Articles | Volume 20, issue 2
https://doi.org/10.5194/nhess-20-567-2020
https://doi.org/10.5194/nhess-20-567-2020
Research article
 | Highlight paper
 | 
25 Feb 2020
Research article | Highlight paper |  | 25 Feb 2020

Modelling global tropical cyclone wind footprints

James M. Done, Ming Ge, Greg J. Holland, Ioana Dima-West, Samuel Phibbs, Geoffrey R. Saville, and Yuqing Wang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (11 Nov 2019) by James Daniell
ED: Publish subject to minor revisions (review by editor) (25 Nov 2019) by James Daniell
AR by James Done on behalf of the Authors (04 Dec 2019)  Author's response   Manuscript 
ED: Publish subject to technical corrections (25 Jan 2020) by James Daniell
AR by James Done on behalf of the Authors (29 Jan 2020)  Author's response   Manuscript 
Download
Short summary
Assessing tropical cyclone (TC) wind risk is challenging due to a lack of historical TC wind data. This paper presents a novel approach to simulating landfalling TC winds anywhere on Earth. It captures local features such as high winds over coastal hills and lulls over rough terrain. A dataset of over 700 global historical wind footprints has been generated to provide new views of historical events. This dataset can be used to advance our understanding of overland TC wind risk.
Altmetrics
Final-revised paper
Preprint