Articles | Volume 22, issue 6
https://doi.org/10.5194/nhess-22-2099-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2099-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Different drought types and the spatial variability in their hazard, impact, and propagation characteristics
Erik Tijdeman
Hydrology and Climatology, Institute of Geography, Heidelberg University, Heidelberg, Germany
now at: Royal HaskoningDHV, Groningen, the Netherlands
Veit Blauhut
Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
Michael Stoelzle
CORRESPONDING AUTHOR
Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
Lucas Menzel
Hydrology and Climatology, Institute of Geography, Heidelberg University, Heidelberg, Germany
Kerstin Stahl
Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
Related authors
Erik Tijdeman and Lucas Menzel
Hydrol. Earth Syst. Sci., 25, 2009–2025, https://doi.org/10.5194/hess-25-2009-2021, https://doi.org/10.5194/hess-25-2009-2021, 2021
Short summary
Short summary
Low amounts of soil moisture (SM) in the root zone negatively affect crop health. We characterized the development and duration of SM stress across the croplands of southwestern Germany. Development time mainly varied within drought years and was related to the available water-holding capacity of the root zone. Duration varied both within and between drought years and was especially high in 2018. Sensitivity analyses showed that (controls on) SM stress and SM drought characteristics differ.
Kerstin Stahl, Kathrin Szillat, Veit Blauhut, Monika Hlavsova, Lauro Rossi, Dario Masante, and Andrea Toreti
EGUsphere, https://doi.org/10.5194/egusphere-2025-4806, https://doi.org/10.5194/egusphere-2025-4806, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Drought impact information is important for risk assessment. But, there is little consensus on impact datamonitoring. The European Drought Impacts Database (EDID) combines several existing datasets with the results from new searches for impact information in a structured database with spatial and temporal attributes. Allowing research as well as operational use, its contents show where and when in Europe drought has affected agriculture, water supply, ecosystems, and other sectors.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci., 25, 4549–4565, https://doi.org/10.5194/hess-25-4549-2021, https://doi.org/10.5194/hess-25-4549-2021, 2021
Short summary
Short summary
We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media's attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Erik Tijdeman and Lucas Menzel
Hydrol. Earth Syst. Sci., 25, 2009–2025, https://doi.org/10.5194/hess-25-2009-2021, https://doi.org/10.5194/hess-25-2009-2021, 2021
Short summary
Short summary
Low amounts of soil moisture (SM) in the root zone negatively affect crop health. We characterized the development and duration of SM stress across the croplands of southwestern Germany. Development time mainly varied within drought years and was related to the available water-holding capacity of the root zone. Duration varied both within and between drought years and was especially high in 2018. Sensitivity analyses showed that (controls on) SM stress and SM drought characteristics differ.
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Cited articles
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 Northern European
Hydrological Drought and Its Drivers in a Historical Perspective, Hydrol.
Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From
Meteorological to Hydrological Drought Using Standardised Indicators,
Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016.
Blauhut, V., Gudmundsson, L., and Stahl, K.: Towards Pan-European Drought Risk Maps: Quantifying the Link between Drought Indices and Reported Drought
Impacts, Environ. Res. Lett., 10, 014008, https://doi.org/10.1088/1748-9326/10/1/014008, 2015.
Blauhut, V., Stahl, K., and Falasca, G.: Dürre Und Die Öffentliche
Wasser- Versorgung in Baden-Württemberg: Folgen, Umgang Und Wahrnehmung,
Wasserwirtschaft, 11, 31–36, 2020.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
Brakkee, E., van Huijgevoort, M. H. J., and Bartholomeus, R. P.: Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands, Hydrol. Earth Syst. Sci., 26, 551–569, https://doi.org/10.5194/hess-26-551-2022, 2022.
Bruder, A, Tonolla, D., Schweizer, S. P., Vollenweider, S., Langhans, S. D.,
and Wüest, A.: A Conceptual Framework for Hydropeaking Mitigation, Sci. Total Environ., 568, 1204–1212, https://doi.org/10.1016/j.scitotenv.2016.05.032, 2016.
Brunner, M. I., Liechti, K., and Zappa, M.: Extremeness of Recent Drought Events in Switzerland: Dependence on Variable and Return Period Choice, Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, 2019.
Brunner, M. I., Swain, D. L., Gilleland, E., and Wood, A. W.: Increasing
Importance of Temperature as a Contributor to the Spatial Extent of Streamflow Drought, Environ. Res. Lett., 16, 024038, https://doi.org/10.1088/1748-9326/abd2f0, 2021.
Changnon, S. A.: Detecting Drought Conditions in Illinois, Illinois State
Water Survey Champaign, Illinois, USA, https://www.isws.illinois.edu/pubdoc/C/ISWSC-169.pdf (last access: 19 June 2022), 1987.
De Brito, M. M., Kuhlicke, C., and Marx, A: Near-real-time drought impact
assessment: a text mining approach on the 2018/19 drought in Germany,
Environ. Res. Lett., 15, 1040a9, https://doi.org/10.1088/1748-9326/aba4ca, 2020.
DWD: Climate and Environment Observations, http://opendata.dwd.de/climate_environment/CDC/ (last access: 4 March 2021), 2020.
Grecksch, K.: Scenarios for Resilient Drought and Water Scarcity Management
in England and Wales, Int. J. River Basin Manage., 17, 219–217, https://doi.org/10.1080/15715124.2018.1461106, 2019.
Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S., and Prudhomme, C.:
Examining the Large-Scale Spatial Coherence of European Drought Using Regional Indicators of Precipitation and Streamflow Deficit, Hydrol. Process., 25, 1146–1162, https://doi.org/10.1002/hyp.7725, 2011.
Hao, Z. and Singh, V. P.: Drought Characterization from a Multivariate
Perspective: A Review, J. Hydrol., 527, 668–678, https://doi.org/10.1016/j.jhydrol.2015.05.031, 2015.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased Future Occurrences of the Exceptional 2018–2019 Central European Drought under Global Warming, Sci. Rep., 10, 12207, https://doi.org/10.1038/s41598-020-68872-9, 2020.
Hellwig, J., Stoelzle, M., and Stahl, K.: Groundwater and baseflow drought
responses to synthetic recharge stress tests, Hydrol. Earth Syst. Sci., 25,
1053–1068, https://doi.org/10.5194/hess-25-1053-2021, 2021.
Heudorfer, B., Haaf, E., Stahl, K., and Barthel, R.: Index-Based
Characterization and Quantification of Groundwater Dynamics, Water Resour.
Res., 55, 5575–5592, https://doi.org/10.1029/2018WR024418, 2019.
Hisdal H, Tallaksen L. Drought event definition, Technical Report, ARIDE
Technical Report No. 6, University of Oslo, Oslo, Norway, https://www.droughtmanagement.info/literature/UNIVERSITYofOSLO_Drought_Event_Definition_2000.pdf (last access: 19 June 2022), 2000.
Ionita, M., Tallaksen, L. M. Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 Drought from a Climatological Perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Knutson, C., Hayes, M., and Phillips, T.: How to Reduce Drought Risk, Western
Drought Coordination Council, Preparedness and Mitigation Working Group,
National Drought Mitigation Center, Nebraska, USA, https://drought.unl.edu/archive/Documents/NDMC/Planning/risk.pdf (last access: 19 June 2022), 1998.
Kohn, I., Rosin, K., Freudiger, D., BeIz, J. U., Stahl, K., and Weiler, M.:
Niedrigwasser in Deutschland 2011, Hydrol. Wasserbewirt., 58, 4–17, https://doi.org/10.5675/HyWa_2014,1_1, 2014.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J. P., Stahl, K., Prudhomme,
C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M. J.,
Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J.,
Kingston, D. Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R.,
Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 Drought from a
Hydrological Perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024,
https://doi.org/10.5194/hess-21-3001-2017, 2017.
Lloyd-Hughes, B.: The Impracticality of a Universal Drought Definition, Theor. Appl. Climatol., 117, 607–611, https://doi.org/10.1007/s00704-013-1025-7, 2014.
LUBW: Bewertungsmessnetz Grundwasservorräte, https://guq.lubw.baden-wuerttemberg.de/ (last access: 4 March 2021), 2020.
Markonis, Y., Kumar, R., Hanel, M., Rakovec, O., and Máca, P., and AghaKouchak, A.: The Rise of Compound Warm-Season Droughts in Europe, Sci. Adv., 7, eabb9668, https://doi.org/10.1126/sciadv.abb9668, 2021.
Nguyen, H., Wheeler, M. C., Otkin, J. A., Cowan, T., Frost, A., and Stone,
R.: Using the evaporative stress index to monitor flash drought in Australia, Environ. Res. Lett., 14, 064016, https://doi.org/10.1088/1748-9326/ab2103, 2019.
Parry, S., Wilby, R. L., Prudhomme, C., and Wood, P. J.: A Systematic Assessment of Drought Termination in the United Kingdom, Hydrol. Earth Syst. Sci., 20, 4265–4281, https://doi.org/10.5194/hess-20-4265-2016, 2016.
Parry, S., Wilby, R. L., Prudhomme, C., Wood, P., and McKenzie, A.:
Demonstrating the Utility of a Drought Termination Framework: Prospects for
Groundwater Level Recovery in England and Wales in 2018 or Beyond, Environ.
Res. Lett., 13, 064040, https://doi.org/10.1088/1748-9326/aac78c, 2018.
Peichl, M., Thober, S. Samaniego, L., Hansjürgens, B., and Marx, A.: Climate Impacts on Long-Term Silage Maize Yield in Germany, Sci. Rep., 9, 7674, https://doi.org/10.1038/s41598-019-44126-1, 2019.
Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A., AghaKouchak, A., Bonfils, C. J. W., Gallant, A. J. E., Hoerling, M., Hoffmann, D., Kaatz, L., Lehner, F., Llewellyn, D., Mote, P., Neale, R. B., Overpeck, J. T., Sheffield, A., Stahl, K., Svoboda, M., Wheeler, M. C., Wood, A. W., and Woodhouse, C. A.: Flash droughts present a new challenge for subseasonal-to-seasonal prediction, Nat. Clim. Change, 10, 191–199, https://doi.org/10.1038/s41558-020-0709-0, 2020.
Peters, E.: Propagation of drought through groundwater systems: illustrated in the Pang (UK) and Upper-Guadiana (ES) catchments, PhD Thesis, Wageningen
University, Wageningen, the Netherlands, https://edepot.wur.nl/121490 (last access: 19 June 2022), 2003.
Peters, E., Van Lanen, H. A. J. , Torfs, P. J. J. F., and Bier, G.: Drought in Groundwater – Drought Distribution and Performance Indicators, J. Hydrol., 306, 302–317, https://doi.org/10.1016/j.jhydrol.2004.09.014, 2005.
Rauthe, M., Steiner H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A
Central European Precipitation Climatology – Part I: Generation and Validation of a High-Resolution Gridded Daily Data Set (HYRAS), Meteorol. Z., 22, 235–256, https://doi.org/10.1127/0941-2948/2013/0436, 2013.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M.,
Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic Warming
Exacerbates European Soil Moisture Droughts, Nat. Clim. Change, 8, 421–426,
https://doi.org/10.1038/s41558-018-0138-5, 2018.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A.,
Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, G., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling, A., Rose, L., Ruehr, N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S., and Kahmen, A.: A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests, Basic Appl. Ecol., 45, 86–103, https://doi.org/10.1016/j.baae.2020.04.003, 2020.
Siebert, C., Blauhut, V., and Stahl, K.: Das Dürrerisiko des Wasserkraftsektors in Baden-Württemberg, Wasserwirtschaft, 6, 48–51, https://doi.org/10.1007/s35147-021-0846-z, 2021.
Skiadaresis, G., Schwarz, J. A., and Bauhus, J.: Groundwater Extraction in
Floodplain Forests Reduces Radial Growth and Increases Summer Drought
Sensitivity of Pedunculate Oak Trees (Quercus Robur L.), Front. Forest. Global Change, 2, 1–16, https://doi.org/10.3389/ffgc.2019.00005, 2019.
Spinoni, J., Naumann, G., Vogt, J. V., and Barbosa, P.: The Biggest Drought
Events in Europe from 1950 to 2012, J. Hydrol.: Reg. Stud. 3, 509–524,
https://doi.org/10.1016/j.ejrh.2015.01.001, 2015.
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A.
F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A.,
Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of
European drought events: insights from an international database of
text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
Stephan, R., Erfurt, M., Terzi, S., Žun, M., Kristan, B., Haslinger, K., and Stahl, K.: An inventory of Alpine drought impact reports to explore past droughts in a mountain region, Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, 2021.
Stoelzle, M., Stahl, K., Morhard, A., and Weiler, M.: Streamflow sensitivity to drought scenarios in catchments with different geology, Geophys. Res. Lett., 41, 6174–6183, https://doi.org/10.1002/2014GL061344, 2014.
Stoelzle, M., Weiler, M., Stahl, K., Morhard, A., and Schuetz, T.: Is There a
Superior Conceptual Groundwater Model Structure for Baseflow Simulation?,
Hydrol. Process., 29, 1301–1313, https://doi.org/10.1002/hyp.10251, 2015.
Stoelzle, M., Staudinger, M., Stahl, K., and Weiler, M.: Stress testing as
complement to climate scenarios: recharge scenarios to quantify streamflow
drought sensitivity, Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, 2020.
Tallaksen, L. M. and Van Lanen, H. A. J.: Hydrological Drought, Processes and
Estimation Methods for Streamflow and Groundwater, in: Developments in Water
Science, vol. 48, Elsevier Science B.V., Amsterdam, the Netherlands, ISBN 9780444516886-579, 2004.
Tallaksen, L. M. and Stahl, K.: Spatial and Temporal Patterns of Large-Scale
Droughts in Europe: Model Dispersion and Performance, Geophys. Res. Lett., 41, 429–434, https://doi.org/10.1002/2013GL058573, 2014.
Tegel, W., Seim, A., Skiadaresis, G., Ljungqvist. F. C., Kahle, H. P., Land,
A., Muigg, B., Nicolussi, K., and Büntgen, U.: Higher Groundwater Levels in Western Europe Characterize Warm Periods in the Common Era, Sci. Rep., 10,
16284, https://doi.org/10.1038/s41598-020-73383-8, 2020.
Tijdeman, E. and Menzel, L.: The development and persistence of soil
moisture stress during drought across southwestern Germany, Hydrol. Earth
Syst. Sci., 25, 2009–2025, https://doi.org/10.5194/hess-25-2009-2021, 2021a.
Tijdeman, E. and Menzel, L.: Daily Gridded Soil Moisture Simulations on a 1 Km Resolution Grid Covering Baden-Württemberg, version 1, Heidata repository [data set], https://doi.org/10.11588/data/PRXZAS, 2021b.
Tijdeman, E., Stahl, K. and Tallaksen, L. M.: Drought Characteristics Derived
Based on the Standardized Streamflow Index – a Large Sample Comparison for
Parametric and Nonparametric Methods, Water Resour. Res., 56, e2019WR026315,
https://doi.org/10.1029/2019WR026315, 2020.
Tijdeman, E. Blauhut, V., Stoelzle, M., Menzel, L., and Stahl, K.: Data set: Different drought types and the spatial variability in their hazard, impact, and propagation characteristics (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6449934, 2022.
Toreti, A., Belward, A., Perez-Dominguez, I., Naumann, G., Luterbacher, J.,
Cronie, O., Seguini, L., Manfron, G., Lopez-Lozano, R., Baruth, B., Van den
Berg, M., Dentener. F., Ceglar, A., Chatzopoulos, T., and Zampieri, M.: The
Exceptional 2018 European Water Seesaw Calls for Action on Adaptation,
Earth's Future, 7, 652–663, https://doi.org/10.1029/2019EF001170, 2019.
UDO: Umwelt-Daten Und -Karten Online, https://udo.lubw.baden-wuerttemberg.de/ (last access: 4 March 2021), 2020.
Van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M.,
Vidal, J.-P., Vlnas, R., Tallaksen, L. M., Stahl, K., Hannaford, J., Delus,
C., Fendekova, M., Mediero, L., Prudhomme, C., Rets, E., Romanowicz, R. J.,
Gailliez, S., Wong, W. K., Adler, M.-J., Blauhut, V., Caillouet, L., Chelcea, S., Frolova, N., Gudmundsson, L., Hanel, M., Haslinger, K., Kireeva, M., Osuch, M., Sauquet, E., Stagge, J. H., and Van Loon, A. F.: Hydrology Needed to Manage Droughts: The 2015 European Case, Hydrol. Process., 30, 3097–3104, https://doi.org/10.1002/hyp.10838, 2016.
Van Loon, A. F.: Hydrological Drought Explained, WIRES Water, 2, 359–392,
https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946,
https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. J., Teuling, A.
J., and Uijlenhoet, R.: How climate seasonality modifies drought duration
and deficit, J. Geophys. Res.-Atmos., 119, 4640–4656, https://doi.org/10.1002/2013JD020383, 2014.
Van Vliet, M. T. H., Sheffield, J., Wiberg, D., and Wood, E. F.: Impacts of
Recent Drought and Warm Years on Water Resources and Electricity Supply
Worldwide, Environ. Res. Lett., 11, 124021, https://doi.org/10.1088/1748-9326/11/12/124021, 2016.
Vicente-Serrano, S. M., Peña-Angulo, D., Murphy, C., López-Moreno,
J. I., Tomas-Burguera, M., Domínguez-Castro, F., Tian, F., Eklundh, L.,
Cai, Z., Alvarez-Farizo, B., Noguera, I., Camarero, J. J., Sánchez-Salguero, R., Gazol, A., Grainger, S., Conradt, T., Boincean,
B., and El Kenawy, A.: The Complex Multi-Sectoral Impacts of Drought: Evidence from a Mountainous Basin in the Central Spanish Pyrenees, Sci. Total
Environ., 769, 144702, https://doi.org/10.1016/j.scitotenv.2020.144702, 2021.
Wanders, N. and Wada, Y.: Human and Climate Impacts on the 21st Century
Hydrological Drought, J. Hydrol., 526, 208–220, https://doi.org/10.1016/j.jhydrol.2014.10.047, 2015.
Weibull, W.: A Statistical Theory of Strength of Materials, Ing. Vet. Ak.
Handl., Stockholm, Sweden, https://www.scribd.com/doc/220393982/A-Statistical-Theory-of-Strength-of-Materials-by-Weibull (last access: 19 June 2022), 1939.
Wilhite, D. A. and Glantz, M. H.: Understanding: The Drought Phenomenon: The
Role of Definitions, Water Int., 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Wilhite, D. A., Easterling, W. E., and Wood, D. A.: Planning for Drought: Toward a Reduction of Societal Vulnerability, Routledge, New York, USA, ISBN 9780367282981, 2019.
Wu, J., Chen, X., Yao, H., and Zhang, D.: Multi-timescale assessment of
propagation thresholds from meteorological to hydrological drought, Sci. Total Environ., 765, 144232, https://doi.org/10.1016/j.scitotenv.2020.144232, 2021.
Zargar, A., Sadiq, R., Naser, B., and Khan, F. I.: A Review of Drought Indices, Environ. Rev., 19, 333–349, https://doi.org/10.1139/a11-013, 2011.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., Van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., andVignotto, E.: A Typology of Compound Weather and Climate Events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
We identified different drought types with typical hazard and impact characteristics. The summer...
Altmetrics
Final-revised paper
Preprint