Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2633-2020
https://doi.org/10.5194/nhess-20-2633-2020
Research article
 | 
06 Oct 2020
Research article |  | 06 Oct 2020

Rapid flood risk screening model for compound flood events in Beira, Mozambique

Erik C. van Berchum, Mathijs van Ledden, Jos S. Timmermans, Jan H. Kwakkel, and Sebastiaan N. Jonkman

Related authors

Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025,https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Deep learning methods for flood mapping: a review of existing applications and future research directions
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022,https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022,https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025,https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025,https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025,https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Content analysis of multi-annual time series of flood-related Twitter (X) data
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025,https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025,https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary

Cited articles

Arcadis: Integrated coastal zone management programme for Beira, Mozambique, Arnhem, the Netherlands, 1999. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Bryant, B. P. and Lempert, R. J.: Thinking inside the box: a participatory, computer-assisted approach to scenario discovery, Technol. Forecast. Soc., 77, 34–49, 2010. 
Butler, D. and Davies, J.: Urban drainage, Crc Press, 2003. 
Cardona, O., Bernal, G., Ordaz, M., Salgado, M., Singh, S., Mora, M., and Villegas, C.: Update on the Probabilistic Modelling of Natural Risks at Global Level: Global Risk Model, GAR15, (CIMNE & INGENIAR) UNISDR, Geneva, 2014. 
Download
Short summary
Flood risk management is especially complicated in coastal cities. The complexity of multiple flood hazards in a rapidly changing urban environment leads to a situation with many different potential measures and future scenarios. This research demonstrates a new model capable of quickly simulating flood impact and comparing many different strategies. This is applied to the city of Beira, where it was able to provide new insights into the local flood risk and potential strategies.
Share
Altmetrics
Final-revised paper
Preprint