE/MP.WAT/35, https://unece.org/DAM/env/water/publications/documents/Water_Management_En.pdf (last access: 20 November 2022), 2011.
UNICEF: Project Connect website, https://projectconnect.unicef.org/map/countries (last access: 22 November 2022), 2022.
Venkatappa, M., Sasaki, N., Han, P., and Abe, I.: Impacts of droughts and floods on croplands and crop production in Southeast Asia – An application of Google Earth Engine, Sci. Total Environ., 795, 2021, 148829, https://doi.org/10.1016/j.scitotenv.2021.148829, 2021.
Wald, D. J.: Alerting the globe of consequential earthquakes, Perspect. Earth Space Scient., 4, e2022CN000200, https://doi.org/10.1029/2022CN000200, 2023.
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., Bulder, B., Campillo Torres, C., Critto, A., Hernández-Martín, R., Machado, M., Mysiak, J., Orth, R., Palomino Antolín, I., Petrescu, E.-C., Reichstein, M., Tiggeloven, T., Van Loon, A. F., Vuong Pham, H., and de Ruiter, M. C.: Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment, Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, 2022.
Weiss, D. J., Nelson, A., Vargas-Ruiz, C. A., Gligorić, K., Bavadekar, S., Gabrilovich, E., Bertozzi-Villa, A., Rozier, J., Gibson, H. S., Shekel, T., Kamath, C., Lieber, A., Schulman, K., Shao, Y., Qarkaxhija, V., Nandi, A. K., Keddie, S. H., Rumisha, S., Amratia, P., Arambepola, R., Chestnutt, E. G., Millar, J. J., Symons, T. L., Cameron, E., Battle, K. E., Bhatt, S., and Gething, P. W.: Global maps of travel time to healthcare facilities, Nat. Med., 26, 1835–1838, https://doi.org/10.1038/s41591-020-1059-1, 2020.
Wieland, M., Pittore, M., Parolai, S., Begaliev, U., Yasunov, P., Niyazov, J., Tyagunov, S., Moldobekov, B., Saidiy, S., Ilyasov, I., and Abakanov, T.: Towards a cross-border exposure model for the Earthquake Model Central Asia, Ann. Geophys., 58, S0106, https://doi.org/10.4401/ag-6663, 2015.
World Bank: Agriculture, forestry, and fishing, value added (% of GDP), World Bank [data set], https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS (last access: 1 November 2023), 2020.
World Bank: Central Asia exposure dataset – Non-residential buildings (education, healthcare, industrial, commercial), https://datacatalog.worldbank.org/search/dataset/0064288/Central-Asia-exposure-dataset—Non-residential-buildings (last access: December 2023), 2023a.
World Bank: Central Asia exposure dataset – Transport, https://datacatalog.worldbank.org/search/dataset/0064252/Central-Asia-exposure-dataset---Transport (last access: December 2023), 2023b.
World Bank: Central Asia exposure dataset – agricultural crops, https://datacatalog.worldbank.org/search/dataset/0064248/Central-Asia-exposure-dataset---agricultural-crops (last access: December 2023), 2023c.
Yepes-Estrada, C., Silva, V., Valcárcel, J., Acevedo, A. B., Tarque, N., Hube, M. A., Coronel, G., and Santa María, H.: Modeling the Residential Building Inventory in South America for Seismic Risk Assessment, Earthq. Spectra, 33, 299–322, https://doi.org/10.1193/101915eqs155dp, 2017.
Yepes-Estrada, C., Calderon, A., Costa, C., Crowley, H., Dabbeek, J., Hoyos, M. C., Martins, L., Paul, N., Rao, A., and Silva, V.: Global building exposure model for earthquake risk assessment, Earthq. Spectra, 39, 2212–2235, https://doi.org/10.1177/87552930231194048, 2023.
Zhang, M., Zhai, G., He, T., and Wu, C.: A growing global threat: Long-term trends show cropland exposure to flooding on the rise, Sci. Total Environ., 899, 165675, https://doi.org/10.1016/j.scitotenv.2023.165675, 2023.
Zhang, R., Zhao, C., Ma, X., Brindha, K., Han, Q., Li, C., and Zhao, X.: Projected spatiotemporal dynamics of drought under global warming in Central Asia, Sustainability, 11, 4421, https://doi.org/10.3390/su11164421, 2019.
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can...
Altmetrics
Final-revised paper
Preprint