Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-375-2023
https://doi.org/10.5194/nhess-23-375-2023
Research article
 | 
01 Feb 2023
Research article |  | 01 Feb 2023

Bare-earth DEM generation from ArcticDEM and its use in flood simulation

Yinxue Liu, Paul D. Bates, and Jeffery C. Neal

Related authors

Global scale evaluation of precipitation datasets for hydrological modelling
Solomon Hailu Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-251,https://doi.org/10.5194/hess-2023-251, 2023
Revised manuscript accepted for HESS
Short summary

Related subject area

Hydrological Hazards
Compound droughts under climate change in Switzerland
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024,https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
Brief communication: SWM – stochastic weather model for precipitation-related hazard assessments using ERA5-Land data
Melody Gwyneth Whitehead and Mark Stephen Bebbington
Nat. Hazards Earth Syst. Sci., 24, 1929–1935, https://doi.org/10.5194/nhess-24-1929-2024,https://doi.org/10.5194/nhess-24-1929-2024, 2024
Short summary
Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024,https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024,https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Limited effect of the confluence angle and tributary gradient on Alpine confluence morphodynamics under intense sediment loads
Théo St. Pierre Ostrander, Thomé Kraus, Bruno Mazzorana, Johannes Holzner, Andrea Andreoli, Francesco Comiti, and Bernhard Gems
Nat. Hazards Earth Syst. Sci., 24, 1607–1634, https://doi.org/10.5194/nhess-24-1607-2024,https://doi.org/10.5194/nhess-24-1607-2024, 2024
Short summary

Cited articles

Archer, L., Neal, J. C., Bates, P. D., and House, J. I.: Comparing TanDEM-X data with frequently used DEMs for flood inundation modeling, Water Resour. Res., 54, 10–205, https://doi.org/10.1029/2018WR023688, 2018. 
Armston, J., Bunting, P., Flood, N., and Gillingham, S.: Pylidar 0.4.4 documentation​​​​​​​ [code], http://www.pylidar.org/en/latest/index.html (last access: 26 January 2023), 2015. 
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. 
Bates, P. D., Neal, J. C., Alsdorf, D., and Schumann, G. J. P.: Observing global surface water flood dynamics, in: The Earth's Hydrological Cycle, Springer, 839–852, https://doi.org/10.1007/s10712-013-9269-4, 2013. 
Bates, P.D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage, J., Olcese, G., Neal, J., Schumann, G., and Giustarini, L.: Combined modeling of US fluvial, pluvial, and coastal flood hazard under current and future climates, Water Resour. Res., 57, e2020WR028673, https://doi.org/10.1029/2020WR028673, 2021. 
Download
Short summary
In this paper, we test two approaches for removing buildings and other above-ground objects from a state-of-the-art satellite photogrammetry topography product, ArcticDEM. Our best technique gives a 70 % reduction in vertical error, with an average difference of 1.02 m from a benchmark lidar for the city of Helsinki, Finland. When used in a simulation of rainfall-driven flooding, the bare-earth version of ArcticDEM yields a significant improvement in predicted inundation extent and water depth.
Altmetrics
Final-revised paper
Preprint