Articles | Volume 20, issue 2
https://doi.org/10.5194/nhess-20-567-2020
https://doi.org/10.5194/nhess-20-567-2020
Research article
 | Highlight paper
 | 
25 Feb 2020
Research article | Highlight paper |  | 25 Feb 2020

Modelling global tropical cyclone wind footprints

James M. Done, Ming Ge, Greg J. Holland, Ioana Dima-West, Samuel Phibbs, Geoffrey R. Saville, and Yuqing Wang

Related authors

The response of tropical cyclone intensity to changes in environmental temperature
James M. Done, Gary M. Lackmann, and Andreas F. Prein
Weather Clim. Dynam., 3, 693–711, https://doi.org/10.5194/wcd-3-693-2022,https://doi.org/10.5194/wcd-3-693-2022, 2022
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Subseasonal forecasts of heat waves in West African cities
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025,https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025,https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025,https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024,https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
How well are hazards associated with derechos reproduced in regional climate simulations?
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024,https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary

Cited articles

Arthur, W. C.: A statistical-parametric model of tropical cyclones for hazard assessment, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-192, in review, 2019. 
Arthur, W. C., Schofield, A., Cechet, R. P., and Sanabria, L. A.: Return period cyclonic wind hazard in the Australian region, in: 28th AMS Conference on Hurricanes and Tropical Meteorology, Orlando, Florida, USA, 28 April–2 May 2008, 12B.5, 2008. 
Blackadar, A. K.: The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res., 67, 3095–3102, https://doi.org/10.1029/JZ067i008p03095, 1962. 
Chavas, D. R., Reed, K. A., and Knaff, J. A.: Physical understanding of the tropical cyclone wind-pressure relationship, Nat. Commun., 8, 1360, https://doi.org/10.1038/s41467-017-01546-9, 2017. 
Cobb, A. and Done, J. M.: The Use of Global Climate Models for Tropical Cyclone Risk Assessment, in: Hurricanes and Climate Change, edited by: Collins, J., Walsh, K., Springer, Cham, https://doi.org/10.1007/978-3-319-47594-3_7, 2017. 
Download
Short summary
Assessing tropical cyclone (TC) wind risk is challenging due to a lack of historical TC wind data. This paper presents a novel approach to simulating landfalling TC winds anywhere on Earth. It captures local features such as high winds over coastal hills and lulls over rough terrain. A dataset of over 700 global historical wind footprints has been generated to provide new views of historical events. This dataset can be used to advance our understanding of overland TC wind risk.
Altmetrics
Final-revised paper
Preprint