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Abstract. Analyses of future agricultural drought impacts
require a multidisciplinary approach in which both human
and environmental dynamics are studied. In this study, we
used the socio-hydrologic, agent-based drought risk adapta-
tion model ADOPT. This model simulates the decisions of
smallholder farmers regarding on-farm drought adaptation
measures and the resulting dynamics in household vulner-
ability and drought impact over time. We applied ADOPT
to assess the effect of four top-down disaster risk reduc-
tion interventions on smallholder farmers’ drought risk in the
Kenyan drylands: the robustness of additional extension ser-
vices, lowered credit rates, ex ante rather than ex post cash
transfers, and improved early warnings were evaluated under
different climate change scenarios.

Model results suggest that extension services increase the
adoption of newer low-cost drought adaptation measures
while credit schemes are useful for measures with a high
investment cost, and ex ante cash transfers allow the least
wealthy households to adopt low-cost, well-known mea-
sures. Early warning systems are shown to be more effec-
tive in climate scenarios with less frequent droughts. Com-
bining all four interventions displays a mutually reinforc-
ing effect with a sharp increase in the adoption of on-farm
drought adaptation measures, resulting in reduced food in-
security, decreased poverty levels, and drastically lower need
for emergency aid, even under hotter and drier climate condi-
tions. These nonlinear synergies indicate that a holistic per-
spective is needed to support smallholder resilience in the
Kenyan drylands.

1 Introduction

Droughts, defined as below-normal meteorological or hydro-
logical conditions, are a pressing threat to the food produc-
tion in the drylands of sub-Saharan Africa (Brown et al.,
2011; Cervigni and Morris, 2016; UNDP et al., 2009). Over
the last few decades, increasing temperatures and erratic or
inadequate rainfall have already intensified drought disas-
ters (Khisa and Gladys, 2017). Climate change, population
growth, and socio-economic development will lead to addi-
tional pressures on water resources (Erenstein et al., 2011;
Kitonyo et al., 2013). In Kenya, three-quarters of the popula-
tion depend on smallholder rain-fed agricultural production
and nearly half of the population is annually exposed to re-
curring drought disasters causing income insecurity, malnu-
trition and health issues (D’alessandro et al., 2015; Khisa,
2018; Mutunga et al., 2017; Rudari et al., 2019; UNDP,
2012). Reducing drought risk is imperative to enhance the re-
silience of the agriculture sector, to protect the livelihoods of
the rural population, and to avoid food insecurity and famine
in Kenya’s drylands (Khisa and Gladys, 2017; Shikuku et al.,
2017).

Drought risk models are important tools to inform policy-
makers about the potential effectiveness of adaptation poli-
cies and enable the design of customized drought adaptation
strategies under different future climate scenarios (Carrao et
al., 2016; De Stefano et al., 2015). Traditionally, such models
express disaster risk as the product of hazard, exposure and
vulnerability and are based on historical risk data. Recent dis-
aster risk models have dealt with climate change adaptation
in a two-stage framework: first describing a few scenarios re-
garding adaptation choices of representative households and
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Figure 1. Study area. Dry transitional maize agro-ecological zone (right) located in south-eastern Kenya (centre) in the Horn of Africa (left).
The area where the survey data (Wens et al., 2021) are collected is indicated with a star on the right map. Map adjusted from Barron and
Okwach (2005).

then estimating the impacts of adaptation on (future) welfare
while assuming climate change scenarios (Di Falco, 2014).
However, most existing research does not account for more
complex dynamics in adaptation and vulnerability (Conway
et al., 2019), for the heterogeneity in human adaptive be-
haviour (Aerts et al., 2018), or for the feedback between risk
dynamics and adaptive-behaviour dynamics (Di Baldassarre
et al., 2017), though these are the aspects that determine, in
large part, the actual risk (Eiser et al., 2012).

It appears that farmers often act boundedly rationally to-
wards drought adaptation rather than economically ratio-
nally: their economic rationality is bounded in terms of cog-
nitive capability, information available, perceptions, heuris-
tics, and biases (Schrieks et al., 2021; Wens et al., 2021).
To account for such individual adaptive behaviour in drought
risk assessments, an agent-based modelling technique can
be applied (Blair and Buytaert, 2016; Filatova et al., 2013;
Kelly et al., 2013; Matthews et al., 2007; Smajgl et al., 2011;
Smajgl and Barreteau, 2017). Agent-based models allow ex-
plicit simulation of the bottom-up individual human adapta-
tion decisions and capture the macro-scale consequences that
emerge from the interactions between individual agents and
their environments. Combining risk models with an agent-
based approach is thus a promising way to analyse drought
risk, as well as the evolution of it through time, in a more
realistic way (Wens et al., 2019).

Here we present how an agent-based drought risk adapta-
tion model, ADOPT (design described in Wens et al., 2020),
can increase our understanding of the effect of drought poli-
cies on community-scale drought risk for smallholder farm-
ers in Kenya’s drylands. The design of ADOPT as an agent-
based drought risk adaptation model is described in Wens et
al. (2020). Moreover, Wens et al. (2021) detail the empirical
data on past adaptive behaviour (used to calibrate the model),

as well as empirical data on adaptation intentions that can be
used for comparison with the model outputs.

In this study, we apply the ADOPT model to test the vari-
ation in household drought risk under different drought man-
agement policies: (i) a reactive government only providing
emergency aid; (ii) a proactive government, which provides
sufficient drought early warnings and ex ante cash transfer in
the face of droughts; and (iii) a prospective government that,
in addition to early warnings and ex ante transfers, subsidizes
adaptation credit schemes and provides regular drought adap-
tation extension services to farmers. In addition, ADOPT is
used to evaluate the robustness of these policies under differ-
ent climate change scenarios. We acknowledge that ADOPT
should be subject to additional validation steps in order to
more accurately and precisely predict future drought risk.
Yet, in this study we elaborate the potential of this proof-
of-concept model by showcasing the trends in drought risk
under risk reduction interventions and climate change for a
case study in semi-arid Kenya.

2 Case study description

The ADOPT model has been applied to the context of small-
holder maize production in the dryland communities in the
areas Kitui, Makueni, and Machakos in south-eastern Kenya
(Fig. 1). This semi-arid to sub-humid region is drought-
prone, being hit by drought disasters in 1983–1984, 1991–
1992, 1995–1996, 1998–2000, 2004–2005, 2008–2011, and
2014–2018 (data from EM-DAT and DesInventar). The ma-
jority of the population in this dry transitional farming zone
is directly or indirectly employed through agriculture. How-
ever, technology adoption and the production level remain
rather low, making the region very vulnerable to droughts
and climate change (Khisa and Oteng, 2014; Mutunga et al.,
2017).
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Figure 2. ADOPT model overview, adjusted from Wens et al. (2020). Description of the model (overview, design concepts, and details) in
Appendix A.

In Kenya, 75 % of the country’s maize is produced by
smallholder farms. Maize is grown in the two rainy sea-
sons, with the aim to meet household food needs (sub-
sistence farming) (Erenstein et al., 2011; Ifejika Speranza
et al., 2008). While during the long rainy season (March–
April–May) multiple crops are planted, the short rainy sea-
son (October–November–December) is considered the main
growing season for maize in the region (Rao et al., 2011).

Reported smallholder maize yields often do not exceed
0.7 t ha−1. However, with optimal soil water management,
maize yields can easily be around 1.3 t ha−1 in the semi-
arid medium-potential maize-growing zone in south-eastern
Kenya (Omoyo et al., 2015). Few farmers use pesticides
or improved seeds or other adaptation strategies (Tongruk-
sawattana and Wainaina, 2019). In Kitui, Makueni and
Machakos, the most preferred seed variety is the high-
yielding but less drought resistant Kikamba/Kinyaya variety
(120 growing days) with a potential yield of only 1.1 t ha−1

(Ifejika Speranza, 2010; Recha et al., 2015). Trend analy-
sis (1994–2008) shows that yields are declining due to the in-
creasing pace of recurring droughts (Nyandiko et al., 2014).

Over 97 % of the smallholder farmers in this area grow
maize, mainly for their own consumption or local markets

(Brooks et al., 2009; Kariuki, 2016; Nyariki and Wiggins,
1997). It is the main staple food, providing more than a third
of caloric intake, and is also the primary ingredient used in
animal feeds in Kenya (Adamtey et al., 2016; FAO, 2008).
Only about 20 % of the farmers are able to sell their excess
crops, while 66 % have to buy maize to complement their
own production (Muyanga, 2004).

3 Model and scenario description

ADOPT (Fig. 2; Wens et al., 2020; ODD+D (overview, de-
sign concept, details+ decision) protocol in Appendix A)
is an agent-based model that links a crop production mod-
ule to a behavioural module evaluating the two-way feed-
back between drought impacts and drought adaptation deci-
sions. ADOPT was parameterized with information from ex-
pert interviews, and a farm household survey with 260 house-
holds including a semi-structured questionnaire executed in
the Kitui region, Kenya (Wens et al., 2021). Moreover, a
discrete choice experiment (a quantitative method to elicit
preferences from participants without directly asking them
to state their preferred options) was executed to obtain in-
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formation on changes in adaptation intentions under future
top-down disaster risk reduction (DRR) interventions (Wens
et al., 2021). This empirical dataset feeds the decision rules
in ADOPT describing farm households’ adaptive behaviour
in the face of changing environmental conditions (drought
events), social networks (actions of neighbouring farmers),
and top-down interventions (drought management policies).
In ADOPT, crop production is modelled using AquaCrop-OS
(Foster et al., 2017), simulating crop growth on a daily basis
and producing crop yield values at harvest time twice per
year. Calibrated for the Kenyan dryland conditions (Ngetich
et al., 2012; Wamari et al., 2007), AquaCrop-OS considers
the current water management of the farm (i.e. the applied
drought adaptation measures), and yields vary with weather
conditions. The adaptive behaviour of the farm households
(agents) is modelled based on protection motivation theory
(PMT; Rogers, 1983). This theory was identified as promis-
ing in an earlier study (Wens et al., 2020) and includes mul-
tiple relevant factors that drive the observed behaviour of
farm households (Wens et al., 2021). In this application of
ADOPT, the model was run over 30 historical years as the
baseline followed by 30 years of future scenarios (combi-
nations of policy and climate changes; the start of these
changes is indicated as “year 0”). Through a sensitivity anal-
ysis, both the average effect of individual adaptation deci-
sions and its endogenous model variability are analysed (sim-
ilarly to in Wens et al., 2020). We used 12 different initial-
izations per scenario to include variations in model initializa-
tion, the stochasticity that determines the individual adapta-
tion decisions, and the relative weights of factors influencing
behaviour (see Sect. 3.1).

3.1 Individual adaptive behaviour in ADOPT

Various soil water management practices, further called
drought adaptation measures, can be adopted by smallholder
farmers in ADOPT. There are shallow wells to provide irri-
gation water, the option to connect these to drip irrigation in-
frastructure, and fanya juu terraces as on-farm water harvest-
ing techniques. Moreover, a soil protection measure reducing
the evaporative stress, mulching, is included. These measures
are beneficial in most – if not all – of the years and have
a particularly good effect on maize yields in drought years.
Nonetheless, current adoption rates of these measures are
quite varied and often remain rather low (Gicheru, 1994; Ki-
boi et al., 2017; Kulecho and Weatherhead, 2006; Mo et al.,
2016; Ngigi, 2008; Ngigi et al., 2000; Rutten, 2005; Ararso
et al., 2016).

ADOPT applies protection motivation theory, a psycho-
logical theory often used to model farmer’s boundedly ra-
tional adaptation behaviour (Schrieks et al., 2021). It de-
scribes how individuals adapt to shocks such as droughts
and are motivated to react in a self-protective way towards
a perceived threat (Grothmann and Patt, 2005; Maddux and
Rogers, 1983). Four main factors determining farmers’ adap-

tation intention under risk are modelled: (1) risk perception
is modelled through the number of experienced droughts and
number of adopted measures, household vulnerability, and
experienced impact severity. Moreover, trust in early warn-
ings is added, which can influence the risk appraisal if a
warning is sent out. Coping appraisal is modelled through
a farmer’s (2) self-efficacy (household size/labour power,
belief in God, vulnerability), (3) adaptation efficacy (per-
ceived efficiency, cost and benefits, seasons in water scarcity,
choices of neighbours, number of measures), and (4) adapta-
tion costs (farm income, off-farm income, adaptation spend-
ing, access to credit). These four PMT factors receive a value
between 0 and 1 and define a farmer’s intention to adopt
measures. Which smallholder farmers adopt which measures
in which years is then stochastically determined based on
this adaptation intention. More information regarding the
decision-making can be found in Appendix A.

3.2 Drought risk indicators in ADOPT

In ADOPT, annual maize yield influences the income and
thus assets of the (largely) subsistence farm households. This
influence is indirect because the farm households are as-
sumed to be both producers and consumers, securing their
own food needs. The influence is also a direct one because
these farm households sell their excess maize on the market
at a price sensitive to demand and availability. Farm house-
holds that cannot satisfy their food needs by their own pro-
duction turn to this same market. They buy the needed maize
– if they can afford it and if there is still maize available on
the market. If they do not have the financial capacity or if
there is a market shortage, they are deemed to be food in-
secure. Their food shortage (the kilograms of maize short to
meet household food demand) is multiplied by the market
price to estimate their food aid needs. Adding the farm in-
come of the household to their income from potential other
sources of income, it is estimated whether they fall below the
poverty line of USD 1.9 per day. Climate and weather vari-
ability cause maize yields to fluctuate over time, as do the
prevalence of poverty, the share of households in food inse-
curity, and the total food aid needs. These factors can be seen
as proxies for drought risk and were evaluated over time.

3.3 Climate change scenarios

Multiple climate change scenarios – all accounting for in-
creased atmospheric carbon dioxide levels – were tested: a
rising temperature of 10 %, a drying trend of 15 %, a wetting
trend of 15 %, and various combinations of these (Table 1).
The warming and drying trends were based on a continua-
tion of the trends observed in the last 30 years of daily NCEP
temperature (Kalnay et al., 1996) and CHIRPS precipitation
(Funk et al., 2015) data (authors’ calculations; similar trends
found in Gebrechorkos et al., 2020). The wetting trend was
inspired by the projections from most climate change mod-
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Figure 3. Probability of having a year with 3 or more consecutive months with a standardized precipitation index (SPEI) <−1, for the
climate change scenarios.

els, which predict an increase in precipitation in the long
rain season – a phenomenon known as the “East African
climate paradox” (Gebrechorkos et al., 2019; Lyon and Vi-
gaud, 2017; Niang et al., 2015). The no-change scenario was
a repetition of the baseline period, without changing pre-
cipitation or temperature and hence only including elevated
carbon dioxide levels. Reference evaporation was calculated
for each scenario using the Penman–Monteith model and
was thus influenced by temperature changes (Allen, 2005;
Droogers and Allen, 2002).

These trends were added to time series of 30 years of ob-
served data. While such an approach does not account for
increased variability, it allows us to account for the temporal
coherence in the data and the interrelationships among differ-
ent weather variables (weather generators – another option
to downscale projected climate – still have some progress
to make in order to accurately account for extreme events;
Mehan et al., 2017; Ailliot et al., 2015). This resulted in
30 years of synthetic “future” data, for each of the six –
wet, hot–wet, hot, dry, hot–dry, and no change – scenar-
ios. While they do not have a known probability of occur-
ring, they enable testing the effect of the on-farm adaptations
and top-down drought disaster risk reduction strategies on
drought risk under changing average hydro-meteorological
conditions.

Droughts, here defined as at least 3 months with standard-
ized precipitation index (SPEI) values below −1, have a dif-
ferent rate of occurrence under these different future climate
scenarios (Fig. 3). The SPEI is calculated through standard-
izing a fitted generalized extreme value distribution over the
historical monthly time series and superimposing this onto
the climate scenario time series. Under the no-change sce-
nario, 25 % of the 30 simulated years fall below this thresh-
old. Under the wet scenario, fewer droughts occur (15 % of

the years), but under the dry scenario, the number of drought
years more than doubles (54 % of the years). Temperature
is dominant over precipitation in determining drought con-
ditions, as under the hot–wet scenario, 41 % of years are
recorded as drought years, and under hot–dry conditions,
78 % of the years can be considered drought years.

3.4 Drought risk reduction intervention scenarios

Kenya Vision 2030 for the arid and semi-arid lands (ASAL)
promotes drought management through extension services
and aims to increase access to financial services such as
affordable credit schemes (Government of the Republic of
Kenya, 2013). Besides, building on the Ending Drought
Emergencies plan, the National Drought Management Au-
thority prioritizes the customization, improvement, and dis-
semination of drought early warning systems. It aims to es-
tablish trigger levels for ex ante cash transfer so as to up-
scale drought risk financing (Government of the Republic
of Kenya, 2013; National Drought Management Authority,
2016; Republic of Kenya, 2015). Improved extension ser-
vices tailored to the changing needs of farm households
(Muyanga and Jayne, 2006), a better early warning system
with longer lead times (Van Eeuwijk, 2021), ex ante cash
transfers to the most vulnerable when a drought is expected
(Guimarães Nobre et al., 2019), and access to credit markets
(Berger et al., 2017) are all assumed to increase farmers’ in-
tentions to adopt new measures.

As shown in Wens et al. (2021), extension services are
most effective when offered to younger, less rich, and less ed-
ucated people or to those who have already adopted the most
common measures. Similarly, early warning systems change
the intention to adapt mostly for less educated, less rich farm-
ers or those who are not part of farmer knowledge exchange
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Table 1. Average (daily temperature, annual precipitation) weather conditions (1980–2010) in ADOPT.

Min Max Precipitation Reference
temperature temperature evaporation

No change 16.3 (±0.8) ◦C 26.9 (±0.9) ◦C 888 (±319) mm 1547 (±298) mm
Wet 16.3 (±0.8) ◦C 26.9 (±0.9) ◦C 1021 (±367) mm 1547 (±298) mm
Hot 17.9 (±0.9) ◦C 29.6 (±0.9) ◦C 888 (±319) mm 1659 (±320) mm
Dry 16.3 (±0.8) ◦C 26.9 (±0.9) ◦C 755 (±271) mm 1547 (±298) mm

groups. The ex ante cash transfer drives the adoption of more
expensive measures the most for those who already spend a
lot of money on adaptation. Access to credit is preferred by
less rich farmers who have a larger land size, are members
of a farm group, have been to extension training, have easy
access to information, and/or are highly educated (Wens et
al., 2021).

In this application of ADOPT, the effects of these four
interventions – extension services, early warning systems,
ex ante cash transfer, and credit schemes – were tested indi-
vidually. Additionally, three scenarios, combining different
types of interventions, were evaluated, all initiated in year 0
in the model run.

In the reactive policy intervention “supporting drought re-
covery”, no (new, proactive) interventions are implemented.
Only emergency aid (standard in the ADOPT model to avoid
household members dying) is given to farmers who lost their
livelihoods after drought disasters; this food aid is distributed
to farmers who are on the verge of poverty to avoid famine.

In the proactive policy intervention plan “preparing for
drought disasters”, improved early warnings are sent out each
season if a drought is expected. This is assumed to raise all
farmers’ risk appraisal by 20 %. Ex ante cash transfers are
given to all smallholder farmers (those without income off-
farm and without commercialization) to strengthen resilience
in the face of a drought. This is done when severe and ex-
treme droughts (SPEI<−1 and <−1.5) are expected that
could lead to crop yield lower than 500 and 300 kg ha−1,
respectively. A money equivalent to the food insecurity fol-
lowing these yields is paid out to farmers with few external-
income sources. Moreover, like in the reactive government
scenario, emergency aid is given to farmers who need it.

In the prospective policy intervention plan (UNDRR,
2021) “mitigating (future) drought disasters”, credit rates are
lowered so that it is affordable to people to take a loan for
adaptation measures, at an interest rate of 2 % and a payback
period of 5 years. Besides, emergency services are provided
in the form of frequent training given in communities with
poor practices to improve their capacity related to drought
adaptation practices for agriculture. Moreover, like in the
proactive government scenario, an improved early warning
system is set up and an ex ante cash transfer is given. Lastly,
emergency aid is given to farmers who need it.

4 Results

4.1 Maize yield under different adaptation measures
and future climate scenarios

The annual average maize yields under the different climate
scenarios, for the four on-farm drought adaptation measures
implemented in ADOPT – mulch, fanya juu bunds, shallow
wells, and drip irrigation, were calculated using AquaCrop-
OS (Fig. 4). Under wetter future climate conditions, maize
yields are expected to increase under all management sce-
narios, with mulch having a particularly positive effect on
the soil moisture conditions throughout the full growing sea-
son. Hotter climate conditions reduce yields slightly: the as-
sumptions in this model about the frequency and amount of
manual irrigation or drip irrigation water are not sufficient
to diminish this effect, even under wetter conditions. Paired
with drier conditions, this hotter future has dramatically neg-
ative effects on yields, showing on average 28 % lower yields
compared to the no-climate-change scenario over all man-
agement scenarios.

4.2 The adoption of adaptation measures over time

In ADOPT, all evaluated top-down interventions increased
the adoption rate of the evaluated adaptation measures com-
pared to the reactive “no-intervention” scenario (Fig. 5): re-
duced credit rates, improved early warning systems, tailored
extension services, and ex ante cash transfers, as well as
the proactive and prospective scenarios, lead to increases in
adoption as compared to the reactive scenario (colours in
Fig. 5).

Looking in detail at the effect of possible policy interven-
tions (Fig. 5, Table B2), affordable credit schemes had the
highest effect on the adoption rate of drought adaptation mea-
sures. Furthermore, ex ante cash transfers (which cannot be
seen as large sums of investment money but as a mere means
to keep families food secure) were more effective in increas-
ing adoption of the more affordable measures. Indeed, richer
families had mostly already adopted these measures before
policy interventions were in place. Extended extension ser-
vice training increased the adoption of less popular measures
and decreased the adoption of the popular but not as cost-
effective fanya juu terraces. Early warning systems had more
effect in the wetter climate conditions. The dry–hot scenario
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Figure 4. Average maize yield under different drought adaptation measures and different future climate scenarios.

Figure 5. Total number of measures adopted per 1000 initialized households under no climate change, averaged over all runs. The shaded area
indicates the variation – uncertainty introduced by different model initializations and by the different relative importance of the PMT factors
for the decisions of households (sensitivity analysis). Year 0 marks the initiation of policy drought risk reduction interventions (indicated
with different line colours).

has so many drought episodes that risk perception is auto-
matically high, while the alert level lowers when droughts
become scarcer in the less dry scenarios.

Overall, although the processes through which the inter-
ventions support households to adapt differ significantly, the
differences in the eventual adoption rate under the different
interventions were small (they overlap in the uncertainty in-
tervals). Also, the effect of climate change on the adoption
rate (Fig. B1, Table B2) was rather small when evaluating
the reactive (no-intervention) scenario. However, with inter-
ventions, the climate change scenarios differed more.

When examining the effect of the three intervention sce-
narios (Fig. B2, Table B2), it is clear that implementing
multiple policies at once resulted in a stronger increase in
adoption: a proactive and prospective intervention plan in-
creased the adoption of different adaptation measures 40 %
and 140 % more, respectively, than under the “reactive, no-

climate-change” scenario where no intervention takes place.
Both a proactive and a prospective approach increased the
adoption of cheaper adaptation measures to close to 100 %
of the farm households. For the more expensive measures,
the proactive scenario was shown to be less effective, while
the prospective scenario reached quite high adoption rates in
the more extreme climate scenarios.

The adoption of adaptation measures by households influ-
enced their maize yield and thus affected the average and
median maize harvest under the different future climates and
drought risk reduction interventions – with an increasing
effect over the years (increasing difference in harvest be-
tween reactive and other scenarios, Fig. 6). This becomes
clear comparing the first 30 baseline years with the follow-
ing 30 scenario years: when no policy interventions were in
place, average maize yields increased almost 30 % under a
wet–hot future and decreased by over 25 % under a dry–
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Figure 6. Household maize harvest (kg per year, sum of two growing seasons) over 30 “scenario years” under different climate change and
policy intervention scenarios. The shaded area indicates the variation – uncertainty introduced by different model initializations and by the
different relative importance of the PMT factors for the decisions of households (sensitivity analysis).

Figure 7. Share of households in poverty (earning under the USD 2 per day income line, under different climate and policy intervention
scenarios). The shaded area indicates the variation – uncertainty introduced by different model initializations and by the different relative
importance of the PMT factors for the decisions of households (sensitivity analysis).

hot climate. Under a prospective government supporting the
adoption of adaptation measures, average maize yields in-
creased by up to 100 % under a wet–hot future and increased
by over 60 % under dry–hot future conditions. Clearly, an in-
creased uptake of measures under this intervention scenario
would potentially offset a potentially harmful drying climate
trend.

4.3 Drought risk dynamics under policy and climate
change

Assuming off-farm income fluctuates randomly but does not
steadily increase or decrease, the changing harvests over time
directly affected the poverty rate and the share of house-
holds in food insecurity (Fig. 7). Both trends in yield caused
by droughts or by the adoption of new adaptation measures

could drive farm households in or out of poverty. Running
ADOPT with a reactive and no-climate-change scenario, a
slight increase of 5 percentage points (pp) in poverty levels
was visible. Poverty levels increased by up to 15 pp com-
pared to the baseline situation, when a drier and/or hotter cli-
mate scenario was run. A proactive intervention plan reduced
poverty by 11 pp under no climate change. In the dry–hot cli-
mate scenario this combination of improved early warning
systems and ex ante cash transfers lead to reductions of 20–
30 pp compared to the baseline years. However, the prospec-
tive government scenario showed the most prominent results,
projecting reductions of 45 pp under no climate change and
around 60 pp under drier and hotter climate conditions. It is
important to remark that the difference between the interven-
tion scenarios and the reactive scenario is only clearly visible
after more than 10 years under most future climate scenarios.
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Figure 8. Absolute change (average and standard deviation introduced by sensitivity analysis – variation caused by different model initial-
izations and by the different relative importance of the PMT factors for the decisions of households) in the average share of households with
food shortages of the last 20 years of the scenario run, compared to the first 20 years of the baseline run before year 0, under different climate
and policy intervention scenarios. ADOPT model output.

Food insecurity is partly caused by a lack of income or
assets but also by the farm market mechanism. Droughts, cli-
mate change, and adaptation levels influence the availability
of maize on this market. Farm households which do not pro-
duce enough to be self-sufficient buy maize on the market
if they have the money and if there is maize locally avail-
able. Households are assumed to face food shortages if they
have to rely on food aid to fulfil their caloric needs. On av-
erage in the no-climate-change and “no-policy-intervention”
scenarios, food security rates were predicted to remain stable
compared to the baseline period (Fig. 8). However, policy in-
terventions and climate change can alter this balance.

Improving extension services or providing ex ante cash
transfers individually showed on average 7.5 % more reduc-
tion in food insecurity than the reactive government scenario.
Improved early warning systems showed on average – over
all climate scenarios – an increased reduction of 4.5 %. It
should be kept in mind that ADOPT does not consider (il-
licit) coping activities in the face of droughts, which can – if a
drought warning is sent out – allow households to avoid buy-
ing food at high market prices or to engage in other income-
generating activities such as food stocking or charcoal burn-
ing (Eriksen et al., 2005). However, both of these interven-
tions might reduce the food security threat. Credit schemes
at 2 %, individually, lead to a more than 8 % reduction in
food insecurity levels as compared to the reactive scenario;
but even then, on average net food insecurity rates increase
due to climate change. A proactive intervention resulted in a
food insecurity rate which is 6 pp lower than under the reac-
tive scenario but still showed increases in the prevalence of
food insecurity under hotter and drier conditions. A prospec-
tive intervention, combining all four interventions, was able
to consistently reduce the food insecurity levels over time,
even under the dry–hot climate scenario. This scenario was
able to counteract the increase in food insecurity, achieving a
reduction in households with food shortages over time with
on average 28 % compared to the reactive scenario, all cli-
mate scenarios considered.

Expressing drought impacts in the average annual food
aid required (in USD) can help to evaluate the effect of

different climate change scenarios or different policy in-
tervention scenarios on the drought risk of the commu-
nity. These estimations are translated to USD, assuming a
maize price for shortage markets, as price volatility is con-
sidered. Table 2 shows the change in aid needs compared
to the no-climate-change, no-top-down-intervention baseline
period (based on the 1980–2000 situation). When assuming
no climate change, it seemed that the community was stable,
only slightly increasing the share in vulnerable households.
More measures were adopted as information was dissemi-
nated throughout the farmer networks, but those who stay
behind face lower selling prices as markets become more sta-
ble and have a harder time accumulating assets. Under wetter
conditions, drought emergency aid needs did reduce. How-
ever, drier, hotter climates had a detrimental effect on food
needs, with more vulnerable people crossing the food short-
age threshold.

Under the no-climate-change scenario, each of the four
policy interventions caused a reduction in aid needs, with
credit schemes having the largest effect. Under wetter con-
ditions, they also increased the reduction in aid needs com-
pared to the reactive scenario. However, no individual mea-
sure was able to offset the effect of hotter and drier climate
conditions. Even under a proactive intervention, there would
still be an increase in aid needs under such climate condi-
tions. Only under the prospective intervention scenario was
a decrease in aid needs visible under all possible climate
change scenarios.

5 Discussion

5.1 The effect of early warning, extension services,
ex ante transfers, and low interest rates

Under a reactive strategy (no intervention) and assuming no
climate change, a slow but steady adoption of mulch, fanya
juu, shallow well, and irrigation practices is estimated. This
is a result of an ever-increasing information diffusion through
the farmer networks and existing extension services, as also
found in Hartwich et al. (2008), van Duinen et al. (2016),
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Table 2. Change in aid needs (%) in 2030–2050 compared to 1980–2000 (average and standard deviation introduced by sensitivity analysis –
variation caused by different model initializations and by the different relative importance of the PMT factors for the decisions of households)
under different climate and policy intervention scenarios. ADOPT model output.

Villanueva et al. (2016), and Wossen et al. (2013). Yet, mul-
tiple smallholder households still suffer from the effects of
droughts, indicated by the elevated food insecurity rates and
poverty rates. While some can break the cycle of drought
and subsequent income losses, others are trapped by financial
or other barriers and end up in poverty and facing recurring
food insecurity. This is also found by, for example, Enfors
and Gordon (2008), Mango et al. (2009), Mosberg and Erik-
sen (2015), and Sherwood (2013). In the reactive scenario, it
is clear that adaptation intention is limited by factors such as
a low risk perception, high (initial) adaptation costs, a limited
knowledge of the adaptation efficacy, or a low self-efficacy.
Some of these barriers are alleviated through the different
government interventions.

As compared to this reactive scenario, an increased rate of
adoption is observed for all policy interventions. This trans-
lates into a comparatively lower drought risk (expressed by
the indicators of the community poverty rate, food security,
and aid needs). While initially extension services have the
largest effect on the adoption of on-farm drought adapta-
tion measures, over time access to credit results in the high-
est adoption rates and is also estimated to decrease emer-
gency aid the most. The former, alleviating the knowledge
(self-efficacy) barrier, increases adoption under no climate
change with 27 % as compared to no intervention. It is indeed
widely recognized as an innovation diffusion tool in differ-
ent contexts (e.g. Aker, 2011; Hartwich et al., 2008; Wossen
et al., 2013). The latter, alleviating the financial (adaptation
costs) barrier, increases adoption under no climate change
with 30 % as compared to no intervention. It is also found to
be an effective policy to reduce poverty in Ghana by Wossen
and Berger (2015). Ex ante cash transfers also tackle the fi-
nancial barrier but less effectively (the cash sum is small and
fixed – only significant for less wealthy households), increas-
ing adoption under no climate change with 25 % as com-
pared to no intervention. This matches empirical evidence
on the positive effects of ex ante cash transfers (Asfaw et
al., 2017; Barrientos, 2016; Pople et al., 2021). However,
ADOPT model estimations might be an underestimation as
the model does not account for many preparedness strategies
of households such as stocking up on food while the price is

still low, fallowing land to reduce farm expenses, or search-
ing for other sources of income (Khisa and Oteng, 2014).
Seasonal early warning systems, which raise awareness of
upcoming droughts, increase the adoption of measures with
22 % as compared to no intervention. Early warnings have a
stronger effect on the adoption of mulching or fanya juu ter-
races (cheaper measures, lower financial barrier) than of drip
irrigation. Clearly, the positive effect of the interventions on
household resilience varies, which is confirmed by the em-
pirical findings of Wens et al. (2021).

The proactive government scenario, preparing for drought
disasters by improving early warning systems and support-
ing ex ante cash transfers, has a larger effect on drought risk.
However, this effect is not as much as the sum of the effect
of the two interventions. In contrast, the prospective govern-
ment scenario, mitigating drought disasters by combining all
four interventions, alleviates multiple barriers to adoption at
once. This creates a significant nonlinear increase in adop-
tion, matching the significant positive correlation between
the preferences for extension services, credit, and early warn-
ing in Wens et al. (2021). Consequently, this scenario results
in a clear growth in resilience of the farm households, shown
by more stable income, lower poverty rates, and less food
insecurity. However, depending on the climate scenario ap-
plied, the effect of increased adoption due to prospective in-
terventions on household maize production and thus on food
security and poverty is only visible after a few years under
drier conditions and after more than 10 years under wetter
conditions.

5.2 The robustness of drought risk reduction
interventions under climate change

Climate change influences the effectivity of the measures as
well as farm households’ experiences with droughts. Under
all climate change scenarios, a lower adoption of adaptation
measures compared to the no-climate-change assumption is
observed. This could be explained by the fact that the per-
ceived need to adapt is lower under wet conditions and the
financial strength to adapt is lower under dry or hot condi-
tions. This highlights two different barriers to adoption: risk
appraisal lowers when the occurrence of drought impacts is
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less frequent, while coping appraisal lowers due to experi-
encing more drought impacts. This link between drought ex-
periences, poverty and adaptation was also found in other
studies (e.g. Gebrehiwot and van der Veen, 2015; Holden,
2015; Makoti and Waswa, 2015; Mude et al., 2007; Oluoko-
Odingo, 2011; Van Winsen et al., 2016).

While their effect on the adoption rates seems rather small,
the diverse climate change scenarios have a distinctly differ-
ent effect on the evolution of drought risk in rural commu-
nities. Due to the adaptation choices of the farm households,
average maize harvests are estimated to slightly increase un-
der the no-climate-change scenario. A major increase is es-
timated under wet and wet–hot conditions, where both in-
creased adoption and better maize-producing weather condi-
tions play a role. Under hot, dry, and dry–hot conditions, the
average household harvests are estimated to decrease (also
found in Wamari et al., 2007). Increases in median and mean
assets (household wealth) are estimated to slightly increase
under the no-climate-change scenario. In this case, adapta-
tion efforts are able to reduce the drought disaster risk. Drier
climates might lead to decreases in median and mean assets
if farm households are not supported through top-down inter-
ventions. Hotter climates are estimated to result in decreased
median assets but increased average assets of the households.
In this case, adaptation rates are not high enough to avoid in-
creasing drought risk for the median households.

The proactive government scenario is estimated to level
poverty and food security under hotter or drier climate
change scenarios. The prospective government scenario is
the only scenario estimated to reduce emergency aid under all
possible future climates. However, it should be noted that it
takes 1 to 2 decades to make a significant difference between
the reactive stance and prospective intervention plan. In other
words, with climate change effects already visible through
an increased frequency of drought disasters and more to be
expected within the following 10–20 years, prospective in-
tervention should be started now in order to be benefit from
the increased resilience in time under any of the evaluated
futures.

5.3 ADOPT as a dynamic drought risk adaptation
model

In the past decade, the use of agent-based models (ABMs)
in ex post and ex ante evaluations of agricultural policies
and agricultural climate mitigation has been progressively in-
creasing (Kremmydas et al., 2018; Huber et al., 2018). A pi-
oneer in agricultural ABMs is Berger (2001), who couples
economic and hydrologic components into a spatial multi-
agent system. This has been followed more recently by, for
example, Van Oel and Van Der Veen (2011), Mehryar et
al. (2019), and Zagaria et al. (2021). The socio-hydrological,
agent-based ADOPT model follows this trend in that it fully
couples a biophysical model – AquaCrop-OS – and a social
decision model – simulating adaptation decisions using be-

havioural theories – through both impact and adaptation in-
teractions.

The initial ADOPT model setup was created through inter-
views with stakeholders (Wens et al., 2020), and the adaptive
behaviour is based on both existing economic–psychological
theory and empirical household data (Wens et al., 2021).
The assumption of heterogeneous, boundedly rational be-
haviour has been addressed by only a few risk studies so
far (e.g. van Duinen et al., 2015a, b, 2016; Hailegiorgis et
al., 2018; Keshavarz and Karami, 2016; Pouladi et al., 2019).
These studies have implemented empirically supported and
complex behavioural theories in ABMs similarly to ADOPT
(Schrieks et al., 2021; Jager, 2021; Taberna et al., 2020;
Waldman et al., 2020).

ADOPT differs from these models, however, through its
specific aim to evaluate households and community drought
disaster risk beyond the number of measures adopted, crop
yield, or water use. Rarely (except, for example, Dobbie et
al., 2018) do innovation diffusion ABMs use socio-economic
metrics to evaluate drought impacts over time – although
such risk proxies are of great social relevance. As such,
ADOPT evaluates the heterogeneous changes in drought
risk for farm households, influenced by potential top-down
drought disaster risk reduction (DRR) interventions. It does
so through simulating their influence on individual bottom-
up drought adaptation decisions by these farm households
and their effect on socio-economic proxies for drought risk
(poverty rate, food security and aid needs). To our knowl-
edge, this is rather novel in the field of DRR and drought risk
assessments.

5.4 Uncertainties in ADOPT and limitations of
investigated measures and interventions

While yield data have been validated over the historical pe-
riod (Wens et al., 2020), the model output cannot be used
as a predicting tool. This would require more extensive vali-
dations for which, currently, data are not available. Such data
would include longitudinal information on household vulner-
ability and adaptation choices from areas where certain poli-
cies are being implemented or detailed data on aid needs for
the case study area. The past average poverty and food inse-
curity rates matched observations (Wens et al., 2020). How-
ever, absolute levels of emergency aid needs are sensitive to
the averages and fluctuations of household assets, which have
proven harder to verify. Besides, poverty and food insecu-
rity also depend on external food or labour markets and other
influences which might change in the future. Moreover, the
simulated climate scenarios are not entirely realistic (because
variability changes are ignored and because the synthetic fu-
ture data are created based on statistics rather than physi-
cal climate and weather system changes). Moreover, the East
African climate paradox (Funk et al., 2019) creates its own
set of challenges in predicting future weather conditions in
the study area.
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Unavoidably, multiple possible smallholder adaptation
measures are omitted in this study: many more agricultural
water management measures, agronomic actions, and other
options under the umbrella of climate-smart agriculture ex-
ist. Besides, only four different policy interventions are eval-
uated while various others exist. Costs of these top-down in-
terventions are unknown, making cost–benefit estimates re-
garding drought risk reduction strategies not possible for this
study. Studying additional measures or interventions is pos-
sible using the ADOPT model but requires (the collection of)
more data for parameterization and calibration.

Another future improvement to the model could be to di-
rectly sample the empirical household survey data (Wens et
al., 2020) to create a synthetic agent set. Now, the creation
of agents (households) with different characteristics is drawn
from distribution functions based on frequencies in the em-
pirical data. Such a one-to-one data-driven approach is simi-
lar to microsimulation and gaining popularity in the design of
ABMs (Hassan et al., 2010). Lastly, the model application as-
sumes no shifts in the processes underlying weather and hu-
man decision-making: both the synthetic future weather sit-
uation and the decision-making processes are based on past
observations. To avoid the effect of systemic changes and the
black swan effect, only 30 years of the future is modelled.

Because the model setup could not be fully validated and
scenarios do not provide a complete overview of all possibil-
ities, this study does not claim to provide a prediction of the
future for south-eastern Kenya. However, ADOPT is meant
to – rather than forecast drought impact – increase under-
standing of the differentiated effect of adaptation policies:
the relative differences in the risk indicators are informa-
tive for the comparison of these top-down interventions un-
der different changes in temperature and precipitation. This
study showcases the application of ADOPT as a decision
support tool. It evaluates the robustness of a few dedicatedly
chosen policy interventions on farm household drought risk
under climate scenarios that are deemed to be relevant for the
specific area. Future research can use ADOPT to study the
differentiated effect of these interventions on different types
of households in order to tailor strategies and target the right
beneficiaries of government interventions.

6 Conclusion

Top-down interventions, providing drought and adaptation
information as well as supporting the capacity to act on
the basis of this information, are needed to increase the re-
silience of smallholder farmers to current and future drought
risk. However, to what extent these interventions will steer
farmers’ intentions to adopt drought adaptation measures and
hence how effective they are in reducing the farm household
drought risk often remain unknown. In this study, the agent-
based drought risk adaptation model ADOPT is applied to
evaluate the effect of potential future scenarios regarding cli-

mate change and policy interventions on agricultural drought
risk in south-eastern Kenya. The smallholder farmers in this
region face barriers to adopt drought adaptation measures
such as mulching, fanya juu terraces, shallow wells, and drip
irrigation to stabilize production and income.

ADOPT simulates their adaptive behaviour, influenced
by drought occurrences under changing climate condi-
tions. Adaptive behaviour is also influenced by top-down
drought risk reduction interventions such as the introduc-
tion of ex ante cash transfers, affordable credit schemes, im-
proved early warning systems, and tailored extension ser-
vices. We demonstrate that the investigated interventions all
increase the uptake of adaptation measures as compared to
the reactive scenario under no climate change (business as
usual). Extension services (+27 % uptake) multiply adap-
tation knowledge and thus increase self-efficacy among the
smallholders, which increases the adoption of less popu-
lar drought adaptation measures. Accessible credit schemes
(+30 % uptake), alleviating a financial barrier, are effective,
especially for more expensive drought adaptation measures.
Early warning systems (+22 % uptake), creating risk aware-
ness, are more effective in climate scenarios with less fre-
quent drought. Ex ante cash transfers (+25 % uptake) allow
the least endowed households to climb out of the poverty trap
by adopting low-cost drought adaptation measures and thus
reducing future shocks. The effect of climate change on the
adoption of adaptation measures is limited.

Moreover, this study proves that alleviating only one bar-
rier to adoption has a limited result on the drought risk of the
farm households. Under the proactive scenario (+40 % up-
take), combining early warning with ex ante cash transfers,
smallholder farmers are better supported to adopt drought
adaptation measures and to create, on average, more wealth.
However the effect of climate change on farm households’
risk differs significantly under this proactive scenario. While
for wetter conditions, this scenario is able to increase food
security and reduce poverty, this is not sufficient to diminish
the need for external food aid under every evaluated climate
scenario. Only by combining all four interventions (+139 %
uptake) is a strong increase in the adoption of measures es-
timated. Simultaneously increasing risk perception, reduc-
ing investment costs, and elevating self-efficacy creates non-
linear synergies. Under such a prospective government ap-
proach, ADOPT implies significantly reduced food insecu-
rity, decreased poverty levels, and drastically lower drought
emergency aid needs after 10 to 20 years, under all investi-
gated climate change scenarios.

This study suggests that, in order to reach the current
targets of the Sendai Framework for Disaster Risk Reduc-
tion, which aims at building a culture of resilience, and to
achieve the sustainable development goals of “zero hunger”,
“sustainable water management”, and “climate resilience”,
a holistic approach is needed. While we present a proof of
concept rather than predictive model, the results improve the
understanding of future agricultural drought disaster risk un-
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der socio-economic, policy and climate trends. We provide
evidence that agent-based models such as ADOPT can serve
as decision support tools to tailor drought risk reduction in-
terventions under uncertain future climate conditions: more
research into the heterogeneous effect of the investigated top-
down interventions on households’ adaptation decisions and
drought risk can provide information for the effective and ef-
ficient tailoring of the policy interventions. However, from
this study, it is clear that multiple interventions – both (risk
and adaptation) information provision and the creation of ac-
tion perspectives – should be combined now to build a sus-
tainable future for smallholder farmers in Kenya’s drylands.

Appendix A: Description of the ADOPT model
following the ODD + D protocol (Laatabi et al., 2018;
Müller et al., 2013)

A1 Overview

A1.1 Purpose

What is the purpose of the model?

The purpose of ADOPT is to improve agricultural drought
disaster risk assessments by including the complex adaptive
behaviour of smallholder farmers. The ADOPT model simu-
lates the welfare (poverty level, food security, and aid needs)
of smallholder farm households over time as a function of
climate effects on agricultural production, mitigated by im-
plemented adaptation measures, and simulates the adoption
of such measures as a function of economic, social, and psy-
chological household characteristics. Understanding the two-
way feedback between households’ adaptation decisions and
maize yield losses over time can help optimize drought im-
pact estimations under climate and policy changes. ADOPT
can be used to evaluate the adoption rate of adaptation mea-
sures under different climate and policy scenarios and hence
contrast their effect on the drought disaster risk – approxi-
mated by food security and welfare – of smallholder farmers.

For whom is the model designed?

The ADOPT model can allow scientists to increase their un-
derstanding of the socio-hydrological reality of drought dis-
aster risk and drought adaptation in a smallholder farming
context. It can also help decision makers to design drought
policies that target specific farm households and evaluate the
effect of these policies on the households’ drought vulnera-
bility.

A1.2 Entities, state variables, and scales

What kinds of entities are in the model?

The agents in ADOPT are individual farm households that
have farms of varying sizes and potentially off-farm in-

come sources. Two other entities exist: the cropland (mul-
tiple fields) that yields maize production and is owned by the
farm households and the market (one) where maize is sold
and bought.

By what attributes are these entities characterized?

Farm households (see unified modelling language (UML) di-
agram, Fig. A1) have a farm – characterized by its farm size
and the adaptation measures implemented on it. They also
have a family size; a household head (male/female) with a
certain age and education level; financial assets (wealth, ex-
pressed in USD); off-farm employment; and farm, food, and
other expenses. Household heads have a memory regarding
past drought impacts; have a perception about their own ca-
pacity; and, in varying degrees, have information about po-
tential adaptation measures.

Cropland (farms) (see UML, Fig. A1), belonging to house-
holds, produce maize under changing weather conditions,
influenced by potential adaptation measures affecting water
management conditions. The market (see UML, Fig. A1) is
influenced by local production and consumption, which re-
sults in a variable maize price depending on the balance be-
tween supply and demand. In the presented case study, we
consider relatively isolated areas, less subjected to globalized
market systems: maize price is variable following the total
amount of locally produced maize to replicate the observed
price volatility (with minimum and maximum prices derived
from FEWS NET) during years of reduced production.

What are the exogenous factors/drivers of the model?

Two exogenous factors influence the farm household sys-
tems: daily weather (influenced by gradual climate change)
and drought disaster risk reduction policies (top-down policy
interventions supporting smallholder farmers). The first fac-
tor might alter the frequency and severity of droughts – which
may lead to failed crop yields, while the latter affects the
knowledge, access to credit, and risk perceptions of house-
hold members who are recipient of the policies.

How is space included in the model?

ADOPT runs on the scale of farm fields (size adjusted to the
case study area). On this field scale, agricultural water man-
agement decisions (adaptation) interact with rainfall variabil-
ity (drought hazard). However, spatially explicit fields are
used only in the initialization phase, so neighbouring farms
can be identified but do not play any further role: space is
only represented in a spatially implicit way – all farms (crop-
land) receive the same amount of rain and sun, have the same
soil type with a similar slope, and differ only in their farm
size and management applied.

https://doi.org/10.5194/nhess-22-1201-2022 Nat. Hazards Earth Syst. Sci., 22, 1201–1232, 2022



1214 M. L. K. Wens et al.: Policies to reduce farmers’ drought vulnerability

Figure A1. UML diagram.

What are the temporal resolution and extent of the
model?

One time step of ADOPT represents 1 year. The crop model
part runs on a daily basis, producing the maize crop yield in
every cropping season, but decisions by the farm households
to eventually adopt new adaptation measures are only made
once a year. Each year, the poverty status, food security situ-
ation, and potential food aid needs of all farm households are
evaluated. The model runs 30 years of the historical baseline
(+10 initialization years) and 30 scenario years.

A1.3 Process overview and scheduling

What entity does what and in what order?

Every year, farm income of the households is updated with
the maize harvest sold at the current market price (see cen-
tre of the flowchart in Fig. A2). This harvest depends on
the farm size of the household; the maize yields (defined
by AquaCrop-OS), which may be affected by a drought po-
tentially mitigated by implemented drought adaptation mea-
sures; and the food needs of the household (subsistence is pri-
oritized over selling; household members can die or be born
(stochastically determined, based on birth and mortality rates
in the study area)). This farm income, together with a po-
tential (fixed) off-farm income and with farm-size-dependent
farm expenses, family-size-dependent household expenses,
and potentially extra food expenses (if the household’s own
production was not sufficient to fulfil household food needs),
alters the assets of the farm household. The farm household’s
memory of drought impacts (risk perception) is updated, and
household members interact (in a random order) with their
network of neighbours, exchanging information on adapta-
tion measures.

Once a year, the household head decides whether they
want to adopt a new drought adaptation measure. They make
this decision based on their memory of past drought impacts,
their perception of the adaptation costs, the knowledge of
adaptation measures through their networks and training, and
their perception of their own capacity. The adoption of a new
measure changes the farm management of those farmers, di-
rectly changes their wealth (implementation costs) and the
farm expenses for the following years (maintenance costs),
and influences crop yield and crop vulnerability to drought –
thus potential farm income – during the following years.
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Figure A2. Flowchart showing process overview.

A2 Design concepts

A2.1 Theoretical and empirical background

Which general concepts, theories, or hypotheses underlie
the model’s design at the system level or at the level(s) of
the sub-model(s)?

The multidisciplinary modelling approach of ADOPT is
rooted in socio-hydrology (Sivapalan et al., 2012), where the
human system both influences and adapts to the changing
physical environment (in this case agricultural drought), and
applies an agent-based approach to deal with heterogeneity
in adaptive behaviour of smallholder households.

The setup/design of the model (the drought disaster risk
system) is a result of participatory concept mapping with
researchers and students of South Eastern Kenya Univer-

sity (SEKU); technical advisors of the Kitui County Min-
istry of Agriculture, Water and Livestock; experts from the
Sasol Foundation; and five pilot households that have exam-
ple farms for agricultural extension services. This informa-
tion informed the decision context of ADOPT.

On what assumptions is/are the agents’ decision
model(s) based?

In the first design of ADOPT, three adaptive-behaviour
scenarios were analysed, with increasing complexity. A
“business-as-usual” scenario with no changing drought adap-
tation measures was tested, characterizing the “fixed adap-
tation” approach. The conventional expected utility the-
ory (Von Neumann and Morgenstern, 1944) represents the
widely used economist assessment of choice under risk and
uncertainty. Simulating boundedly rational rather than eco-
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nomically rational adaptation decisions, protection motiva-
tion theory (Rogers, 1983) is used as a way to include psy-
chological factors in the heterogeneous adaptive behaviour
of smallholders.

Indeed, it is often stated that households’ adaptive be-
haviour is boundedly rational and embedded in the eco-
nomic, technological, social, and climatic context of the
farmer (Adger, 2006). Knowing the risk is not enough to
adapt; farmers should also believe the adaptation measure
will be effective, be convinced that they have the ability to
implement the measure, and be able to reasonably pay the
costs (van Duinen et al., 2015b). Financial or knowledge con-
straints may limit economically rational decisions. Also age,
gender, and education – intrinsic factors – can play a role
(Burton, 2014). The perceived ability to do something (cop-
ing appraisal) influences the decision-making process (Eiser
et al., 2012). This coping appraisal can be subject to intrin-
sic factors such as education level, sources of income, farm
size, family size, gender, confidence and beliefs, risk aver-
sion, and age (Shikuku et al., 2017; Okumu, 2013; Le Dang
et al., 2014; Zhang et al., 2019).

In order to understand the observed adaptive behaviour
of smallholder households, it is critical to incorporate such
socio-economic factors into the decision-making framework
of drought adaptation models (van Duinen et al., 2015a, b,
2016; Keshavarz and Karami, 2016; Rezaei et al., 2017;
Singh and Chudasama, 2017; O’Brien et al., 2007; Lalani
et al., 2016; Gbetibouo, 2009; Bryan et al., 2009, 2013; Der-
essa et al., 2009; Mandleni and Anim, 2011; Wheeler et al.,
2013; Gebrehiwot and van der Veen, 2015). After we had
promising results running ADOPT with the boundedly ratio-
nal scenario, it was assumed that farmers show a bounded
rationality in the further application of ADOPT.

Why is a certain decision model or certain decision
models chosen?

Analysis of the past and intended behaviour of farm house-
holds in the region provided support for the choice of the-
ory but also showed the need to include networks influencing
risk perception and the capacity of the households. Besides
helping to parameterize the model, it also helped to calibrate
the influence of the different factors affecting the decision-
making process of the farm household. Showing the effect
of different assumptions about decision-making in the first
exploration of ADOPT (Wens et al., 2020) and with empiric
evidence on the adaptive behaviour (Wens et al., 2021), the
decision rules in ADOPT are assumed be a good enough rep-
resentation of the decision-making process regarding drought
adaptation.

If the model/a sub-model (e.g. the decision model) is
based on empirical data, where do the data come from?

ADOPT is designed/initialized with data from existing longi-
tudinal household surveys (TAPRA, 2000, 2004, 2007, 2010)
and from a fuzzy cognitive map of key informants and is
parameterized/partially calibrated with data from a semi-
structured household questionnaire among 260 smallholder
farmers. Survey reports can be found here:

– https://research.vu.nl/en/publications/survey-report-
kitui-kenya-expert-evaluation-of-model-‚ setup-and-
pr (last access: 10 July 2021) and

– https://research.vu.nl/en/publications/survey-report-
kitui-kenya-results-of-a-questionaire-‚ regardings-us
(last access: 10 July 2021).

At which level of aggregation are the data available?

Data from the surveys are available on the individual house-
hold level.

A2.2 Individual decision-making

What are the subjects and objects of decision-making?
On which level of aggregation is decision-making
modelled?

In ADOPT, individual farm households make individual
adaptation decisions about their farm water management (in
the case study in Kenya – mulching, fanya juu terraces,
drip irrigation, or shallow wells) to reduce their production
vulnerability to droughts. There are no multiple levels of
decision-making included.

What is the basic rationality behind agents’
decision-making in the model? Do agents pursue an
explicit objective or have other success criteria?

Farmers generally try to reduce their drought disaster risk
(achieve food security, evade poverty, and avoid needing
emergency aid) and thus try to maximize crop yields (dimin-
ish yield reduction under water-limited conditions) given the
capacity they have to adopt adaptation measures.

How do agents make their decisions?

Protection motivation theory (Maddux and Rogers, 1983)
(see Sect. A2.1) is used to explain the decision-making pro-
cess of the households. PMT consists of two underlying cog-
nitive mediating processes that cause individuals to adopt
protective behaviours when faced with a hazard (Floyd et al.,
2000): it suggests that the intention to protect (in this study,
the farmers’ intentions to adopt a new adaptation measure)
is motivated by a person’s risk appraisal and the perceived
options to cope with risks. The former depends on, for ex-
ample, farmers’ risk perceptions, their own experiences with
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drought disasters and memory thereof, and experiences of
risk events in their social networks. The latter is related to dif-
ferent factors such as perceived self-efficacy (i.e. assets and
sources of income, education level, and family size), adapta-
tion efficacy (land size, adaptation measure characteristics),
and adaptation costs (expenses in relation to their income)
(Gebrehiwot and van der Veen, 2015; Keshavarz and Karami,
2016; van Duinen et al., 2015a, b, 2016). Households do not
have any other objective or success criteria. A detailed de-
scription of how PMT is modelled – including the sensitivity
analysis regarding the relative weights of the PMT factors –
can be found in Wens et al. (2019): in ADOPT, farm house-
holds develop an intention to adapt (protect) for each poten-
tial adaptation measure (m), which changes every year (t). If
a household has the financial capacity to pay for a consid-
ered measure (Stefanović et al., 2015), the intention to adapt
is translated into the likelihood the household will adopt this
measure in the following years. (This can be influenced by
having access to credit.) The actual adoption is stochastically
derived from this likelihood to adopt a measure.

IntentionToAdaptt,m = α ·RiskAppraisalt +β

·CopingAppraisalt,m (A1)

Although Stefanović et al. (2015), van Duinen et al. (2015a),
and Keshavarz and Karami (2016) have found positive rela-
tionships between the factors of PMT and observed protec-
tive behaviour, a level of uncertainty exists related to the rel-
ative importance of risk appraisal and coping appraisal in the
specific context of smallholder households’ adaptation deci-
sions in semi-arid Kenya. Therefore, the α and β parameters
were introduced as weights for the two cognitive processes.
To address the associated uncertainty, they were widely var-
ied (α, β ε [0.334, 0.666]) in a sensitivity analysis.

Risk appraisal is formed by combining the perceived
risk probability and perceived risk severity, shaped by ra-
tional and emotional factors (Deressa et al., 2009, 2011;
van Duinen et al., 2015b). Whereas risk perception is based
in part on past experiences, several studies have suggested
that households place greater emphasis on recent harmful
events (Gbetibouo, 2009; Rao et al., 2011; Eiser et al., 2012).
To include this cognitive bias, risk appraisal is seen as a sort
of subjective, personal drought disaster memory, defined as
follows (Viglione et al., 2014):

RiskAppraisalt = RiskAppraisalt−1+
(
Droughtt

·Damaget
)
− 0.125 ·RiskAppraisalt−1 , (A2)

with Damaget = 1− e−harvestlosst .
The drought occurrence in year t is a binary value with a

value of 1 if the SPEI-3 value falls below −1. The disaster
damage of a household is related to its harvest loss during the
drought year, which is defined as the difference between its
current and average harvest over the last 10 years.

Coping appraisal represents a household’s subjective
“ability to act to the costs of a drought adaptation measures,
given the adaptation measures’ efficiency in reducing risk”
(Stefanović et al., 2015; van Duinen et al., 2015a). It is a
combination of the household’s self-efficacy, adaptation effi-
cacy of the measure, and the measure’s adaptation costs:

CopingAppraisalt,m = γ ·SelfEfficacyt + δ

·AdaptationEfficacyt,m+ ε
·
(
1−AdaptationCostst,m

)
. (A3)

Although Stefanović et al. (2015), van Duinen et al. (2015b),
and Keshavarz and Karami (2016) quantified the relation-
ships between the factors driving the subjective coping ap-
praisal of individuals, a level of uncertainty remains related
to the relative importance of these drivers in the context of
smallholder households’ adaptation decisions in semi-arid
Kenya. Therefore, weights (γ , δ, εε [0.25, 0.50]) were in-
troduced and varied in a sensitivity analysis using different
ADOPT model runs.

The adaptation costs of the possible measures are ex-
pressed in terms of a percentage of the households’ assets.
The adaptation efficacy is calculated as the percentage of
yield gain per measure compared to the current yield. This
can be influenced by access to extension services (which
gives an objective yield gain based on future climate rather
than an estimate based on current practices of neighbours).

Self-efficacy is assumed to be influenced by education
level (capacity), household size (labour force), age, and gen-
der, all being social factors found to influence risk aversion
and adaptation decisions (Okumu, 2013; Charles et al., 2014;
Tongruksawattana, 2014; Muriu-Ng’ang’a et al., 2017).

Do the agents adapt their behaviour to changing
endogenous and exogenous state variables? And, if yes,
how?

Exogenous factors influencing adaptation decisions in
ADOPT include the climate and the policy context in which
households exist. Crop losses induced by drought (a feature
of the climate context) steer a household’s perception of the
drought disaster risks faced (risk appraisal). For example, ex-
periences of historical droughts or receiving early warnings
about upcoming drought affects individuals’ evaluations of
drought disaster risk, leading to a personal drought disaster
risk judgement (e.g. Keshavarz et al., 2014; Singh and Chu-
dasama, 2017). Besides, access to extension services (a fea-
ture of the climate context) can have a profound effect on
whether or not individuals take proactive action (Kitinya et
al., 2012; Shikuku et al., 2017). Endogenous factors, as ex-
plained above, include age, household size, education level,
maize yield variability, and assets (and the potential access
to the credit market).
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Do spatial aspects play a role in the decision process?

Farmer networks (connections with neighbours) exist, and
information is passed through these social networks.

Do temporal aspects play a role in the decision process?

Yes. Risk memory is based on the crop yield variability of
the accumulated past years and gives farm households an ex-
pectation about the upcoming crop yield.

Do social norms or cultural values play a role in the
decision-making process?

No (only implicitly included; see Sect. A2.9).

To what extent and how is uncertainty included in the
agents’ decision rules?

It is not included in the model.

A2.3 Learning

Is individual learning included in the decision process? How
do individuals change their decision rules over time as a con-
sequence of their experience?

Decision rules follow PMT and are thus fixed, but some
rules differ among types of households. Households that do
not regularly receive extension services are limited to only
implementing measures that their neighbours have installed
as they are not aware of the existence of others. Besides,
farmers who receive training will form their perception of
the adaptation efficacy in a more objective way (as they have
knowledge of average yield results under the adaptation mea-
sures, while other farmers estimate this based on the yield of
their peers with such measures).

Is collective learning implemented in the model?

No.

A2.4 Individual sensing

What endogenous and exogenous state variables are
individuals assumed to sense and consider in their
decisions? Is the sensing process erroneous?

Households are aware of their assets, past yields, income
sources and stability, and household food needs (Fig. A1).
Following the socio-hydrologic setup of the model, house-
holds with boundedly rational behaviour are embedded
in and interact with their social and natural environment.
Changes in rainfall patterns during the growing season will
change households’ risk perceptions through fluctuations in
crop yield; drought memory will influence the adaptive be-
haviour of these households. Besides, there is a diffusion

of technology due to interactions and knowledge exchanges
among farm households as discussed above.

What state variables of other individuals can an
individual perceive?

Households know not only their own but also their neigh-
bours’ current yields and management practices. They make
assumptions about the adaptation efficacy based on this.

What is the spatial scale of sensing?

Individual sensing happens not only on a household level but
also through the individual social network that the farmers
have, containing 3 to 30 other farmers.

Are the mechanisms by which agents obtain information
modelled explicitly, or are individuals simply assumed to
know these variables?

Households can obtain information about early warnings and
through extension training. Households also have a simulated
information transfer moment with the farmers in their neigh-
bourhood to exchange information on risk and yields.

Are the costs for cognition and the costs for gathering
information explicitly included in the model?

No.

A2.5 Individual prediction

Which data use the agent to predict future conditions?

By extrapolating from historical yield experiences, farmers
have expectations about their maize yield every year. If an
early warning system is in place, farmers know about up-
coming droughts that can influence their crop yield.

What internal models are agents assumed to use to
estimate future conditions or consequences of their
decisions?

Households receiving extension services have knowledge
about the average (future) yield gain of adopting a new adap-
tation measure, which will influence their coping appraisal.

Might agents be erroneous in the prediction process, and
how is it implemented?

Households without this access to training will predict the
yield gain based on the extra yield of their neighbours who
have already adopted the considered adaptation measure.
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A2.6 Interaction

Are interactions among agents and entities assumed to
be direct or indirect?

In ADOPT, households interact with their neighbours, shap-
ing risk awareness and response attitude (Okumu, 2013;
Koome, 2017; van Duinen et al., 2016). Such networks can
enhance social learning and knowledge spillover, which in-
fluences people’s adaptation intentions and choices of spe-
cific measures (Below et al., 2010; Tongruksawattana, 2014).
Smallholder households learn from the other households in
their social network about the implementation and benefits
of drought adaptation measures (Below et al., 2010; Shikuku
et al., 2017). In ADOPT, exchanges with neighbours shape
risk perception – the individual perception moves in the di-
rection of the social network average – and also shape per-
ceived adaptation effectivity. Moreover, households with no
access to extension services can only adopt measures already
implemented by neighbours.

On what do the interactions depend?

Households are either more self-oriented, discussing matters
with 10 neighbours, or group-oriented, sharing knowledge
within a group/collective of 30 neighbouring households.

Spatial distance (neighbourhood) at initialization is the
key driver of networks; it is assumed that householders would
not walk more than 5 km to reach people in their network.

If the interactions involve communication, how are such
communications represented?

Communication is not explicitly modelled.

If a coordination network exists, how does it affect the
agent behaviour? Is the structure of the network
imposed or emergent?

No coordination network exists.

A2.7 Collectives

Do the individuals form or belong to aggregations that
affect and are affected by the individuals? How are
collectives represented?

No. No fixed collectives exist as the social networks the
agents have are individual in nature.

A2.8 Heterogeneity

Are the agents heterogeneous? If yes, which state
variables and/or processes differ between the agents?

Household agents are heterogeneous in terms of state vari-
ables (i.e. farm size, household size, assets) and differ in

their access to the credit market, extension services, and early
warning systems, changing their adaptive behaviour (Asfaw
et al., 2017; Shikuku et al., 2017; Okumu, 2013).

Are the agents heterogeneous in their decision-making?
If yes, which decision models or decision objects differ
between the agents?

Okumu (2013) and Shikuku et al. (2017), among others,
found that state variables such as age, beliefs, gender, edu-
cation of the household head, and the household size have
significant effects on risk attitude. These factors are included
in the model application of protection motivation theory
through the self-efficacy factor.

A2.9 Stochasticity

What processes (including initialization) are modelled by
assuming they are random or partly random?

The likelihood to adopt a measure of a household is directly
derived from the intention to adapt the measure with the
highest intention for that household. This is stochastically
transferred into an actual decision about whether or not to
adopt the measure. For every time step of the simulation, a
random number between 0–1 is drawn for each household; if
this is lower than their adaptation intention (also between 0–
1) and the household is able to pay for the measure, then
the household adopts it. This probabilistic way of looking
at adaptation intention and the stochastic step to derive the
actual decisions allow us to account for non-included fac-
tors introducing uncertainty into adaptive behaviour such as
conservatism, social/cultural norms, physical health, or am-
bitiousness of the households. Moreover, a stochastic pertur-
bation (multiplied with a random number with average 1 and
SD 0.1) is also added to the maize yield per farm as calcu-
lated through AquaCrop-OS. This additional heterogeneity-
inducing step is made to include effects of pests and diseases
on the income and food security of farming households.

A2.10 Observation

What data are collected from the ABM for testing,
understanding, and analysing it, and how and when are
they collected?

The adoption of adaptation measures and their effect on the
total crop production (and food stock on the market) and indi-
vidual household wealth are tracked over the simulated years.

What key results, outputs, or characteristics of the
model emerge from the individuals?

Drought disaster risk (the annual average of impacts over
the run period) – expressed in terms of the average annual
poverty rate, level of food security, and total emergency aid
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needs – emerges from the model. It is defined based on the
socio-economic conditions of individual farm households.

A3 Details

A3.1 Implementation

How has the model been implemented?

The model is coded in R, which is able to link the two sub-
models in NetLogo (the adaptive-behaviour sub-model) and
MATLAB (AquaCrop-OS).

Is the model accessible and, if so, where?

No. The model is not (yet) accessible.

A3.2 Initialization

What is the initial state of the model world, i.e. at time
t = 0 of a simulation run?

At the initial stage, households and their characteristics are
randomly created based on the mean and standard devi-
ation (Table A1) derived from the household dataset, ob-
tained from a survey on agricultural drought disaster risk
with smallholders in the case study area (Wens, 2019). Off-
farm income is linearly related to the household size and edu-
cation level and negatively related to the farm size. Food and
non-food expenditures are linearly related to the household
size. Farm expenditures are linearly related to the farm size.

Is initialization always the same, or is it allowed to vary
among simulations?

In ADOPT, multiple climate change scenarios and policy
scenarios were initialized – this changed the exogenous vari-
ables in the model. Moreover, each initialization creates an-
other synthetic agent set based on the average household
characteristics. Besides, a sensitivity analysis is performed to
evaluate assumptions about the relative weights of the PMT
factors (Sect. A2.2). Each combination of climate and policy
scenario is run 12 times (3 possible α values; 4 possible com-
binations of γ , δ, ε) to account for the endogenous variability
and uncertainty.

Are initial values chosen arbitrarily or based on data?

The initialization values are based on observed household
data. Survey data include a short questionnaire among em-
ployees of the Kenyan national disaster coordination units
(n= 10); semi-structured expert interviews (n= 8) with
NGOs, governmental water authorities, and pioneer farm-
ers in the Kitui district in Kenya; and an in-depth question-
naire among 260 smallholder farmers in central Kitui. Ex-
tra information is derived from household surveys of 2000,
2004, 2007, and 2010, conducted by the Tegemeo Agricul-

tural Policy Research and Analysis (TARAA) project of the
Tegemeo Institute. Besides, the model initialization draws
heavily from reports of CIAT (CIAT and World Bank, 2015),
the FAO (Ansah et al., 2014), IFPRI (Erenstein et al., 2011)
and the government of Kenya (Kitui County Integrated re-
port 2013–2017, 2017), CCAFS (CCAFS, 2015), and re-
search (e.g. Muhammad et al., 2010).

A3.3 Input data

Does the model use input from external sources such as
data files or other models to represent processes that
change over time?

The daily weather conditions from 1980–2010 (from
CHIRPS and CFSR) are used as input time series; for the
future climate scenarios, the same data but with temperature
are used.

Besides, survey data on household behaviour and drought
risk context are used. Raw reporting can be found in
Wens (2018, 2019).

Where do data come from? How are they collected?
What is the level of available data? How are they
structured?

Data (also discussed in Wens et al., 2021) are collected in the
field using a multi-method data survey approach (key infor-
mant interviews, fuzzy cognitive map, household question-
naire, and choice experiment). These data are used to design
the model, to validate the use of PMT, to initialize the agent
set, and to calibrate model outputs.

What are the variables, entities, and classes available in
the data? What do they represent?

A full set of behavioural factors were evaluated through the
household questionnaire, and these were linked to actual be-
haviour and to behavioural intentions, as well as to the re-
sults of the choice experiment investigating future behaviour
(Wens et al., 2021). Besides, socio-economic and farm char-
acteristics were questioned.

How are data selected to form the agent entities? How is
the agent population generated and synthesized?

As discussed above, the data are used to create a representa-
tive set of agents. Household variable means and standard
deviations were used to create distribution functions, and
a synthetic agent set was created based on random draws
from these functions. Moreover, correlation between differ-
ent variables was maintained.
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Table A1. Initialization parameters for farm households in ADOPT.

Parameter Explanation of initialization parameters for farm households Value

Age Age of the household head (based on Wens, 2019) 42± 9
Edu Years of education of the household head (based on Wens, 2019) 6± 3
Sex Gender of the household head (male 1, female 0) 0.66
HH size Family size of the households (people living under the same roof) (Wens, 2019) 6± 2.5
Assets Household financial assets (USD) that can be spent (based on Erenstein et al., 2011) 80 %< 100
Farm size Size of the farm (in hectares) used for planting crops (Wens, 2019) 0.7± 0.6
Off-farm Income from activities not on the household’s own farm in USD (Wens, 2019) 1200± 500
Food needs Kilogram of maize to fulfil daily caloric intake needs, per adult 125
Exp-farm Farm expenditures made by the household (USD per hectare per year) (Wens, 2019) 118± 146
Exp-food Food expenditures made by the household (USD per year) (Wens, 2019) 567± 655
Exp-nonf Other expenditures made by the household (USD per year) (Wens, 2019) 446± 500
Network Neighbouring farmers creating the social network of the farmer 10–30

Table A2. Initialization parameters for the behavioural module in ADOPT.

Factor Explanation of the PMT factors

Current yield Average yield of the last 5 years

Potential yield Expected/perceived yield when adopting a new adaptation measure,
based either on yield of neighbours with that measure or on training info

Adaptation costs Perception of the costs of new measures as a percentage of assets

Knowledge measures 1 if attending training; otherwise the percentage of people in the network with measures

Risk perception Drought memory, 1 if last harvest there was 0 yield and 0 if never impacted

Adaptation efficacy Yield gain as a percentage of current yield, based on potential yield

Self-efficacy Belief in own capacity, based on gender, age, HH size, and access to training

Adaptive capacity Product of self-efficacy, adaptation efficacy, and −1× adaptation costs

Adaptation intention Product of adaptive capacity and risk perception, 0 if one of the underlying
factors is 0 or if assets are smaller than costs of measures

Table A3. Initialization parameters for AquaCrop-OS in ADOPT.

Value Explanation of calibration parameters for AquaCrop-OS v6.0 maize

60/80 Curve number value under fanya juu bunds/under absence of such bunds
6 Bund height (m)
50 Area of surface covered by mulch (%)
0.5 Soil evaporation adjustment factor due to effect of mulch
SM-based Irrigation method
7/3 Interval irrigation in days under manual/automated irrigation
40 Soil moisture target (% of TAW below which irrigation is triggered)
12 Maximum irrigation depth (mm d−1)
50/75 Application efficiency under manual/automated irrigation (%)
50 Soil surface wetted by irrigation (%)
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What are the relationships and patterns that exist in the
data?

As discussed above, a relationship between the household in-
come and household head education level or farm size ex-
ists. Next to correlations between socio-economic or agri-
cultural characteristics, correlations between psychological
factors and actual or prospective adaptation decisions were
investigated and used to design the behavioural module of
ADOPT.

A3.4 Sub-models

What, in detail, are the sub-models that represent the
processes listed in “Process overview and scheduling”?

The FAO crop water model AquaCrop-OS (coded in MAT-
LAB by Tim Foster; Foster et al., 2017) calculates sea-
sonal crop production, based on hydro-climatologic condi-
tions provided by the climate data and based on the agricul-
tural management of the households. The agent-based model
in which farming households decide on their drought adap-
tation measures is coded in NetLogo, a language specialized
in ABMs. This contains the decision-making module, which
is a model application of protection motivation theory as ex-
plained in Sect. A2.1. More detailed explanation about how
this is done can be found in Wens et al. (2020).

How were sub-models designed or chosen, and how were
they parameterized and then tested?

AquaCrop-OS was applied, parameterized, and calibrated
following Ngetich et al. (2012) and Omyo et al. (2015), who
both analysed and approved the functioning of this model to
simulate maize yield under different climates in Kenya.

The decision sub-model is described above in the sub-
sections about decision-making and theoretical foundations
(Sect. A2.2). A more detailed description can be found in
Wens et al. (2020).

What are the model parameters and their dimensions
and reference values?

For AquaCrop-OS, Tables A3 and A4 give an overview of the
parameters that are used. For the decision-making module,
Table A2 gives an overview of the factors used.
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Table A4. Crop parameters for maize AquaCrop-OS in ADOPT.

Value Crop parameters for AquaCrop-OS

3 Crop type (1, leafy vegetable; 2, root/tuber; 3, fruit/grain)
1 Planting method (0, transplanted; 1, sown)
1 Calendar type (1, calendar days; 2, growing degree days)
0 Convert calendar to GDD mode if inputs are given in calendar days (0, no; 1, yes)
16/03 Planting date (dd/mm)
31/08 Latest harvest date (dd/mm)
5 Growing degree/calendar days from sowing to emergence/transplant recovery
40 Growing degree/calendar days from sowing to maximum rooting
80 Growing degree/calendar days from sowing to senescence
90 Growing degree/calendar days from sowing to maturity
40 Growing degree/calendar days from sowing to start of yield formation
5 Duration of flowering in growing degree/calendar days (−999 for non-fruit/grain crops)
65 Duration of yield formation in growing degree/calendar days
3 Growing degree day calculation method
8 Base temperature (◦C) below which growth does not progress
30 Upper temperature (◦C) above which crop development no longer increases
1 Pollination affected by heat stress (0, no; 1, yes)
35 Maximum air temperature (◦C) above which pollination begins to fail
40 Maximum air temperature (◦C) at which pollination completely fails
1 Pollination affected by cold stress (0, no; 1, yes)
10 Minimum air temperature (◦C) below which pollination begins to fail
5 Minimum air temperature (◦C) at which pollination completely fails
1 Transpiration affected by cold-temperature stress (0, no; 1, yes)
12 Minimum growing degree days (◦C d−1) required for full crop transpiration potential
0 Growing degree days (◦C d−1) at which no crop transpiration occurs
0.3 Minimum effective rooting depth (m)
0.8 Maximum rooting depth (m)
1.3 Shape factor describing root expansion
0.0105 Maximum root water extraction at the top of the root zone (m3 m−3 d−1)
0.0026 Maximum root water extraction at the bottom of the root zone (m3 m−3 d−1)
6.5 Soil surface area (cm2) covered by an individual seedling at 90 % emergence
37 000 Number of plants per hectare
0.89 Maximum canopy cover (fraction of soil cover)
0.1169 Canopy decline coefficient (fraction per GDD/calendar day)
0.2213 Canopy growth coefficient (fraction per GDD)
1.05 Crop coefficient when canopy growth is complete but prior to senescence
0.3 Decline in crop coefficient due to ageing (% per day)
33.7 Water productivity normalized for ET0 and CO2 (g m−2)
100 Adjustment of water productivity in the yield formation stage (% of WP)
50 Crop performance under elevated atmospheric CO2 concentration (%)
0.48 Reference harvest index
0 Possible increase in the harvest index due to water stress before flowering (%)
7 Coefficient describing positive impact on the harvest index of restricted vegetative growth during yield formation
3 Coefficient describing negative impact on the harvest index of stomatal closure during yield formation
15 Maximum allowable increase in the harvest index above the reference value
1 Crop determinacy (0, indeterminant; 1, determinant)
50 Excess of potential fruits
0.02 Upper soil water depletion threshold for water stress effects on canopy expansion
0.20 Upper soil water depletion threshold for water stress effects on canopy stomatal control
0.69 Upper soil water depletion threshold for water stress effects on canopy senescence
0.80 Upper soil water depletion threshold for water stress effects on canopy pollination
0.35 Lower soil water depletion threshold for water stress effects on canopy expansion
1 Lower soil water depletion threshold for water stress effects on canopy stomatal control
1 Lower soil water depletion threshold for water stress effects on canopy senescence
1 Lower soil water depletion threshold for water stress effects on canopy pollination
1 Shape factor describing water stress effects on canopy expansion
2.9 Shape factor describing water stress effects on stomatal control
6 Shape factor describing water stress effects on canopy senescence
2.7 Shape factor describing water stress effects on pollination
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Appendix B: Adoption rates of adaptation measures

Figure B1. Total number of measures adopted per 1000 initialized households under the reactive scenario, averaged over all runs. The shaded
area indicates the uncertainty introduced by different model initializations and by the different relative importance of the PMT factors for the
decisions of households. Year 0 marks the initiation of the policy drought risk reduction intervention.

Figure B2. Total number of measures adopted per 1000 initialized households under the three intervention scenarios and three climate
change scenarios, averaged over all runs. The shaded area indicates the uncertainty introduced by different model initializations and by the
different relative importance of the PMT factors for the decisions of households. Year 0 marks the initiation of policy drought risk reduction
interventions (indicated with different line colours).
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Table B1. Adoption ratio (as a share of the population) at run year 30 under different climate and intervention scenarios. Note that the model
showed an adoption rate of 25 % for mulch, 70 % for fanya juu terraces, 9 % for wells and 4 % for irrigation at run year 0 (start of climate
change and policy scenarios).

No change Wet Wet–hot Hot Dry–hot Dry

Mulch

Reactive 50.2 % 47.8 % 45.6 % 42.1 % 35.9 % 38.5 %
Proactive 83.8 % 83.6 % 89.4 % 90.1 % 90.7 % 88.1 %
Prospective 100 % 100 % 100 % 100 % 100 % 100 %

Fanya juu terraces

Reactive 71.1 % 70.9 % 69.1 % 68.8 % 60.7 % 63.3 %
Proactive 87.2 % 88.1 % 90.7 % 90.9 % 91.9 % 90.1 %
Prospective 93.7 % 93.5 % 94.7 % 94.8 % 95.1 % 94.9 %

Wells

Reactive 9.4 % 9.6 % 9.4 % 9.2 % 9.1 % 9.0 %
Proactive 11.7 % 12.7 % 13.4 % 12.0 % 12.1 % 11.4 %
Prospective 79.4 % 82.6 % 92.1 % 92.9 % 95.0 % 91.1 %

Irrigation

Reactive 3.7 % 3.7 % 3.5 % 3.4 % 3.3 % 3.4 %
Proactive 5.2 % 5.6 % 5.6 % 5.3 % 5.2 % 4.8 %
Prospective 48.7 % 59.6 % 73.3 % 75.8 % 82.0 % 71.8 %

Table B2. Difference in adoption ratio (as a share of the population) under different climate and intervention scenarios compared to the
reactive government scenario under no climate change (the BAU scenario).

No change Wet Wet–hot Hot Dry–hot Dry

Mulch

Reactive 0 −2.5 % −4.6 % −8.1 % −14.3 % −11.6 %
Proactive 33.7 % 33.4 % 39.3 % 39.9 % 40.5 % 38.0 %
Prospective 49.4 % 49.4 % 49.8 % 49.8 % 49.8 % 49.8 %
Early warning services 18.0 % 19.7 % 18.8 % 13.5 % −4.5 % 1.2 %
Transfer 23.2 % 14.4 19.6 % 24.6 % 23.8 % 18.4 %
Access to credit 19.5 % 16.6 % 14.7 % 8.5 % 5.4 % 9.1 %
Training 30.1 % 27.6 % 24.9 % 20.4 % 10.8 % 15.1 %

Fanya juu terraces

Reactive 0 % −0.2 % −2 % −2.3 % −10.3 % −7.7 %
Proactive 16.2 % 17.0 % 19.6 % 19.8 % 20.8 % 19.1 %
Prospective 22.6 % 22.4 % 23.6 % 23.8 % 24.1 % 23.8 %
EWS 8.2 % 9.2 % 8.5 % 6.0 % −0.2 % 1.3 %
transfer 9.0 % 5.9 % 6.9 % 10.3 % 10.1 % 8.4 %
Credit2 8.0 % 7.3 % 5.1 % 6.0 % −0.1 % 1.5 %
training −1.7 % −2.9 % −5.1 % −5.5 % −11.2 % −9.9 %
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Table B2. Continued.

No change Wet Wet–hot Hot Dry–hot Dry

Irrigation

Wells

Reactive 0 % 0.2 % −0.1 % −0.3 % −0.4 % −0.4 %
Proactive 2.4 % 3.2 % 3.9 % 2.6 % 2.7 % 2.0 %
Prospective 69.9 % 73.2 % 82.7 % 83.4 % 85.5 % 81.6 %
EWS 1.7 % 2.0 % 1.4 % 1.1 % −0.4 % 0.2 %
Transfer 1.0 % 1.0 % 1.1 % 0.2 % 0.4 % 0.2 %
Credit2 9.4 % 9.1 % 7.4 % 6.9 % 4.2 % 5.1 %
Training 5.2 % 5.5 % 4.4 % 3.2 % 1.5 % 1.9 %

Reactive 0 % 0 % −0.1 % −0.3 % −0.4 % −0.3 %
Proactive 1.5 % 1.9 % 1.9 % 1.6 % 1.5 % 1.2 %
Prospective 45.1 % 56.0 % 69.6 % 72.1 % 78.3 % 68.1 %
EWS 1.3 % 1.6 % 1.6 % 1.4 % 0.5 % 0.7 %
Transfer 0.6 % 0.3 % 0.1 % −0.2 % −0.4 % −0.4 %
Credit2 3.7 % 3.7 % 2.8 % 2.4 % 1.2 % 1.7 %
Training 2.8 % 3.3 % 2.2 % 1.7 % 0.9 % 1.3 %

Change in adoption of the four measures compared to the reactive, no-change scenario

Total

Reactive 0 % −1.8 % −5.0 % −8.2 % −18.9 % −15.0 %
Proactive 40.0 % 41.2 % 48.2 % 47.6 % 48.8 % 44.8 %
Prospective 139.2 % 149.6 % 167.9 % 170.5 % 176.9 % 166.2 %
EWS 21.7 % 24.2 % 22.6 % 16.4 % −3.4 % 2.5 %
Transfer 25.1 % 16.1 % 20.7 % 25.9 % 25.2 % 19.8 %
Credit2 30.2 % 27.3 % 22.3 % 17.7 % 7.9 % 12.9 %
Training 27.0 % 24.9 % 9.7 % 14.8 % 1.6 % 6.2 %

Data availability. The input data used for this model application
can be found in the following field reports:

– https://research.vu.nl/en/publications/survey-report-kitui-
kenya-expert-evaluation-of-model-setup‚-and-pr (Wens, 2018)
and

– https://research.vu.nl/en/publications/survey-report-kitui-
kenya-results-of-a-questionaire‚-regardings-us (Wens, 2019).
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