Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2633-2020
https://doi.org/10.5194/nhess-20-2633-2020
Research article
 | 
06 Oct 2020
Research article |  | 06 Oct 2020

Rapid flood risk screening model for compound flood events in Beira, Mozambique

Erik C. van Berchum, Mathijs van Ledden, Jos S. Timmermans, Jan H. Kwakkel, and Sebastiaan N. Jonkman

Related authors

Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
EGUsphere, https://doi.org/10.5194/egusphere-2024-2621,https://doi.org/10.5194/egusphere-2024-2621, 2024
Short summary
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Deep learning methods for flood mapping: a review of existing applications and future research directions
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022,https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022,https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024,https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024,https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024,https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Dynamic response of pile–slab retaining wall structure under rockfall impact
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024,https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024,https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary

Cited articles

Arcadis: Integrated coastal zone management programme for Beira, Mozambique, Arnhem, the Netherlands, 1999. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Bryant, B. P. and Lempert, R. J.: Thinking inside the box: a participatory, computer-assisted approach to scenario discovery, Technol. Forecast. Soc., 77, 34–49, 2010. 
Butler, D. and Davies, J.: Urban drainage, Crc Press, 2003. 
Cardona, O., Bernal, G., Ordaz, M., Salgado, M., Singh, S., Mora, M., and Villegas, C.: Update on the Probabilistic Modelling of Natural Risks at Global Level: Global Risk Model, GAR15, (CIMNE & INGENIAR) UNISDR, Geneva, 2014. 
Download
Short summary
Flood risk management is especially complicated in coastal cities. The complexity of multiple flood hazards in a rapidly changing urban environment leads to a situation with many different potential measures and future scenarios. This research demonstrates a new model capable of quickly simulating flood impact and comparing many different strategies. This is applied to the city of Beira, where it was able to provide new insights into the local flood risk and potential strategies.
Altmetrics
Final-revised paper
Preprint