Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Education, financial aid, and awareness can reduce smallholder farmers' vulnerability to drought under climate change
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Anne F. van Loon
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Ted I. E. Veldkamp
Urban Technology, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands
Jeroen C. J. H. Aerts
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Related authors
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025, https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary
Short summary
Global flood models are key to the mitigation of coastal flooding impacts, yet they still have limitations when providing actionable insights locally. We present a multiscale framework that couples dynamic water level and flood models and bridges the fully global and local modelling approaches. We apply it to three historical storms. Our findings reveal that the importance of model refinements varies based on the study area characteristics and the storm’s nature.
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025, https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Short summary
Persistent droughts change how rivers respond to rainfall. Our study of over 5000 catchments worldwide found that hydrological and soil moisture droughts decrease river-flow response to rain, especially in arid regions, while vegetation decline slightly increases it. Snow-covered areas are more resilient due to stored water buffering changes. Droughts can also cause long-lasting changes, with short and intense droughts reducing river response to rainfall and prolonged droughts increasing it.
Vylon Ooms, Thijs Endendijk, Jeroen C. J. H. Aerts, W. J. Wouter Botzen, and Peter Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1882, https://doi.org/10.5194/egusphere-2025-1882, 2025
Short summary
Short summary
Intense rainfall events cause increasingly severe damages to urban areas globally. We use unique insurance claims data to study the effect of nature-based and other adaptation measures on damage. We compare an area in Amsterdam where measures have been implemented to a similar, adjacent area without measures using an innovative method. We find a significant reduction of damage where the adaptation measures were implemented. Urban areas can reduce rain damage by implementing adaptation measures.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. Van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 4341–4368, https://doi.org/10.5194/nhess-24-4341-2024, https://doi.org/10.5194/nhess-24-4341-2024, 2024
Short summary
Short summary
Critical infrastructures (CIs) are exposed to natural hazards, which may result in significant damage and burden society. Vulnerability is a key determinant for reducing these risks, yet crucial information is scattered in the literature. Our study reviews over 1510 fragility and vulnerability curves for CI assets, creating a unique publicly available physical vulnerability database that can be directly used for hazard risk assessments, including floods, earthquakes, windstorms, and landslides.
Julius Schlumberger, Robert Šakić Trogrlić, Jeroen C. J. H. Aerts, Jung-Hee Hyun, Stefan Hochrainer-Stigler, Marleen de Ruiter, and Marjolijn Haasnoot
EGUsphere, https://doi.org/10.5194/egusphere-2024-3655, https://doi.org/10.5194/egusphere-2024-3655, 2024
Short summary
Short summary
This study presents a dashboard to help decision-makers manage risks in a changing climate. Using interactive visualizations, it simplifies complex choices, even with uncertain information. Tested with 54 users of varying expertise, it enabled accurate responses to 71–80 % of questions. Users valued its scenario exploration and detailed data features. While effective, the guidance and set of visualizations could be extended and the prototype could be adapted for broader applications.
Ileen N. Streefkerk, Jeroen C. J. H. Aerts, Jens de Bruijn, Khalid Hassaballah, Rhoda Odongo, Teun Schrieks, Oliver Wasonga, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2382, https://doi.org/10.5194/egusphere-2024-2382, 2024
Short summary
Short summary
In East Africa are conflict over water and vegetation prominent. On top of that, water abstraction of commercial farms are increasing the competition of water. Therefore, this study has developed a model which can investigate what the influence is of these farming activities on the water balance of the region and people's livelihood activities in times of dry periods. We do that by ‘replacing’ the farms in the model, and see what the effect would be if there were communities or forests instead.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, https://doi.org/10.5194/nhess-23-2365-2023, 2023
Short summary
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Raed Hamed, Sem Vijverberg, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, https://doi.org/10.5194/esd-14-255-2023, 2023
Short summary
Short summary
Spatially compounding soy harvest failures can have important global impacts. Using causal networks, we show that soy yields are predominately driven by summer soil moisture conditions in North and South America. Summer soil moisture is affected by antecedent soil moisture and by remote extra-tropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our results highlight physical pathways by which ENSO can drive spatially compounding impacts.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Raed Hamed, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, https://doi.org/10.5194/esd-12-1371-2021, 2021
Short summary
Short summary
Soy yields in the US are affected by climate variability. We identify the main within-season climate drivers and highlight potential compound events and associated agricultural impacts. Our results show that soy yields are most negatively influenced by the combination of high temperature and low soil moisture during the summer crop reproductive period. Furthermore, we highlight the role of temperature and moisture coupling across the year in generating these hot–dry extremes and linked impacts.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Anne F. Van Loon, Imogen Lester-Moseley, Melanie Rohse, Phil Jones, and Rosie Day
Geosci. Commun., 3, 453–474, https://doi.org/10.5194/gc-3-453-2020, https://doi.org/10.5194/gc-3-453-2020, 2020
Short summary
Short summary
The Global South is vulnerable to natural hazards like floods and droughts, but creativity could support community preparedness. We mapped 267 papers that use a variety of art forms. They aim to raise the public's awareness or instigate adaptation by participants. In our pilot in South Africa, community members developed stories about preparing for future drought. This led to an imagination of future events, conversations about adaptation, intergenerational exchange, and increased awareness.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Jens A. de Bruijn, James E. Daniell, Antonios Pomonis, Rashmin Gunasekera, Joshua Macabuag, Marleen C. de Ruiter, Siem Jan Koopman, Nadia Bloemendaal, Hans de Moel, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-282, https://doi.org/10.5194/nhess-2020-282, 2020
Revised manuscript not accepted
Short summary
Short summary
Following hurricanes and other natural hazards, it is important to quickly estimate the damage caused by the hazard such that recovery aid can be granted from organizations such as the European Union and the World Bank. To do so, it is important to estimate the vulnerability of buildings to the hazards. In this research, we use post-disaster observations from social media to improve these vulnerability assessments and show its application in the Bahamas following Hurricane Dorian.
Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert
Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, https://doi.org/10.5194/piahs-383-297-2020, 2020
Short summary
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Cited articles
Adamtey, N., Musyoka, M. W., Zundel, C., Cobo, J. G., Karanja, E., Fiaboe, K. K. M., Muriuki, A., Mucheru-Muna, M., Vanlauwe, B., Berset, E., Messmer, M. M., Gattinger, A., Bhullar, G. S., Cadisch, G., Fliessbach, A., Mäder, P., Niggli, U., and Foster, D.: Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya, Agric. Ecosyst. Environ., 235, 61–79, https://doi.org/10.1016/j.agee.2016.10.001, 2016.
Adger, W. N.: Vulnerability, Global Environ. Change, 16, 268–281,
https://doi.org/10.1016/j.gloenvcha.2006.02.006, 2006.
Aerts, J. C. J. H. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., and Kunreuther, H.: Integrating human behaviour dynamics into flood disaster risk assessment, Nat. Clim. Change, 8, 193–199, https://doi.org/10.1038/s41558-018-0085-1, 2018.
Ailliot, P., Allard, D., Monbet, V., Naveau, P., Ailliot, P., Allard, D.,
Monbet, V., and Naveau, P.: Stochastic weather generators: an overview of
weather type models Titre: Générateurs stochastiques de condition
météorologiques: une revue des modèles à type de temps, J.
la Société Française Stat., 156, 101–113, 2015.
Aker, J. C.: Dial “A” for agriculture: a review of information and communication technologies for agricultural extension in developing countries, Agric. Econ., 42, 631–647, https://doi.org/10.1111/j.1574-0862.2011.00545.x, 2011.
Allen, R.: Penman–Monteith Equation, in: Encyclopedia of Soils in the Environment, Elsevier, 180–188, https://doi.org/10.1016/B0-12-348530-4/00399-4, 2005.
Ansah, I. G. K., Oduro, H., and Osae, A. L.: A Comparative Analysis of Profit Efficiency in Maize and Cowpea Production in the Ejura Sekyedumase District of the Ashanti Region, Ghana, Res. Appl. Econ., 6, 106, https://doi.org/10.5296/rae.v6i4.6320, 2014.
Ararso, E., Geremu, T., Ayele, G., Mamo, D., Diriba, A., and Zone, W. H.: Effects of Level Fanya Juu and Fanya Chin Structures on Grain Yield of Maize in Moisture Stress Areas of Daro Labu District, J. Biol. Agricult. Healthcare, 6, 94–98, 2016.
Asfaw, S., Carraro, A., Davis, B., Handa, S., and Seidenfeld, D.: Cash Transfer Programmes for Managing Climate Risk: Evidence from a Randomized Experiment in Zambia, FAO, Rome, 35 pp., 2017.
Barrientos, A.: From Evidence to Action: The Story of Cash Transfers and Impact Evaluation in Sub-Saharan Africa, Edited by Benjamin Davis, Sudhanshu Handa, J. Dev. Stud., 52, 1831–1832, https://doi.org/10.1080/00220388.2016.1222679, 2016.
Barron, J. and Okwach, G.: Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya, J. Agricult. Water Manage., 74, 1–21, https://doi.org/10.1016/j.agwat.2004.11.002, 2005.
Below, T., Artner, A., Siebert, R., and Seiber, S.: Micro-level Practices to
Adapt to Climate Change for African Small-scale Farmers: a review of selected literature, Discuss. Pap., IFPRI, 0953, 28, 2010.
Berger, T.: Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis, Agric. Econ., 25, 245–260, https://doi.org/10.1016/S0169-5150(01)00082-2, 2001.
Berger, T., Troost, C., Wossen, T., Latynskiy, E., Tesfaye, K., and Gbegbelegbe, S.: Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia, Agric. Econ., 48, 693–706, https://doi.org/10.1111/agec.12367, 2017.
Blair, P. and Buytaert, W.: Socio-hydrological modelling: A review asking “why, what and how?”, Hydrol. Earth Syst. Sci., 20, 443–478, https://doi.org/10.5194/hess-20-443-2016, 2016.
Brooks, S., Thompson, J., Odame, H., Kibaara, B., Nderitu, S., Karin, F., and Millstone, E.: Environmental change and maize innovation in Kenya: Exploring pathways in and out of maize, STEPS Work. Pap., 1–75, 2009.
Brown, C., Meeks, R., Hunu, K., and Yu, W.: Hydroclimate risk to economic growth in sub-Saharan Africa, Climatic Change, 106, 621–647, https://doi.org/10.1007/s10584-010-9956-9, 2011.
Bryan, E., Deressa, T. T., Gbetibouo, G. A., and Ringler, C.: Adaptation to
climate change in Ethiopia and South Africa: options and constraints, Environ. Sci. Policy, 12, 413–426, https://doi.org/10.1016/j.envsci.2008.11.002, 2009.
Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S., and Herrero,
M.: Adapting agriculture to climate change in Kenya: Household strategies and determinants, J. Environ. Manage., 114, 26–35, https://doi.org/10.1016/j.jenvman.2012.10.036, 2013.
Burton, R. J. F.: The influence of farmer demographic characteristics on
environmental behaviour: A review, J. Environ. Manage., 135, 19–26,
https://doi.org/10.1016/j.jenvman.2013.12.005, 2014.
Carrao, H., Naumann, G., and Barbosa, P.: Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability, Global Environ. Change, 39, 108–124, https://doi.org/10.1016/j.gloenvcha.2016.04.012, 2016.
CCAFS: Baseline Indicators for Makueni/Wote in Kenya, East Africa, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark, 2015.
Cervigni, R. and Morris, M. (Eds.): Confronting Drought in Africa's Drylands: Opportunities for Enhancing Resilience, Africa Development Forum series, World Bank, Washington, D.C., https://doi.org/10.1596/978-1-4648-0817-3, 2016.
Charles, N., Rashid, H., and James, C.: Analysis of determinants of farm-level adaptation measures to climate change in Southern Africa, J. Dev. Agric. Econ., 6, 232–241, https://doi.org/10.5897/JDAE12.0441, 2014.
CIAT and World Bank: Climate-Smart Agriculture in Kenya, CSA Country Profiles for Africa, Asia, and Latin America and the Caribbean Series, The World Bank Group, Washington, D.C., https://cgspace.cgiar.org/handle/10568/69545Washington (last access: May 2021), 2015.
Conway, D., Nicholls, R. J., Brown, S., Tebboth, M. G. L., Adger, W. N.,
Ahmad, B., Biemans, H., Crick, F., Lutz, A. F., De Campos, R. S., Said, M.,
Singh, C., Zaroug, M. A. H., Ludi, E., New, M., and Wester, P.: The need for
bottom-up assessments of climate risks and adaptation in climate-sensitive
regions, Nat. Clim. Change, 9, 503–511, https://doi.org/10.1038/s41558-019-0502-0, 2019.
D'alessandro, S. P., Caballero, J., Lichte, J., and Simpkin, S.: Kenya Agricultural Risk Assessment, Washington, D.C., https://openknowledge.worldbank.org/handle/10986/23350 (last access: May 2021), 2015.
Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T., and Yesuf, M.:
Determinants of farmers' choice of adaptation methods to climate change in the Nile Basin of Ethiopia, Global Environ. Change, 19, 248–255,
https://doi.org/10.1016/j.gloenvcha.2009.01.002, 2009.
Deressa, T. T., Hassan, R. M., and Ringler, C.: Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia, J. Agric. Sci., 149, 23–31, https://doi.org/10.1017/S0021859610000687, 2011.
De Stefano, L., Tánago, I. G., Ballesteros, M., Urquijo, J., Blauhut, V., James, H., and Stahl, K.: Methodological Approach Considering Different Factors Influencing Vulnerability – Pan-European Scale, Technical Report, 128 pp., https://www.academia.edu/14388306/METHODOLOGICAL_APPROACH_CONSIDERING_DIFFERENT_FACTORS_INFLUENCING_VULNERABILITY_PAN_EUROPEAN_SCALE (last access: May 2021), 2015.
Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought
and flood in the Anthropocene: Feedback mechanisms in reservoir operation,
Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017.
Di Falco, S.: Adaptation to climate change in Sub-Saharan agriculture: Assessing the evidence and rethinking the drivers, Eur. Rev. Agricult. Econ., 41, 405–430, https://doi.org/10.1093/erae/jbu014, 2014.
Dobbie, S., Schreckenberg, K., Dyke, J. G., Schaafsma, M., and Balbi, S.: Agent-Based Modelling to Assess Community Food Security and Sustainable Livelihoods, J. Artif. Soc. Soc. Simul., 21, 9, https://doi.org/10.18564/jasss.3639, 2018.
Droogers, P. and Allen, R. G.: Estimating reference evapotranspiration under inaccurate data conditions, Irrig. Drain. Syst., 16, 33–45, https://doi.org/10.1023/A:1015508322413, 2002.
Eiser, J. R., Bostrom, A., Burton, I., Johnston, D. M., McClure, J., Paton,
D., van der Pligt, J., and White, M. P.: Risk interpretation and action: A
conceptual framework for responses to natural hazards, Int. J. Disast. Risk
Reduct., 1, 5–16, https://doi.org/10.1016/j.ijdrr.2012.05.002, 2012.
Enfors, E. I. and Gordon, L. J.: Dealing with drought: The challenge of using water system technologies to break dryland poverty traps, Global Environ. Change, 18, 607–616, https://doi.org/10.1016/j.gloenvcha.2008.07.006, 2008.
Erenstein, O., Kassie, G. T., and Mwangi, W.: Comparative analysis of maize
based livelihoods in drought prone regions of eastern Africa: Adaptation
lessons for climate change, Increasing Agric. Product. Enhancing Food Secur.
Africa New Challenges Oppor., 1–13, https://ccafs.cgiar.org/resources/publications/comparative-analysis-maize-based-livelihoods-drought-prone
-regions (last access: May 2021), 2011.
Eriksen, S. H., Brown, K., and Kelly, M.: The dynamics of vulnerability:
locating coping strategies in Kenya and Tanzania, Geogr. J., 171, 287–305, 2005.
FAO: Farmer field schools on land and water management, 24–29, https://www.fao.org/documents/card/en/c/56bcd1cd-7912-5c89-baa1-ddf1fafd5f6c/ (last access: May 2021), 2008.
Filatova, T., Verburg, P. H., Parker, D. C., and Stannard, C. A.: Spatial agent-based models for socio-ecological systems: Challenges and prospects, Environ. Model. Softw., 45, 1–7, https://doi.org/10.1016/j.envsoft.2013.03.017, 2013.
Floyd, D. L., Prentice-Dunn, S., and Rogers, R. W.: A meta-analysis of research on protection motivation theory, J. Appl. Soc. Psychol., 30,
407–429, https://doi.org/10.1111/j.1559-1816.2000.tb02323.x, 2000.
Foster, T., Brozović, N., Butler, A. P., Neale, C. M. U., Raes, D.,
Steduto, P., Fereres, E., and Hsiao, T. C.: AquaCrop-OS: An open source version of FAO's crop water productivity model, Agr. Water Manage., 181,
18–22, https://doi.org/10.1016/j.agwat.2016.11.015, 2017.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Funk, C. C., Nicholson, S. E., and Fink, A.: 3A.6A Moving Beyond the East African Climate Paradox, AMS 99th annual meeting, https://ams.confex.com/ams/2019Annual/webprogram/Paper352397.html (last access: May 2021), 2019.
Gbetibouo, G. A.: Understanding Farmers' Perceptions and Adaptations to
Climate Change and Variability: The Case of the Limpopo Basin, South Africa,
https://www.ifpri.org/publication/understanding-farmers-perceptions-and-adaptations-climate- (last access: May 2021), 2009.
Gebrechorkos, S. H., Hülsmann, S., and Bernhofer, C.: Analysis of climate variability and droughts in East Africa using high-resolution climate data products, Global Planet. Change, 186, 103130, https://doi.org/10.1016/j.gloplacha.2020.103130, 2020.
Gebrehiwot, T. and van der Veen, A.: Farmers Prone to Drought Risk: Why Some
Farmers Undertake Farm-Level Risk-Reduction Measures While Others Not?,
Environ. Manage., 55, 588–602, https://doi.org/10.1007/s00267-014-0415-7, 2015.
Gicheru, P. T.: Effects of residue mulch and tillage on soil moisture conservation, Soil Technol., 7, 209–220, https://doi.org/10.1016/0933-3630(94)90022-1, 1994.
Government of the Republic of Kenya: Sector plan for drought risk management and ending drought risk, Drought, Risk Management, and Policy, CRC Press, Nairoibi, https://doi.org/10.1201/b14918, 2013.
Grothmann, T. and Patt, A.: Adaptive capacity and human cognition : The process of individual adaptation to climate change, Global Environ. Change, 15, 199–213, https://doi.org/10.1016/j.gloenvcha.2005.01.002, 2005.
Guimarães Nobre, G., Davenport, F., Bischiniotis, K., Veldkamp, T., Jongman, B., Funk, C. C., Husak, G., Ward, P. J., and Aerts, J. C. J. H.: Financing agricultural drought risk through ex-ante cash transfers, Sci. Total Environ., 653, 523–535, https://doi.org/10.1016/j.scitotenv.2018.10.406, 2019.
Hailegiorgis, A., Crooks, A., and Cioffi-Revilla, C.: An agent-based model
of rural households' adaptation to climate change, J. Artif. Soc. Soc. Simul., 21, 4, https://doi.org/10.18564/jasss.3812, 2018.
Hartwich, F., Halgin, D., and Monge, M.: How Change Agents and Social Capital Influence the Adoption of Innovations among Small Farmers. Evidence from Social Networks in Rural Bolivia, IFPRI Discussion Paper, 76 ST-How Change Agents and Social Capital Infl pp., ET – 00761, https://doi.org/10.5367/000000008784648889, 2008.
Hassan, S., Antunes, L., and Gilbert, N.: Simulating Interacting Agents and Social Phenomena, edited by: Takadama, K., Cioffi-Revilla, C., and Deffuant, G., Springer, Tokyo, Japan, https://doi.org/10.1007/978-4-431-99781-8, 2010.
Holden, S. T.: Risk Preferences, Shocks and Technology Adoption: Farmers' Responses to Drought Risk, https://www.econstor.eu/handle/10419/242738 (last access: May 2021), 2015.
Huber, R., Bakker, M., Balmann, A., Berger, T., Bithell, M., Brown, C.,
Grêt-Regamey, A., Xiong, H., Le, Q. B., Mack, G., Meyfroidt, P., Millington, J., Müller, B., Polhill, J. G., Sun, Z., Seidl, R., Troost,
C., and Finger, R.: Representation of decision-making in European agricultural agent-based models, Agric. Syst., 167, 143–160,
https://doi.org/10.1016/j.agsy.2018.09.007, 2018.
Ifejika Speranza, C.: Drought Coping and Adaptation Strategies: Understanding Adaptations to Climate Change in Agro-pastoral Livestock Production in Makueni District, Kenya, Eur. J. Dev. Res., 22, 623–642, https://doi.org/10.1057/ejdr.2010.39, 2010.
Ifejika Speranza, C., Kiteme, B., and Wiesmann, U.: Droughts and famines: The underlying factors and the causal links among agro-pastoral households in semi-arid Makueni district, Kenya, Global Environ. Change, 18, 220–233, https://doi.org/10.1016/j.gloenvcha.2007.05.001, 2008.
Jager, W.: Using agent-based modelling to explore behavioural dynamics affecting our climate, Curr. Opin. Psychol., 42, 133–139,
https://doi.org/10.1016/j.copsyc.2021.06.024, 2021.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, J., Janowiak, K., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–470, 1996.
Kariuki, G. M.: Effect of Climate Variability on Output and Yields of Selected Crops in Kenya, Kenyatta University, https://ir-library.ku.ac.ke/bitstream/handle/123456789/17622/Effect of climate variability on output.....pdf?isAllowed=y&sequence=1 (last access: May 2021), 2016.
Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., Rizzoli, A. E., van Delden, H., and Voinov, A. A.: Selecting among five common modelling approaches for integrated environmental assessment and management, Environ. Model. Softw., 47, 159–181, https://doi.org/10.1016/j.envsoft.2013.05.005, 2013.
Keshavarz, M. and Karami, E.: Farmers' pro-environmental behavior under
drought: Application of protection motivation theory, J. Arid Environ., 127,
128–136, https://doi.org/10.1016/j.jaridenv.2015.11.010, 2016.
Keshavarz, M., Karami, E., and Zibaei, M.: Adaptation of Iranian farmers to
climate variability and change, Reg. Environ. Change, 14, 1163–1174,
https://doi.org/10.1007/s10113-013-0558-8, 2014.
Khisa, G. V.: People's perception on climate change and its effects on livelihood in Kitui County, Int. J. Dev. Sustain., 7, 70–81, 2018.
Khisa, G. V. and Gladys, K. V.: Rainfall and temperature variability and its effect on food security in Kitui county, Kenya, Int. J. Dev. Sustain., 6, 924–939, 2017.
Khisa, G. V. and Oteng, S. B.: Coping Strategies against Climate Change in Agricultural Production in Kitui District, Kenya, J. Agric. Nat. Resour. Sci., 1, 71–86, 2014.
Kiboi, M. N., Ngetich, K. F., Diels, J., Mucheru-Muna, M., Mugwe, J., and Mugendi, D. N.: Minimum tillage, tied ridging and mulching for better maize yield and yield stability in the Central Highlands of Kenya, Soil Tillage Res., 170, 157–166, https://doi.org/10.1016/j.still.2017.04.001, 2017.
Kitinya, K. T., Onwonga, R. N., Onyango, C., Mbuvi, J. P., and Kironchi, G.:
Climate Change and Variability: Farmers' Perception, Experience and Adaptation Strategies in C in Makueni County, Kenya, Asian J. Agriculut.
Rural Dev., 2, 411–421, 2012.
Kitonyo, O. M., Chemining'wa, G. N., and Muthomi, J. W.: Productivity of farmer-preferred maize varieties intercropped with beans in semi-arid Kenya, Int. J. Agron. Agricult. Res., 3, 6–16, 2013.
Kitui County Integrated report 2013–2017: Republic Of Kenya County Government Of Kitui First County Integrated Development Plan 2013–2017,
Planning for Sustainable Socio-Economic Growth and Development Towards a
Globally Competitive and Prosperous Nation, 424 pp., https://repository.kippra.or.ke/handle/123456789/585?show=full (last access: May 2021), 2017.
Koome, D. N.: Factors Influencing the Adoption of “Zai” Pit Farming Technology To Enhance Food Security: the Case of Makueni County, Kenya By,
University of Nairobi, Nairobi, http://erepository.uonbi.ac.ke/handle/11295/103267 (last access: May 2021), 2017.
Kremmydas, D., Athanasiadis, I. N., and Rozakis, S.: A review of Agent Based
Modeling for agricultural policy evaluation, Agric. Syst., 164, 95–106,
https://doi.org/10.1016/j.agsy.2018.03.010, 2018.
Kulecho, I. K. and Weatherhead, E. K.: Adoption and experience of low-cost drip irrigation in Kenya, Irrig. Drain., 55, 435–444, https://doi.org/10.1002/ird.261, 2006.
Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., Babram, M. A., and Abdellah, M.: ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs, J. Artific. Soc. Social Simul., 21, 9, https://doi.org/10.18564/jasss.3646, 2018.
Lalani, B., Dorward, P., Holloway, G., and Wauters, E.: Smallholder farmers'
motivations for using Conservation Agriculture and the roles of yield, labour and soil fertility in decision making, Agric. Syst., 146, 80–90,
https://doi.org/10.1016/j.agsy.2016.04.002, 2016.
Le Dang, H., Li, E., Nuberg, I., and Bruwer, J.: Farmers' assessments of
private adaptive measures to climate change and influential factors: A study
in the Mekong Delta, Vietnam, Nat. Hazards, 71, 385–401,
https://doi.org/10.1007/s11069-013-0931-4, 2014.
Lyon, B. and Vigaud, N.: Unraveling East Africa's Climate Paradox, AGU, 265–281, https://doi.org/10.1002/9781119068020.ch16, 2017.
Maddux, J. E. and Rogers, R. W.: Protection motivation and self-efficacy: A
revised theory of fear appeals and attitude change, J. Exp. Soc. Psychol., 19, 469–479, https://doi.org/10.1016/0022-1031(83)90023-9, 1983.
Makoti, A. and Waswa, F.: Rural Community Coping Strategies with Drought-Driven Food Insecurity in Kwale County, Kenya, J. Food Secur., 3, 87–93, https://doi.org/10.12691/jfs-3-3-4, 2015.
Mandleni, B. and Anim, F. D. K.: Climate Change Awareness and Decision on
Adaptation Measures by Livestock Farmers in South Africa, J. Agric. Sci., 3,
1–26, https://doi.org/10.5539/jas.v3n3p258, 2011.
Mango, N., Kristjanson, P., Krishna, A., Radeny, M., Omolo, A., and Arunga, M.: Why is it some households fall into poverty at the same time others are escaping poverty? Evidence from Kenya, Nairobi, https://www.ilri.org/publications/why-it-some-households-fall-poverty-same-time-others-are- (last access: May 2021), 2009.
Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., and Gotts, N. M.: Agent-based land-use models: A review of applications, Landscape Ecol., 22, 1447–1459, https://doi.org/10.1007/s10980-007-9135-1, 2007.
Mehan, S., Guo, T., Gitau, M., and Flanagan, D. C.: Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation, MDPI Climate, 5, 26, https://doi.org/10.3390/cli5020026, 2017.
Mehryar, S., Sliuzas, R., Schwarz, N., Sharifi, A., and van Maarseveen, M.:
From individual Fuzzy Cognitive Maps to Agent Based Models: Modeling
multi-factorial and multi-stakeholder decision-making for water scarcity, J.
Environ. Manage., 250, 109482, https://doi.org/10.1016/j.jenvman.2019.109482, 2019.
Mo, F., Wang, J.-Y., Xiong, Y.-C., Nguluu, S. N., and Li, F.-M.: Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity, Eur. J. Agron., 80, 124–136, https://doi.org/10.1016/j.eja.2016.07.005, 2016.
Mosberg, M. and Eriksen, S. H.: Responding to climate variability and change in dryland Kenya: The role of illicit coping strategies in the politics of adaptation, Global Environ. Change, 35, 545–557, https://doi.org/10.1016/j.gloenvcha.2015.09.006, 2015.
Mude, A., Ouma, R., Steeg, J. van de, Kariuki, J., Opiyo, D., and Tipilda, A.: Kenya Adaptation to Climate Change in the Arid Lands: Anticipating, Adapting to and Coping with Climate Risks in Kenya – Operational Recommendations for KACCAL, ILRI Research Report 18, ILRI – International Livestock Research Institute, Nairobi, 135 pp., https://cgspace.cgiar.org/handle/10568/2186 (last access: May 2021), 2007.
Muhammad, L., Mwabu, D., Mulwa, R., Mwangi, W., Langyintuo, A., and La Rovere, R.: Characterization of Maize Producing Households in Machakos and Makueni Districts in Kenya, 32 pp., https://repository.cimmyt.org/handle/10883/1092 (last access: May 2021), 2010.
Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., and Schwarz, N.: Describing human decisions in agent-based models – ODD+D, an extension of the ODD protocol, Environ. Model. Softw., 48, 37–48, https://doi.org/10.1016/j.envsoft.2013.06.003, 2013.
Muriu-Ng'ang'a, F. W., Mucheru-Muna, M., Waswa, F., and Mairura, F. S.: Socio-economic factors influencing utilisation of rain water harvesting and saving technologies in Tharaka South, Eastern Kenya, Agr. Water Manage., 194, 150–159, https://doi.org/10.1016/j.agwat.2017.09.005, 2017.
Mutunga, E., Ndungu, C., and Muendo, P.: Smallholder Farmers Perceptions and Adaptations to Climate Change and Variability in Kitui County, Kenya, J. Earth Sci. Clim. Change, 8, 389, https://doi.org/10.4172/2157-7617.1000389, 2017.
Muyanga, M.: Insights to rural household food insecurity in Kenya, Uganda, J. Agric. Sci., 9, 791–796, 2004.
Muyanga, M. and Jayne, T. S.: Agricultural Extension in Kenya: Practice and Policy Lessons, Policy, Nairobi, https://ageconsearch.umn.edu/record/55168/?ln=en (last access: May 2021), 2006.
National Drought Management Authority: Hazard Atlas, 41 pp.,
https://www.rcmrd.org/hazard-atlas-development (last access: May 2021), 2016.
Ngetich, K. F., Raes, D., Shisanya, C. A., Mugwe, J., Mucheru-Muna, M., Mugendi, D. N., and Diels, J.: Calibration and validation of AquaCrop model for maize in sub-humid and semi-arid regions of central highlands of Kenya, in: Third RUFORUM Bienn. Meet., 1525–1548, https://repository.ruforum.org/sites/default/files/Ngetich, K.F. et al..pdf (last access: May 2021), 2012.
Ngigi, S. N.: Technical evaluation and development of low-head drip irrigation systems in Kenya, Irrig. Drain., 57, 450–462, https://doi.org/10.1002/ird.360, 2008.
Ngigi, S. N., Thome, J. N., Waweru, D. W., and Blank, H. G.: Low-cost Irrigation for Poverty Reduction: an Evaluation of Low-head Drip Irrigation technologies in Kenya, Int. Water Manag. Inst., 23–29, 2000.
Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham, J., and Urquhart, P.: Africa, in: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Chapter 22, edited by: Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1199–1266, https://doi.org/10.1017/CBO9781107415386.002, 2015.
Nyandiko, N. O., Wakhungu, J., and Oteng'i, S. B.: Analysis of maize yield responses to climate in the arid and semi arid lands of lower eastern Kenya, http://ir-library.mmust.ac.ke:8080/xmlui/handle/190/57 (last access: May 2021), 2014.
Nyariki, D. M. and Wiggins, S.: Household food insecurity in sub‐Saharan Africa: lessons from Kenya, Br. Food J., 99, 249–262, https://doi.org/10.1108/00070709710179363, 1997.
O'Brien, K., Eriksen, S., Nygaard, L. P., and Schjolden, A.: Why different
interpretations of vulnerability matter in climate change discourses, Clim.
Policy, 7, 73–88, https://doi.org/10.1080/14693062.2007.9685639, 2007.
Okumu, O. F.: Small-scale farmers' perception and adaptation measures to
cliamte change in Kitui county, Kenya, University of Nairobi, Nairobi, http://erepository.uonbi.ac.ke/handle/11295/59852 (last access: May 2021), 2013.
Oluoko-Odingo, A. A.: Vulnerability and adaptation to food insecurity and poverty in Kenya, Ann. Assoc. Am. Geogr., 101, 1–20, https://doi.org/10.1080/00045608.2010.532739, 2011.
Omoyo, N. N., Wakhungu, J., and Oteng'i, S.: Effects of climate variability on maize yield in the arid and semi arid lands of lower eastern Kenya, Agric. Food Secur., 4, 8, https://doi.org/10.1186/s40066-015-0028-2, 2015.
Pople, A., Hill, R., Dercon, S., and Brunckhorst, B.: Anticipatory Cash Transfers In Climate Disaster Response About the Centre for Disaster Protection, London, https://doi.org/10.1257/rct.6576-1.1, 2021.
Pouladi, P., Afshar, A., Afshar, M. H., Molajou, A., and Farahmand, H.:
Agent-based socio-hydrological modeling for restoration of Urmia Lake:
Application of theory of planned behavior, J. Hydrol., 576, 736–748,
https://doi.org/10.1016/j.jhydrol.2019.06.080, 2019.
Rao, K. P. C., Ndegwa, W. G., Kizito, K., and Oyoo, A.: Climate variability and change: Farmer perceptions and understanding of intra-seasonal variability in rainfall and associated risk in semi-arid Kenya, Cambridge University Press, https://doi.org/10.1017/S0014479710000918, 2011.
Recha, J., Kinyangi, J., and Omondi, H.: Climate Related Risks and Opportunities for Agricultural Adaptation in Semi-Arid Eastern Kenya, CGSpace A Repository of Agricultural Research Outputs, Wageningen, 1–40, https://doi.org/10.13140/RG.2.1.2172.8728, 2015.
Republic of Kenya: Ending Drought Emergencies Common Programme Framework, Nairobi, https://www.ndma.go.ke/index.php/resource-center/category/43-ending-drought-emergencies (last access: May 2021), 2015.
Rezaei, A., Salmani, M., Razaghi, F., and Keshavarz, M.: An empirical analysis of effective factors on farmers adaptation behavior in water scarcity conditions in rural communities, Int. Soil Water Conserv. Res., 5,
265–272, https://doi.org/10.1016/j.iswcr.2017.08.002, 2017.
Rogers, E. M.: Diffusion of Innovations (1983), University of Illinois at Urbana-Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1496176 (last access: May 2021), 1983.
Rudari, R., Abbashar, A., Conijn, S., De Angeli, S., de Moel, H., Denis-Loupot, A., Ferraris, L., Ghizzoni, T., Gomes, I., Mosquera Calle, D., Mouakkid Soltesova, K., Massabò, M., Njoroge Kabubi, J., Rossi, L., Rossi, L., Schiano Lomoriello, R., Trasforini, E., and Wens, M.: Disaster Risk profile for Kenya, https://www.undrr.org/publication/disaster-risk-profile-kenya#:~:text=This Kenya country risk profile,their likelihood, and associated impacts (last access: May 2021), 2019.
Rutten, M. M. M. E. M.: Shallow wells: a sustainable and inexpensive alternative to boreholes in Kenya, ASC working paper, Leiden, 30 pp., http://hdl.handle.net/1887/9460 (last access: May 2021), 2005.
Schrieks, T., Botzen, W. J. W., Wens, M., Haer, T., and Aerts, J. C. J. H.: Integrating Behavioral Theories in Agent-Based Models for Agricultural Drought Risk Assessments, Front. Water, 3, https://doi.org/10.3389/frwa.2021.686329, 2021.
Sherwood, A.: Community adaptation to climate change: exploring drought and poverty traps in Gituamba location, Kenya, J. Nat. Resour. Policy Res., 5, 147–161, https://doi.org/10.1080/19390459.2013.811857, 2013.
Shikuku, K. M., Winowiecki, L., Twyman, J., Eitzinger, A., Perez, J. G.,
Mwongera, C., and Läderach, P.: Smallholder farmers' attitudes and
determinants of adaptation to climate risks in East Africa, Clim. Risk Manage., 16, 234–245, https://doi.org/10.1016/j.crm.2017.03.001, 2017.
Singh, P. K. and Chudasama, H.: Pathways for drought resilient livelihoods
based on people's perception, Climatic Change, 140, 179–193,
https://doi.org/10.1007/s10584-016-1817-8, 2017.
Sivapalan, M., Savenije, H. H. G. G., and Blöschl, G.: Socio-hydrology: A new science of people and water, Hydrol. Process., 26, 1270–1276,
https://doi.org/10.1002/hyp.8426, 2012.
Smajgl, A. and Barreteau, O.: Framing options for characterising and parameterising human agents in empirical ABM, Environ. Model. Softw., 93, 29–41, https://doi.org/10.1016/j.envsoft.2017.02.011, 2017.
Smajgl, A., Brown, D. G., Valbuena, D., and Huigen, M. G. A.: Empirical characterisation of agent behaviours in socio-ecological systems, Environ. Model. Softw., 26, 837–844, https://doi.org/10.1016/j.envsoft.2011.02.011, 2011.
Stefanović, J., Yang, H., and Zhou, Y.: Smallholder Farming Systems in Kenya: Climate Change Perception, Adaptation and Determinants, https://www.syngentafoundation.org/file/1541/download?token=fV7f7_ob (last access: May 2021), 2015.
Taberna, A., Filatova, T., Roy, D., and Noll, B.: Tracing resilience, social dynamics and behavioral change: a review of agent-based flood risk models, Socio-Environ. Syst. Model., 2, 17938, https://doi.org/10.18174/sesmo.2020a17938, 2020.
TAPRA – Tegemeo Institute: Tegemeo Agricultural Policy Research Analysis:
Project – Household survey 2004, 1–14, https://www.tegemeo.org/images/_tegemeo_institute/downloads/data/2004-survey-documentation.pdf (last access: January 2021), 2004.
TAPRA – Tegemeo Institute: Tegemeo Agricultural Policy Research Analysis:
Project – Household survey 2007, 1–14, https://www.tegemeo.org/images/_tegemeo_institute/downloads/data/2007_survey_doc_final.pdf (last access: January 2021), 2007.
TAPRA – Tegemeo Institute: Tegemeo Agricultural Policy Research Analysis:
Project – Household survey 2010, 1–14, https://www.tegemeo.org/images/_tegemeo_institute/downloads/data/2010_surveydocumentation.pdf (last access: January 2021), 2010.
Tongruksawattana, S.: Climate shocks and choice of adaptation strategy for
Kenyan maize-legume farmers: Insights from poverty, food security and gender
perspectives, Socioeconomics Program Working Paper, Mexico, DF, 1–34, https://ccafs.cgiar.org/resources/publications/climate-shocks-and-choice-adaptation-strategy-kenyan-maize- (last access: May 2021), 2014.
Tongruksawattana, S. and Wainaina, P.: Climate shock adaptation for Kenyan maize-legume farmers: choice, complementarities and substitutions between strategies, Clim. Dev., 11, 710–722, https://doi.org/10.1080/17565529.2018.1562862, 2019.
UNDP: Climate Risks, Vulnerability and Governance in Kenya: A review, 83 pp., https://www.iisd.org/publications/report/climate-risks-vulnerability-and-governance-kenya-review (last acces: May 2021), 2012.
UNDP, UNCCD, and UNEP: Climate Change in the African Drylands : options and opportunities for adaptation and mitigation, Nairobi, https://portals.iucn.org/library/node/29098 (last access: May 2021), 2009.
UNDRR: GAR – Special Report on Drought 2021, UNDRR, Geneva, https://www.undrr.org/publication/gar-special-report-drought-2021#:~:text=The GAR Special Report on,and cosystems health and wellbeing, last access: May 2021.
van Duinen, R., Filatova, T., Geurts, P., and van der Veen, A.: Coping with
drought risk: empirical analysis of farmers' drought adaptation in the
south-west Netherlands, Reg. Environ. Change, 15, 1081–1093,
https://doi.org/10.1007/s10113-014-0692-y, 2015a.
van Duinen, R., Filatova, T., Geurts, P., and van der Veen, A.: Empirical
Analysis of Farmers' Drought Risk Perception: Objective Factors, Personal
Circumstances, and Social Influence, Risk Anal., 35, 741–755,
https://doi.org/10.1111/risa.12299, 2015b.
van Duinen, R., Filatova, T., Jager, W., and van der Veen, A.: Going beyond
perfect rationality: drought risk, economic choices and the influence of social networks, Ann. Reg. Sci., 57, 335–369, https://doi.org/10.1007/s00168-015-0699-4, 2016.
Van Eeuwijk, M.: How accurate is the Famine Early Warning Systems Network? A Kenyan and Ugandan case study An accuracy assessment of the Famine Early Warning System Network, Vrije Universiteit Amsterdam, Amsterdam, https://www.gfdrr.org/sites/default/files/FinalReport_F4S_ChallengeFund.pdf, last access: May 2021.
Van Oel, P. R. and Van Der Veen, A.: Using agent-based modeling to depict
basin closure in the Naivasha basin, Kenya: A framework of analysis, Procedia Environ. Sci., 7, 32–37, https://doi.org/10.1016/j.proenv.2011.07.007, 2011.
Van Winsen, F., de Mey, Y., Lauwers, L., Van Passel, S., Vancauteren, M., and Wauters, E.: Determinants of risk behaviour: effects of perceived risks and risk attitude on farmer's adoption of risk management strategies, J. Risk Res., 19, 56–78, https://doi.org/10.1080/13669877.2014.940597, 2016.
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A., and Blöschl, G.: Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82, https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014.
Villanueva, A. B., Jha, Y., Ogwal-omara, R., Welch, E., Wedajoo, S., and Halewood, M.: Influence of social networks on the adoption of climate smart technologies in East Africa Findings from two surveys and participatory exercises with farmers and local experts, CCAFS Info Note, https://cgspace.cgiar.org/handle/10568/71146 (last access: May 2021), 2016.
Von Neumann, J. and Morgenstern, O.: Theory of games and economic behavior, Princeton University Press, https://psycnet.apa.org/record/1945-00500-000 (last access: May 2021), 1944.
Waldman, K. B., Todd, P. M., Omar, S., Blekking, J. P., Giroux, S. A., Attari, S. Z., Baylis, K., and Evans, T. P.: Agricultural decision making and climate uncertainty in developing countries, Environ. Res. Lett., 15, 113004, https://doi.org/10.1088/1748-9326/abb909, 2020.
Wamari, J., Isaya, S., Kheng, L., Miriti, J., and Obutiati, E.: Use of Aquacrop Model to Predict Maize Yields under varying Rainfall and Temperature in a Semi-Arid Environment in Kenya, J. Meteorol. Relat. Sci., 6, 26–35, https://doi.org/10.20987/jmrs.08.2012.603, 2007.
Wens, M.: Survey report Kitui, Kenya: Expert evaluation of model setup and preparations of future fieldwork, Vrije Universiteit Amsterdam [data set],
https://research.vu.nl/en/publications/survey-report-kitui-kenya-expert-evaluation-of-model-setup- (last access: February 2021), 2018.
Wens, M.: Survey report Kitui, Kenya: Results of a questionaire regardings usbsistence farmers' drought risk and adaptation behaviour, Vrije Universiteit Amsterdam [data set],
https://research.vu.nl/en/publications/survey-report-kitui-kenya-results-of-a-questionaire-regardings-us (last access: February 2021), 2019.
Wens, M., Johnson, M. J., Zagaria, C., and Veldkamp, T. I. E.: Integrating
human behavior dynamics into drought risk assessment – A sociohydrologic,
agent-based approach, WIREs Water, 6, e1345, https://doi.org/10.1002/wat2.1345, 2019.
Wens, M., Veldkamp, T. I. E., Mwangi, M., Johnson, J. M., Lasage, R., Haer,
T., and Aerts, J. C. J. H.: Simulating Small-Scale Agricultural Adaptation
Decisions in Response to Drought Risk: An Empirical Agent-Based Model for
Semi-Arid Kenya, Front. Water, 2, 1–21, https://doi.org/10.3389/frwa.2020.00015, 2020.
Wens, M. L. K., Mwangi, M. N., van Loon, A. F., and Aerts, J. C. J. H.:
Complexities of drought adaptive behaviour: Linking theory to data on smallholder farmer adaptation decisions, Int. J. Disast. Risk Reduct., 63,
102435, https://doi.org/10.1016/j.ijdrr.2021.102435, 2021.
Wheeler, S., Zuo, A., and Bjornlund, H.: Farmers' climate change beliefs and
adaptation strategies for a water scarce future in Australia, Global Environ.
Change, 23, 537–547, https://doi.org/10.1016/j.gloenvcha.2012.11.008, 2013.
Wossen, T. and Berger, T.: Climate variability, food security and poverty: Agent-based assessment of policy options for farm households in Northern Ghana, Environ. Sci. Policy, 47, 95–107, https://doi.org/10.1016/j.envsci.2014.11.009, 2015.
Wossen, T., Berger, T., Mequaninte, T., and Alamirew, B.: Social network effects on the adoption of sustainable natural resource management practices in Ethiopia, Int. J. Sustain. Dev. World Ecol., 20, 477–483, https://doi.org/10.1080/13504509.2013.856048, 2013.
Zagaria, C., Schulp, C. J. E., Zavalloni, M., Viaggi, D., and Verburg, P. H.: Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy, Agric. Syst., 188, 103024, https://doi.org/10.1016/j.agsy.2020.103024, 2021.
Zhang, B., Fu, Z., Wang, J., and Zhang, L.: Farmers' adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China, Agr. Water Manage., 212, 349–357,
https://doi.org/10.1016/j.agwat.2018.09.021, 2019.
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
In this paper, we present an application of the empirically calibrated drought risk adaptation...
Altmetrics
Final-revised paper
Preprint