Articles | Volume 19, issue 8
https://doi.org/10.5194/nhess-19-1839-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-19-1839-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of lightning and radar reflectivity factor data assimilation on the very short-term rainfall forecasts of RAMS@ISAC: application to two case studies in Italy
ISAC-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy
Rosa Claudia Torcasio
ISAC-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy
Elenio Avolio
ISAC-CNR, zona Industriale comparto 15, 88046, Lamezia Terme, Italy
Olivier Caumont
CNRM UMR 3589, University of Toulouse, Météo-France, CNRS, 42 avenue G. Coriolis, 31057 Toulouse, France
Mario Montopoli
ISAC-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy
Luca Baldini
ISAC-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy
Gianfranco Vulpiani
Dipartimento Protezione Civile Nazionale Ufficio III – Attività Tecnico Scientifiche per la Previsione e Prevenzione dei Rischi, 00189, Rome, Italy
Stefano Dietrich
ISAC-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy
Related authors
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-18, https://doi.org/10.5194/nhess-2023-18, 2023
Preprint under review for NHESS
Short summary
Short summary
This work shows how local observations can improve the precipitation forecast for severe weather events.
Monica Campanelli, Alessandra Mascitelli, Paolo Sanò, Henri Diémoz, Victor Estellés, Stefano Federico, Anna Maria Iannarelli, Francesca Fratarcangeli, Augusto Mazzoni, Eugenio Realini, Mattia Crespi, Olivier Bock, Jose A. Martínez-Lozano, and Stefano Dietrich
Atmos. Meas. Tech., 11, 81–94, https://doi.org/10.5194/amt-11-81-2018, https://doi.org/10.5194/amt-11-81-2018, 2018
Short summary
Short summary
The estimation of precipitable water vapour (W) content is of great interest in both meteorological and climatological studies. Sun photometers allowed the development of W automatic estimations with high temporal resolution. A new methodology, based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site, has been presented providing good results.
Stefano Federico, Marco Petracca, Giulia Panegrossi, Claudio Transerici, and Stefano Dietrich
Adv. Sci. Res., 14, 187–194, https://doi.org/10.5194/asr-14-187-2017, https://doi.org/10.5194/asr-14-187-2017, 2017
Short summary
Short summary
This study investigates the impact of using lightning data on the precipitation forecast at different forecast ranges (3–24 h). Twenty case studies, occurred over Italy in fall 2012, are selected to show the impact.
Results show the important and positive impact of using lightning data to improve the precipitation forecast. The time range, however, is very important because the performance decreases steadily and substantially with forecasting time.
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017, https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Short summary
In this paper we evaluate the performance of two estimates of the global horizontal irradiance (GHI), one derived from the Meteosat Second Generation and one from a meteorological model (Regional Atmospheric Modeling System) forecast. The focus area is Italy, and the performance is evaluated for 12 pyranometers spanning a range of climate conditions, from Mediterranean maritime to Alpine.
Stefano Federico, Marco Petracca, Giulia Panegrossi, and Stefano Dietrich
Nat. Hazards Earth Syst. Sci., 17, 61–76, https://doi.org/10.5194/nhess-17-61-2017, https://doi.org/10.5194/nhess-17-61-2017, 2017
Short summary
Short summary
The motivation of this study is to use lightning observations to improve the precipitation forecast at the short range (3 h). For this purpose 20 case studies, occurring in fall 2012, were analyzed using a meteorological model, whose set-up is applicable in real-time weather forecasting. Lightning observations were provided by the LINET network. Results show a systematic improvement of the 3 h precipitation forecast when lightning observations are used.
Elenio Avolio, Rosa Claudia Torcasio, Teresa Lo Feudo, Claudia Roberta Calidonna, Daniele Contini, and Stefano Federico
Adv. Sci. Res., 13, 69–73, https://doi.org/10.5194/asr-13-69-2016, https://doi.org/10.5194/asr-13-69-2016, 2016
Short summary
Short summary
The improvement of the Solar and Wind short-term forecasting represents a critical goal for the weather prediction community and is of great importance for a better estimation of power production from solar and wind farms.
In this work we analyze the performance of two deterministic models operational at ISAC-CNR for the prediction of short-wave irradiance and wind speed, at two experimental sites in southern Italy.
Rosa Claudia Torcasio, Stefano Federico, Claudia Roberta Calidonna, Elenio Avolio, Oxana Drofa, Tony Christian Landi, Piero Malguzzi, Andrea Buzzi, and Paolo Bonasoni
Ann. Geophys., 34, 347–356, https://doi.org/10.5194/angeo-34-347-2016, https://doi.org/10.5194/angeo-34-347-2016, 2016
Short summary
Short summary
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market.
This work shows the application of a technique to improve wind forecasting. The study area is southern Italy.
L. Tiriolo, R. C. Torcasio, S. Montesanti, A. M. Sempreviva, C. R. Calidonna, C. Transerici, and S. Federico
Adv. Sci. Res., 12, 37–44, https://doi.org/10.5194/asr-12-37-2015, https://doi.org/10.5194/asr-12-37-2015, 2015
Short summary
Short summary
We show a study of the prediction of power production of a wind farm located in Central Italy using RAMS model for wind speed forecast.
S. Federico, E. Avolio, M. Petracca, G. Panegrossi, P. Sanò, D. Casella, and S. Dietrich
Nat. Hazards Earth Syst. Sci., 14, 2933–2950, https://doi.org/10.5194/nhess-14-2933-2014, https://doi.org/10.5194/nhess-14-2933-2014, 2014
Short summary
Short summary
This paper shows the implementation of a simple model for simulating lightning into the RAMS model.
The methodology is applied to six case studies that occurred in central Italy and the results are verified against LINET observations.
Advantages and weaknesses of the methodology are discussed.
S. Federico
Atmos. Meas. Tech., 6, 3563–3576, https://doi.org/10.5194/amt-6-3563-2013, https://doi.org/10.5194/amt-6-3563-2013, 2013
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-18, https://doi.org/10.5194/nhess-2023-18, 2023
Preprint under review for NHESS
Short summary
Short summary
This work shows how local observations can improve the precipitation forecast for severe weather events.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
EGUsphere, https://doi.org/10.5194/egusphere-2022-990, https://doi.org/10.5194/egusphere-2022-990, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Pauline Combarnous, Felix Erdmann, Olivier Caumont, Éric Defer, and Maud Martet
Nat. Hazards Earth Syst. Sci., 22, 2943–2962, https://doi.org/10.5194/nhess-22-2943-2022, https://doi.org/10.5194/nhess-22-2943-2022, 2022
Short summary
Short summary
The objective of this study is to prepare the assimilation of satellite lightning data in the French regional numerical weather prediction system. The assimilation of lightning data requires an observation operator, based on empirical relationships between the lightning observations and a set of proxies derived from the numerical weather prediction system variables. We fit machine learning regression models to our data to yield those relationships and to investigate the best proxy for lightning.
Felix Erdmann, Olivier Caumont, and Eric Defer
EGUsphere, https://doi.org/10.5194/egusphere-2022-637, https://doi.org/10.5194/egusphere-2022-637, 2022
Short summary
Short summary
This work develops a novel lightning data assimilation (LDA) technique to make use of Meteosat Third Generation (MTG) Lightning Imager (LI) data in a regional, convection-permitting numerical weather prediction model. The approach combines statistical Bayesian and 3-dimensional variational methods. Our LDA can promote missing convection and suppress spurious convection in the initial state of the model, and has similar skill to the operational radar data assimilation for rainfall forecasts.
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022, https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary
Short summary
The aerosol optical depth (AOD) characteristics in an urban area of Rome were retrieved over a period of 11 years (2010–2020) to determine, for the first time, their effect on the incoming ultraviolet (UV) solar radiation. The surface forcing efficiency shows that the AOD is the primary parameter affecting the surface irradiance in Rome, and it is found to be greater for smaller zenith angles and for larger and more absorbing particles in the UV range (such as, e.g., mineral dust).
Marc Mandement and Olivier Caumont
Weather Clim. Dynam., 2, 795–818, https://doi.org/10.5194/wcd-2-795-2021, https://doi.org/10.5194/wcd-2-795-2021, 2021
Short summary
Short summary
On 14–15 October 2018, in the Aude department (France), a heavy-precipitation event produced up to about 300 mm of rain in 11 h. Simulations carried out show that the former Hurricane Leslie, while involved, was not the first supplier of moisture over the entire event. The location of the highest rainfall was primarily driven by the location of a quasi-stationary front and secondarily by the location of precipitation bands downwind of mountains bordering the Mediterranean Sea.
Alistair Bell, Pauline Martinet, Olivier Caumont, Benoît Vié, Julien Delanoë, Jean-Charles Dupont, and Mary Borderies
Atmos. Meas. Tech., 14, 4929–4946, https://doi.org/10.5194/amt-14-4929-2021, https://doi.org/10.5194/amt-14-4929-2021, 2021
Short summary
Short summary
This paper presents work towards making retrievals on the liquid water content in fog and low clouds. Future retrievals will rely on a radar simulator and high-resolution forecast. In this work, real observations are used to assess the errors associated with the simulator and forecast. A selection method to reduce errors associated with the forecast is proposed. It is concluded that the distribution of errors matches the requirements for future retrievals.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 21, 463–480, https://doi.org/10.5194/nhess-21-463-2021, https://doi.org/10.5194/nhess-21-463-2021, 2021
Short summary
Short summary
The assimilation impact of four observation data sets on forecasts is studied in a mesoscale weather model. The ground-based Global Navigation Satellite System (GNSS) zenithal total delay data set with information on humidity has the largest impact on analyses and forecasts, representing an evenly spread and frequent data set for each analysis time over the model domain. Moreover, the reprocessing of these data also improves the forecast quality, but this impact is not statistically significant.
Felix Erdmann, Eric Defer, Olivier Caumont, Richard J. Blakeslee, Stéphane Pédeboy, and Sylvain Coquillat
Atmos. Meas. Tech., 13, 853–875, https://doi.org/10.5194/amt-13-853-2020, https://doi.org/10.5194/amt-13-853-2020, 2020
Short summary
Short summary
This article compares lightning observations from an optical sensor onboard the International Space Station to two ground-based networks using different radio frequencies. The location and timing of coincident flashes agree well for the three instruments. Differences exist for the detected number of flashes and the characteristics. Small flashes in particular are not always detected by all three instruments. About half of the flashes at altitudes below 10 km are not seen by the satellite sensor.
Marc Mandement and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 20, 299–322, https://doi.org/10.5194/nhess-20-299-2020, https://doi.org/10.5194/nhess-20-299-2020, 2020
Short summary
Short summary
The number of connected personal weather stations has dramatically increased in the last years. These weather stations produce a high number of data that need a thorough quality control to unleash their potential. A novel quality-control algorithm now allows us to take full advantage of these data and observe thunderstorms with fine-scale details that cannot be caught by standard networks. These results pave the way for tremendous advances in both understanding and forecasting thunderstorms.
Tony Le Bastard, Olivier Caumont, Nicolas Gaussiat, and Fatima Karbou
Atmos. Meas. Tech., 12, 5669–5684, https://doi.org/10.5194/amt-12-5669-2019, https://doi.org/10.5194/amt-12-5669-2019, 2019
Short summary
Short summary
The estimation of surface rainfall from radars becomes less effective at long ranges or in mountainous regions where the radar beam is far from the ground. The method proposed in this paper investigates how vertical profiles simulated from high-resolution model can be used to predict the evolution of the precipitation below the radar beam. Our results show that this novel method leads to better results than the current operational methods that either use climatological or idealised profiles.
Elenio Avolio, Ottavio Cavalcanti, Luca Furnari, Alfonso Senatore, and Giuseppe Mendicino
Nat. Hazards Earth Syst. Sci., 19, 1619–1627, https://doi.org/10.5194/nhess-19-1619-2019, https://doi.org/10.5194/nhess-19-1619-2019, 2019
Short summary
Short summary
This is the first scientific report of the flash flood of 20 August 2018 on “Raganello Gorge” (Southern Italy), an extreme event with rather specific features (very localized in space and time), which unfortunately caused 10 victims. The meteo-hydrological dynamics were reasonably reconstructed and the forecasting skills were evaluated using an innovative modelling approach, including fully coupled atmospheric-hydrological modelling and improved representation of Sea Surface Temperature.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, Olivier Caumont, Alexis Doerenbecher, Eric Wattrelot, Patrick Moll, Hervé Bénichou, Dominique Puech, Olivier Bock, Pierre Bosser, Patrick Chazette, Cyrille Flamant, Paolo Di Girolamo, Evelyne Richard, and Frédérique Saïd
Geosci. Model Dev., 12, 2657–2678, https://doi.org/10.5194/gmd-12-2657-2019, https://doi.org/10.5194/gmd-12-2657-2019, 2019
Short summary
Short summary
The AROME-WMED (western Mediterranean) model is a dedicated version of the mesoscale Numerical Weather Prediction AROME-France model that ran in real time during the first special observation period of HyMeX. Two reanalyses were performed after the campaign. This paper depicts the main differences between the real-time version and the benefits brought by both HyMeX reanalyses. The second reanalysis is found to be closer to observations than the previous AROME-WMED analyses.
Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, Nadia Fourrié, and Pascal Marquet
Nat. Hazards Earth Syst. Sci., 19, 907–926, https://doi.org/10.5194/nhess-19-907-2019, https://doi.org/10.5194/nhess-19-907-2019, 2019
Short summary
Short summary
The potential of W-band radar reflectivity to improve the quality of analyses and forecasts of heavy precipitation events in the Mediterranean area is investigated. The 1D + 3DVar assimilation method has been adapted to assimilate the W-band reflectivity in the Météo-France kilometre-scale NWP model AROME. The results suggest that the joint assimilation of W-band reflectivity and horizontal wind profiles lead to a slight improvement of moisture analyses and rainfall precipitation forecasts.
Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, and Nadia Fourrié
Nat. Hazards Earth Syst. Sci., 19, 821–835, https://doi.org/10.5194/nhess-19-821-2019, https://doi.org/10.5194/nhess-19-821-2019, 2019
Short summary
Short summary
The study reports on the impact of the assimilation of wind data from airborne Doppler cloud-profiling radar in a kilometre-scale NWP model on predicting heavy precipitation events in the Mediterranean area. The positive impact of the assimilation of such data is particularly evidenced for a heavy precipitation event and results are slightly encouraging over a 45-day period. In addition, the impact of the length of the assimilation window in a 3h-3DVar assimilation system is investigated.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Matthieu Poret, Stefano Corradini, Luca Merucci, Antonio Costa, Daniele Andronico, Mario Montopoli, Gianfranco Vulpiani, and Valentin Freret-Lorgeril
Atmos. Chem. Phys., 18, 4695–4714, https://doi.org/10.5194/acp-18-4695-2018, https://doi.org/10.5194/acp-18-4695-2018, 2018
Short summary
Short summary
This study aims at proposing a method to better assess the initial magma fragmentation produced during explosive volcanic eruptions. We worked on merging field, radar, and satellite data to estimate the total grain-size distribution, which is used within simulations to reconstruct the tephra loading and far-travelling airborne ash dispersal. This approach is applied to 23 November 2013, giving the very fine ash fraction related to volcanic hazards (e.g. air traffic safety).
Monica Campanelli, Alessandra Mascitelli, Paolo Sanò, Henri Diémoz, Victor Estellés, Stefano Federico, Anna Maria Iannarelli, Francesca Fratarcangeli, Augusto Mazzoni, Eugenio Realini, Mattia Crespi, Olivier Bock, Jose A. Martínez-Lozano, and Stefano Dietrich
Atmos. Meas. Tech., 11, 81–94, https://doi.org/10.5194/amt-11-81-2018, https://doi.org/10.5194/amt-11-81-2018, 2018
Short summary
Short summary
The estimation of precipitable water vapour (W) content is of great interest in both meteorological and climatological studies. Sun photometers allowed the development of W automatic estimations with high temporal resolution. A new methodology, based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site, has been presented providing good results.
Ida Maiello, Sabrina Gentile, Rossella Ferretti, Luca Baldini, Nicoletta Roberto, Errico Picciotti, Pier Paolo Alberoni, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci., 21, 5459–5476, https://doi.org/10.5194/hess-21-5459-2017, https://doi.org/10.5194/hess-21-5459-2017, 2017
Short summary
Short summary
In this paper the impact of multiple radar reflectivity data assimilation on a flash flood event occurred during SOP1 of the HyMeX campaign has been evaluated: the aim is to build a regionally tuned numerical prediction model and decision-support system for environmental civil protection services within the central Italian regions. The results are encouraging, but a significant number of flash flood cases and a deeper analysis of the meteorology of the region are necessary.
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary
Short summary
Modern data assimilation systems require knowledge of the typical differences between observations and model background (O–B). This work illustrates a 1-year O–B analysis for ground-based microwave radiometer (MWR) observations in clear-sky conditions for a prototype network of six MWRs in Europe. Observations are MWR brightness temperatures (TB). Background profiles extracted from the output of a convective-scale model are used to simulate TB through the radiative transfer model RTTOV-gb.
Stefano Federico, Marco Petracca, Giulia Panegrossi, Claudio Transerici, and Stefano Dietrich
Adv. Sci. Res., 14, 187–194, https://doi.org/10.5194/asr-14-187-2017, https://doi.org/10.5194/asr-14-187-2017, 2017
Short summary
Short summary
This study investigates the impact of using lightning data on the precipitation forecast at different forecast ranges (3–24 h). Twenty case studies, occurred over Italy in fall 2012, are selected to show the impact.
Results show the important and positive impact of using lightning data to improve the precipitation forecast. The time range, however, is very important because the performance decreases steadily and substantially with forecasting time.
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017, https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Short summary
In this paper we evaluate the performance of two estimates of the global horizontal irradiance (GHI), one derived from the Meteosat Second Generation and one from a meteorological model (Regional Atmospheric Modeling System) forecast. The focus area is Italy, and the performance is evaluated for 12 pyranometers spanning a range of climate conditions, from Mediterranean maritime to Alpine.
Stefano Federico, Marco Petracca, Giulia Panegrossi, and Stefano Dietrich
Nat. Hazards Earth Syst. Sci., 17, 61–76, https://doi.org/10.5194/nhess-17-61-2017, https://doi.org/10.5194/nhess-17-61-2017, 2017
Short summary
Short summary
The motivation of this study is to use lightning observations to improve the precipitation forecast at the short range (3 h). For this purpose 20 case studies, occurring in fall 2012, were analyzed using a meteorological model, whose set-up is applicable in real-time weather forecasting. Lightning observations were provided by the LINET network. Results show a systematic improvement of the 3 h precipitation forecast when lightning observations are used.
Martina Buiat, Federico Porcù, and Stefano Dietrich
Atmos. Meas. Tech., 10, 221–230, https://doi.org/10.5194/amt-10-221-2017, https://doi.org/10.5194/amt-10-221-2017, 2017
Short summary
Short summary
The cloud radar on board the NASA CloudSat mission provides information on the vertical structure of the cloud that, in the present study, is matched to ground-based measurements of lightning occurrences. The aim of this research was to study the relationship between the ice content of the cloud and its capability to produce lightning. Results show the importance of high ice content, especially close to the cloud top, for producing lightning.
Paolo Sanò, Giulia Panegrossi, Daniele Casella, Anna C. Marra, Francesco Di Paola, and Stefano Dietrich
Atmos. Meas. Tech., 9, 5441–5460, https://doi.org/10.5194/amt-9-5441-2016, https://doi.org/10.5194/amt-9-5441-2016, 2016
Short summary
Short summary
The objective of this paper is to describe the development and evaluate the performance of a totally new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2), an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track ATMS radiometer measurements.
Elenio Avolio, Rosa Claudia Torcasio, Teresa Lo Feudo, Claudia Roberta Calidonna, Daniele Contini, and Stefano Federico
Adv. Sci. Res., 13, 69–73, https://doi.org/10.5194/asr-13-69-2016, https://doi.org/10.5194/asr-13-69-2016, 2016
Short summary
Short summary
The improvement of the Solar and Wind short-term forecasting represents a critical goal for the weather prediction community and is of great importance for a better estimation of power production from solar and wind farms.
In this work we analyze the performance of two deterministic models operational at ISAC-CNR for the prediction of short-wave irradiance and wind speed, at two experimental sites in southern Italy.
Rosa Claudia Torcasio, Stefano Federico, Claudia Roberta Calidonna, Elenio Avolio, Oxana Drofa, Tony Christian Landi, Piero Malguzzi, Andrea Buzzi, and Paolo Bonasoni
Ann. Geophys., 34, 347–356, https://doi.org/10.5194/angeo-34-347-2016, https://doi.org/10.5194/angeo-34-347-2016, 2016
Short summary
Short summary
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market.
This work shows the application of a technique to improve wind forecasting. The study area is southern Italy.
N. Roberto, E. Adirosi, L. Baldini, D. Casella, S. Dietrich, P. Gatlin, G. Panegrossi, M. Petracca, P. Sanò, and A. Tokay
Atmos. Meas. Tech., 9, 535–552, https://doi.org/10.5194/amt-9-535-2016, https://doi.org/10.5194/amt-9-535-2016, 2016
Short summary
Short summary
This study examines various microphysical properties of liquid and solid hydrometeors to investigate their relationship with lightning activity. Measurements were collected from the Polar 55C dual-polarization radar, a 2-DVD, and LINET. From the analysis of three significant case studies, linear relations between the total mass of graupel and the number of strokes were found. Results point out the key role of ice mass in determining the electrical charging of convective clouds.
G. Vulpiani, L. Baldini, and N. Roberto
Atmos. Meas. Tech., 8, 4681–4698, https://doi.org/10.5194/amt-8-4681-2015, https://doi.org/10.5194/amt-8-4681-2015, 2015
Short summary
Short summary
This work shows the effective monitoring of intense precipitation events in the Mediterranean area by an operational X-band dual-polarization radar operated in south Italy by the Department of Civil Protection. Two severe hail-bearing storms, causing high attenuation, have been described in terms of the polarimetric radar signatures and estimated rainfall fields. The comparative analysis of the radar observations enabled the triggering hail formation and precipitation process to be inferred.
L. Tiriolo, R. C. Torcasio, S. Montesanti, A. M. Sempreviva, C. R. Calidonna, C. Transerici, and S. Federico
Adv. Sci. Res., 12, 37–44, https://doi.org/10.5194/asr-12-37-2015, https://doi.org/10.5194/asr-12-37-2015, 2015
Short summary
Short summary
We show a study of the prediction of power production of a wind farm located in Central Italy using RAMS model for wind speed forecast.
D. Casella, G. Panegrossi, P. Sanò, L. Milani, M. Petracca, and S. Dietrich
Atmos. Meas. Tech., 8, 1217–1232, https://doi.org/10.5194/amt-8-1217-2015, https://doi.org/10.5194/amt-8-1217-2015, 2015
Short summary
Short summary
The CCA algorithm is applicable to any modern passive microwave radiometer on board polar orbiting satellites; it has been developed using a data set of co-located SSMIS and TRMM-PR measurements and AMSU-MHS and TRMM-PR measurements. The algorithm shows a small rate of false alarms and superior detection capability and can efficiently detect (POD between 0.55 and 0.71) minimum rain rate varying from 0.14 mm/h (AMSU over ocean) to 0.41 (SSMIS over coast).
A. Hally, O. Caumont, L. Garrote, E. Richard, A. Weerts, F. Delogu, E. Fiori, N. Rebora, A. Parodi, A. Mihalović, M. Ivković, L. Dekić, W. van Verseveld, O. Nuissier, V. Ducrocq, D. D'Agostino, A. Galizia, E. Danovaro, and A. Clematis
Nat. Hazards Earth Syst. Sci., 15, 537–555, https://doi.org/10.5194/nhess-15-537-2015, https://doi.org/10.5194/nhess-15-537-2015, 2015
P. Sanò, G. Panegrossi, D. Casella, F. Di Paola, L. Milani, A. Mugnai, M. Petracca, and S. Dietrich
Atmos. Meas. Tech., 8, 837–857, https://doi.org/10.5194/amt-8-837-2015, https://doi.org/10.5194/amt-8-837-2015, 2015
L. Milani, F. Porcù, D. Casella, S. Dietrich, G. Panegrossi, M. Petracca, and P. Sanò
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-141-2015, https://doi.org/10.5194/tcd-9-141-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The aim of this work is to show that the CloudSat Cloud Profiling Radar (CPR) can be a valuable source of snowfall rate data in Antarctica that can be used at different temporal scales. Two years of CloudSat data over Antarctica are analyzed and two different approaches for precipitation estimates are considered. The results show that CPR can provide valuable support to the sparse network of ground-based instruments both for numerical model validation and climatological studies.
S. Federico, E. Avolio, M. Petracca, G. Panegrossi, P. Sanò, D. Casella, and S. Dietrich
Nat. Hazards Earth Syst. Sci., 14, 2933–2950, https://doi.org/10.5194/nhess-14-2933-2014, https://doi.org/10.5194/nhess-14-2933-2014, 2014
Short summary
Short summary
This paper shows the implementation of a simple model for simulating lightning into the RAMS model.
The methodology is applied to six case studies that occurred in central Italy and the results are verified against LINET observations.
Advantages and weaknesses of the methodology are discussed.
I. Maiello, R. Ferretti, S. Gentile, M. Montopoli, E. Picciotti, F. S. Marzano, and C. Faccani
Atmos. Meas. Tech., 7, 2919–2935, https://doi.org/10.5194/amt-7-2919-2014, https://doi.org/10.5194/amt-7-2919-2014, 2014
R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno
Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, https://doi.org/10.5194/hess-18-1953-2014, 2014
S. Puca, F. Porcu, A. Rinollo, G. Vulpiani, P. Baguis, S. Balabanova, E. Campione, A. Ertürk, S. Gabellani, R. Iwanski, M. Jurašek, J. Kaňák, J. Kerényi, G. Koshinchanov, G. Kozinarova, P. Krahe, B. Lapeta, E. Lábó, L. Milani, L'. Okon, A. Öztopal, P. Pagliara, F. Pignone, C. Rachimow, N. Rebora, E. Roulin, I. Sönmez, A. Toniazzo, D. Biron, D. Casella, E. Cattani, S. Dietrich, F. Di Paola, S. Laviola, V. Levizzani, D. Melfi, A. Mugnai, G. Panegrossi, M. Petracca, P. Sanò, F. Zauli, P. Rosci, L. De Leonibus, E. Agosta, and F. Gattari
Nat. Hazards Earth Syst. Sci., 14, 871–889, https://doi.org/10.5194/nhess-14-871-2014, https://doi.org/10.5194/nhess-14-871-2014, 2014
M. Montopoli, G. Vulpiani, D. Cimini, E. Picciotti, and F. S. Marzano
Atmos. Meas. Tech., 7, 537–552, https://doi.org/10.5194/amt-7-537-2014, https://doi.org/10.5194/amt-7-537-2014, 2014
S. Federico
Atmos. Meas. Tech., 6, 3563–3576, https://doi.org/10.5194/amt-6-3563-2013, https://doi.org/10.5194/amt-6-3563-2013, 2013
D. Cimini, F. Romano, E. Ricciardelli, F. Di Paola, M. Viggiano, F. S. Marzano, V. Colaiuda, E. Picciotti, G. Vulpiani, and V. Cuomo
Atmos. Meas. Tech., 6, 3181–3196, https://doi.org/10.5194/amt-6-3181-2013, https://doi.org/10.5194/amt-6-3181-2013, 2013
A. Rinollo, G. Vulpiani, S. Puca, P. Pagliara, J. Kaňák, E. Lábó, L'. Okon, E. Roulin, P. Baguis, E. Cattani, S. Laviola, and V. Levizzani
Nat. Hazards Earth Syst. Sci., 13, 2695–2705, https://doi.org/10.5194/nhess-13-2695-2013, https://doi.org/10.5194/nhess-13-2695-2013, 2013
E. Picciotti, F. S. Marzano, E. N. Anagnostou, J. Kalogiros, Y. Fessas, A. Volpi, V. Cazac, R. Pace, G. Cinque, L. Bernardini, K. De Sanctis, S. Di Fabio, M. Montopoli, M. N. Anagnostou, A. Telleschi, E. Dimitriou, and J. Stella
Nat. Hazards Earth Syst. Sci., 13, 1229–1241, https://doi.org/10.5194/nhess-13-1229-2013, https://doi.org/10.5194/nhess-13-1229-2013, 2013
M. Formenton, G. Panegrossi, D. Casella, S. Dietrich, A. Mugnai, P. Sanò, F. Di Paola, H.-D. Betz, C. Price, and Y. Yair
Nat. Hazards Earth Syst. Sci., 13, 1085–1104, https://doi.org/10.5194/nhess-13-1085-2013, https://doi.org/10.5194/nhess-13-1085-2013, 2013
Related subject area
Atmospheric, Meteorological and Climatological Hazards
The 2018 west-central European drought projected in a warmer climate: how much drier can it get?
The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective
Characteristics of hail hazard in South Africa based on satellite detection of convective storms
Effect of extreme El Niño events on the precipitation of Ecuador
Rescuing historical weather observations improves quantification of severe windstorm risks
Development and evaluation of a method to identify potential release areas of snow avalanches based on watershed delineation
Heat wave monitoring over West African cities: uncertainties, characterization and recent trends
Variations of extreme precipitation events with sub-daily data: a case study in the Ganjiang River basin
Human influence on growing-period frosts like in early April 2021 in central France
Improving the predictability of the Qendresa Medicane by the assimilation of conventional and atmospheric motion vector observations. Storm-scale analysis and short-range forecast
Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 1: Analysis and cloud-resolving simulation
Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014
Validating a tailored drought risk assessment methodology: drought risk assessment in local Papua New Guinea regions
Brief Communication: towards a universal formula for the probability of tornadoes
Seasonal fire danger forecasts for supporting fire prevention management in an eastern Mediterranean environment: the case of Attica, Greece
Uncovering the veil of night light changes in times of catastrophe
Time of emergence of compound events: contribution of univariate and dependence properties
Skillful decadal prediction of German Bight storm activity
Propagation from meteorological to hydrological drought in the Horn of Africa using both standardized and threshold-based indices
Droughts in Germany: performance of regional climate models in reproducing observed characteristics
Analysis of the relationship between yield in cereals and remotely sensed fAPAR in the framework of monitoring drought impacts in Europe
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Using high-resolution global climate models from the PRIMAVERA project to create a European winter windstorm event set
Real-time urban rainstorm and waterlogging disaster detection by Weibo users
Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions
Trends in heat and cold wave risks for the Italian Trentino Alto-Adige region from 1980 to 2018
A satellite lightning observation operator for storm-scale numerical weather prediction
Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management
Review Article: Wind and storm damage: From Meteorology to Impacts
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Hotspots for warm and dry summers in Romania
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective
Hydrometeorological analysis of the 12 and 13 September 2019 widespread flash flooding in eastern Spain
Monitoring the daily evolution and extent of snow drought
Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling
Adaptation and application of the large LAERTES-EU regional climate model ensemble for modeling hydrological extremes: a pilot study for the Rhine basin
Invited perspectives: how does climate change affect the risk of natural hazards? Challenges and step changes from the reinsurance perspective
Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
Spatio-temporal evolution of wet–dry event features and their transition across the Upper Jhelum Basin (UJB) in South Asia
Precipitation stable isotopic signatures of tropical cyclones in Metropolitan Manila, Philippines, show significant negative isotopic excursions
Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014
Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements
Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations
Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria
An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
A climatology of sub-seasonal temporal clustering of extreme precipitation in Switzerland and its links to extreme discharge
Impact of large wildfires on PM10 levels and human mortality in Portugal
Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy
Variability in lightning hazard over Indian region with respect to El Niño–Southern Oscillation (ENSO) phases
Emma E. Aalbers, Erik van Meijgaard, Geert Lenderink, Hylke de Vries, and Bart J. J. M. van den Hurk
Nat. Hazards Earth Syst. Sci., 23, 1921–1946, https://doi.org/10.5194/nhess-23-1921-2023, https://doi.org/10.5194/nhess-23-1921-2023, 2023
Short summary
Short summary
To examine the impact of global warming on west-central European droughts, we have constructed future analogues of recent summers. Extreme droughts like 2018 further intensify, and the local temperature rise is much larger than in most summers. Years that went hardly noticed in the present-day climate may emerge as very dry and hot in a warmer world. The changes can be directly linked to real-world events, which makes the results very tangible and hence useful for climate change communication.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Heinz Jürgen Punge, Kristopher M. Bedka, Michael Kunz, Sarah D. Bang, and Kyle F. Itterly
Nat. Hazards Earth Syst. Sci., 23, 1549–1576, https://doi.org/10.5194/nhess-23-1549-2023, https://doi.org/10.5194/nhess-23-1549-2023, 2023
Short summary
Short summary
We have estimated the probability of hail events in South Africa using a combination of satellite observations, reanalysis, and insurance claims data. It is found that hail is mainly concentrated in the southeast. Multivariate stochastic modeling of event characteristics, such as multiple events per day or track dimensions, provides an event catalogue for 25 000 years. This can be used to estimate hail risk for return periods of 200 years, as required by insurance companies.
Dirk R. Thielen, Paolo Ramoni-Perazzi, Ezequiel Zamora-Ledezma, Mary L. Puche, Marco Marquez, José I. Quintero, Wilmer Rojas, Alberto Quintero, Guillermo Bianchi, Irma A. Soto-Werschitz, and Marco Aurelio Arizapana-Almonacid
Nat. Hazards Earth Syst. Sci., 23, 1507–1527, https://doi.org/10.5194/nhess-23-1507-2023, https://doi.org/10.5194/nhess-23-1507-2023, 2023
Short summary
Short summary
Extreme El Niño events are unique in their strong impacts and differ from other El Niños. In Ecuador, extreme eastern Pacific El Niño and coastal El Niño generate dangerous precipitation anomalies, particularly in areas with a high natural seasonality index, steep terrain, and a close proximity to the coast. These findings can help develop effective strategies to reduce vulnerability to potential increases in extreme El Niño frequency and intensity.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Cécile Duvillier, Nicolas Eckert, Guillaume Evin, and Michael Deschâtres
Nat. Hazards Earth Syst. Sci., 23, 1383–1408, https://doi.org/10.5194/nhess-23-1383-2023, https://doi.org/10.5194/nhess-23-1383-2023, 2023
Short summary
Short summary
This study develops a method that identifies individual potential release areas (PRAs) of snow avalanches based on terrain analysis and watershed delineation and demonstrates its efficiency in the French Alps context using an extensive cadastre of past avalanche limits. Results may contribute to better understanding local avalanche hazard. The work may also foster the development of more efficient PRA detection methods based on a rigorous evaluation scheme.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Guangxu Liu, Aicun Xiang, Zhiwei Wan, Yang Zhou, Jie Wu, Yuandong Wang, and Sichen Lin
Nat. Hazards Earth Syst. Sci., 23, 1139–1155, https://doi.org/10.5194/nhess-23-1139-2023, https://doi.org/10.5194/nhess-23-1139-2023, 2023
Short summary
Short summary
This paper focuses on investigating the thresholds of extreme precipitation using sub-daily records in the Ganjiang River basin using gamma distribution, the L-moment method and the Mann–Kendall (M–K) test. The main findings are (1) run 3 (36 h) precipitation events would be key events for flood monitoring. (2)The intensity and the occasional probability of extreme precipitation will increase in spring in the future in stations like Yifeng, Zhangshu and Ningdu.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Diego S. Carrió
Nat. Hazards Earth Syst. Sci., 23, 847–869, https://doi.org/10.5194/nhess-23-847-2023, https://doi.org/10.5194/nhess-23-847-2023, 2023
Short summary
Short summary
The accurate prediction of medicanes still remains a key challenge in the scientific community because of their poor predictability. In this study we assimilate different observations to improve the trajectory and intensity forecasts of the Qendresa Medicane. Results show the importance of using data assimilation techniques to improve the estimate of the atmospheric flow in the upper-level atmosphere, which has been shown to be key to improve the prediction of Qendresa.
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023, https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Yi Yang, Douglas Maraun, Albert Ossó, and Jianping Tang
Nat. Hazards Earth Syst. Sci., 23, 693–709, https://doi.org/10.5194/nhess-23-693-2023, https://doi.org/10.5194/nhess-23-693-2023, 2023
Short summary
Short summary
This study quantifies the spatiotemporal variation and characteristics of compound long-duration dry and hot events in China over the 1961–2014 period. The results show that over the past few decades, there has been a substantial increase in the frequency of these compound events across most parts of China, which is dominated by rising temperatures. We detect a strong increase in the spatially contiguous areas experiencing concurrent dry and hot conditions.
Isabella Aitkenhead, Yuriy Kuleshov, Jessica Bhardwaj, Zhi-Weng Chua, Chayn Sun, and Suelynn Choy
Nat. Hazards Earth Syst. Sci., 23, 553–586, https://doi.org/10.5194/nhess-23-553-2023, https://doi.org/10.5194/nhess-23-553-2023, 2023
Short summary
Short summary
A case study assessing drought risk in Papua New Guinea (PNG) provinces for retrospective years (2014–2020) was conducted to demonstrate the development and validate the application of a tailored and semi-dynamic drought risk assessment methodology. Hazard, vulnerability, and exposure indicators appropriate for monitoring drought in PNG provinces were selected. The risk assessment accurately indicated a strong drought event in 2015–2016 and a moderate event in 2019.
Roberto Ingrosso, Piero Lionello, Mario Marcello Miglietta, and Gianfausto Salvadori
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-19, https://doi.org/10.5194/nhess-2023-19, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Tornadoes represent one of the most disruptive and dangerous weather phenomena all around the world. Due to the small scale of this phenomenon, tornadoes weather forecast and climatic projections are beyond the capability of the current atmospheric models. Here, a methodological approach is proposed to provide analytical formulas for the probability of tornado occurrence that could be used for early warning systems and for projection of the future evolution of tornado frequency and intensity.
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
Vincent Schippers and Wouter Botzen
Nat. Hazards Earth Syst. Sci., 23, 179–204, https://doi.org/10.5194/nhess-23-179-2023, https://doi.org/10.5194/nhess-23-179-2023, 2023
Short summary
Short summary
Researchers studying economic impacts of natural disasters increasingly use night light as a proxy for local economic activity, when socioeconomic data are unavailable. But often it is unclear what changes in light intensity represent in the context of disasters. We study this in detail for Hurricane Katrina and find a strong correlation with building damage and changes in population and employment. We conclude that night light data are useful to study local impacts of natural disasters.
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023, https://doi.org/10.5194/nhess-23-21-2023, 2023
Short summary
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CE probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering changes in both marginal and dependence properties for future risk assessments related to CEs.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1307, https://doi.org/10.5194/egusphere-2022-1307, 2022
Short summary
Short summary
We characterize meteorological, soil moisture, and hydrological droughts and the propagation from one to the other for 318 catchments in Horn of Africa. We find that propagation from precipitation to soil moisture is influenced by soil properties while propagation from precipitation to streamflow by catchment-scale hydrogeological properties. Furthermore, we provide precipitation accumulation periods at the sub-basin level that can be used as a proxy in drought forecasting in dryland regions.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 22, 3875–3895, https://doi.org/10.5194/nhess-22-3875-2022, https://doi.org/10.5194/nhess-22-3875-2022, 2022
Short summary
Short summary
The influence of model resolution and settings on drought reproduction in Germany between 1980–2009 is investigated here. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Gridded observational data sets serve as reference. Regarding the reproduction of drought characteristics, all models perform on a similar level, while for trends, only the modified model produces reliable outputs.
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022, https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Short summary
We evaluated the ability of vegetation indices derived from satellite data to capture annual yield variations across Europe. The strength of the relationship varies throughout the year, with March–October representing the optimal period in most cases. Spatial differences were also observed, with the best results obtained in the Mediterranean regions.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Julia F. Lockwood, Galina S. Guentchev, Alexander Alabaster, Simon J. Brown, Erika J. Palin, Malcolm J. Roberts, and Hazel E. Thornton
Nat. Hazards Earth Syst. Sci., 22, 3585–3606, https://doi.org/10.5194/nhess-22-3585-2022, https://doi.org/10.5194/nhess-22-3585-2022, 2022
Short summary
Short summary
We describe how we developed a set of 1300 years' worth of European winter windstorm footprints, using a multi-model ensemble of high-resolution global climate models, for use by the insurance industry to analyse windstorm risk. The large amount of data greatly reduces uncertainty on risk estimates compared to using shorter observational data sets and also allows the relationship between windstorm risk and predictable large-scale climate indices to be quantified.
Haoran Zhu, Priscilla Obeng Oforiwaa, and Guofeng Su
Nat. Hazards Earth Syst. Sci., 22, 3349–3359, https://doi.org/10.5194/nhess-22-3349-2022, https://doi.org/10.5194/nhess-22-3349-2022, 2022
Short summary
Short summary
We promote a new method to detect waterlogging disasters. Residents are directly affected by waterlogging, and we can collect their comments on social networks. Compared to official-authentication and personal-certification users, the microblogs posted by general users can better show the intensity and timing of waterlogging. Through text and sentiment features, we can separate microblogs with waterlogging information from other ones and mark high-risk regions on maps.
Rafaela Jane Delfino, Gerry Bagtasa, Kevin Hodges, and Pier Luigi Vidale
Nat. Hazards Earth Syst. Sci., 22, 3285–3307, https://doi.org/10.5194/nhess-22-3285-2022, https://doi.org/10.5194/nhess-22-3285-2022, 2022
Short summary
Short summary
We showed the effects of altering the choice of cumulus schemes, surface flux options, and spectral nudging with a high level of sensitivity to cumulus schemes in simulating an intense typhoon. We highlight the advantage of using an ensemble of cumulus parameterizations to take into account the uncertainty in simulating typhoons such as Haiyan in 2013. This study is useful in addressing the growing need to plan and prepare for as well as reduce the impacts of intense typhoons in the Philippines.
Martin Morlot, Simone Russo, Luc Feyen, and Giuseppe Formetta
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-241, https://doi.org/10.5194/nhess-2022-241, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper we report on recent trends in heat and cold waves (HW and CW) risk in a European alpine region, defined by a time and spatial explicit framework which quantify hazard, vulnerability, exposure, and finally risk. We found that HW risk levels in the 2010s are 50 % larger compared to the 1980s due to the rise in both hazard and vulnerability. Stagnant CW hazard and declining vulnerability results in reduced CW risk levels.
Pauline Combarnous, Felix Erdmann, Olivier Caumont, Éric Defer, and Maud Martet
Nat. Hazards Earth Syst. Sci., 22, 2943–2962, https://doi.org/10.5194/nhess-22-2943-2022, https://doi.org/10.5194/nhess-22-2943-2022, 2022
Short summary
Short summary
The objective of this study is to prepare the assimilation of satellite lightning data in the French regional numerical weather prediction system. The assimilation of lightning data requires an observation operator, based on empirical relationships between the lightning observations and a set of proxies derived from the numerical weather prediction system variables. We fit machine learning regression models to our data to yield those relationships and to investigate the best proxy for lightning.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-159, https://doi.org/10.5194/nhess-2022-159, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damages and cost human lives. Hence, it is important to gauge the potential impact of using indices which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022, https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction and speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall without the influence of unwanted disturbances, including a low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in a flow-over scenario prevails, and a mixed regime.
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Arnau Amengual
Nat. Hazards Earth Syst. Sci., 22, 1159–1179, https://doi.org/10.5194/nhess-22-1159-2022, https://doi.org/10.5194/nhess-22-1159-2022, 2022
Short summary
Short summary
On 12 and 13 September 2019, a long-lasting heavy precipitation episode resulted in widespread flash flooding over eastern Spain. Well-organized and quasi-stationary convective structures impacted a vast area with rainfall amounts over 200 mm. The very dry initial soil moisture conditions resulted in a dampened hydrological response: until runoff thresholds were exceeded, infiltration-excess generation did not start. This threshold-based behaviour is explored through simple scaling theory.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, Yi He, Martin Kadlec, Fanni D. Kelemen, Hilke S. Lentink, Patrick Ludwig, Desmond Manful, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 22, 677–692, https://doi.org/10.5194/nhess-22-677-2022, https://doi.org/10.5194/nhess-22-677-2022, 2022
Short summary
Short summary
For various applications, it is crucial to have profound knowledge of the frequency, severity, and risk of extreme flood events. Such events are characterized by very long return periods which observations can not cover. We use a large ensemble of regional climate model simulations as input for a hydrological model. Precipitation data were post-processed to reduce systematic errors. The representation of precipitation and discharge is improved, and estimates of long return periods become robust.
Anja T. Rädler
Nat. Hazards Earth Syst. Sci., 22, 659–664, https://doi.org/10.5194/nhess-22-659-2022, https://doi.org/10.5194/nhess-22-659-2022, 2022
Short summary
Short summary
Natural disasters are causing high losses worldwide. To adequately deal with this loss potential, a reinsurer has to quantitatively assess the individual risks of natural catastrophes and how these risks are changing over time with respect to climate change. From a reinsurance perspective, the most pressing scientific challenges related to natural hazards are addressed, and broad changes are suggested that should be achieved by the scientific community to address these hazards in the future.
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022, https://doi.org/10.5194/nhess-22-577-2022, 2022
Short summary
Short summary
We evaluate the usefulness of different data sources and variables to the short-term prediction (
nowcasting) of severe thunderstorms using machine learning. Machine-learning models are trained with data from weather radars, satellite images, lightning detection and weather forecasts and with terrain elevation data. We analyze the benefits provided by each of the data sources to predicting hazards (heavy precipitation, lightning and hail) caused by the thunderstorms.
Rubina Ansari and Giovanna Grossi
Nat. Hazards Earth Syst. Sci., 22, 287–302, https://doi.org/10.5194/nhess-22-287-2022, https://doi.org/10.5194/nhess-22-287-2022, 2022
Short summary
Short summary
The current research investigated spatio-temporal evolution of wet–dry events collectively, their characteristics, and their transition (wet to dry and dry to wet) across the Upper Jhelum Basin using the standardized precipitation evapotranspiration (SPEI) at a monthly timescale. The results provide significant knowledge to identify and locate most vulnerable geographical hotspots of extreme events, providing the basis for more effective risk reduction and climate change adaptation plans.
Dominik Jackisch, Bi Xuan Yeo, Adam D. Switzer, Shaoneng He, Danica Linda M. Cantarero, Fernando P. Siringan, and Nathalie F. Goodkin
Nat. Hazards Earth Syst. Sci., 22, 213–226, https://doi.org/10.5194/nhess-22-213-2022, https://doi.org/10.5194/nhess-22-213-2022, 2022
Short summary
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Elizaveta Felsche and Ralf Ludwig
Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021, https://doi.org/10.5194/nhess-21-3679-2021, 2021
Short summary
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Benjamin Poschlod
Nat. Hazards Earth Syst. Sci., 21, 3573–3598, https://doi.org/10.5194/nhess-21-3573-2021, https://doi.org/10.5194/nhess-21-3573-2021, 2021
Short summary
Short summary
Three regional climate models (RCMs) are used to simulate extreme daily rainfall in Bavaria statistically occurring once every 10 or even 100 years. Results are validated with observations. The RCMs can reproduce spatial patterns and intensities, and setups with higher spatial resolutions show better results. These findings suggest that RCMs are suitable for assessing the probability of the occurrence of such rare rainfall events.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Alexandre Tuel and Olivia Martius
Nat. Hazards Earth Syst. Sci., 21, 2949–2972, https://doi.org/10.5194/nhess-21-2949-2021, https://doi.org/10.5194/nhess-21-2949-2021, 2021
Short summary
Short summary
Extreme river discharge may be triggered by large accumulations of precipitation over short time periods, which can result from the successive occurrence of extreme-precipitation events. We find a distinct spatiotemporal pattern in the temporal clustering behavior of precipitation extremes over Switzerland, with clustering occurring on the northern side of the Alps in winter and on their southern side in fall. Clusters tend to be followed by extreme discharge, particularly in the southern Alps.
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
Vincenzo Mazzarella, Rossella Ferretti, Errico Picciotti, and Frank Silvio Marzano
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, https://doi.org/10.5194/nhess-21-2849-2021, https://doi.org/10.5194/nhess-21-2849-2021, 2021
Short summary
Short summary
Forecasting precipitation over the Mediterranean basin is still a challenge. In this context, data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of the precipitation forecast. For the first time, the ability of a cycling 4D-Var to reproduce a heavy rain event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study.
Avaronthan Veettil Sreenath, Sukumarapillai Abhilash, and Pattathil Vijaykumar
Nat. Hazards Earth Syst. Sci., 21, 2597–2609, https://doi.org/10.5194/nhess-21-2597-2021, https://doi.org/10.5194/nhess-21-2597-2021, 2021
Short summary
Short summary
Lightning is a multifaceted hazard with widespread negative consequences for the environment and society. We explore how El Niño–Southern Oscillation (ENSO) phases impact the lightning over India by modulating the deep convection and associated atmospheric thermodynamics. Results show that ENSO phases directly influence lightning during monsoon and postmonsoon seasons by pushing the mean position of subtropical westerlies southward.
Cited articles
Alexander, G. D., Weinman, J. A., Karyampoudi, V. M., Olson, W. S., and Lee,
A. C. L.: The effect of assimilating rain rates derived from satellites and
lightning on forecasts of the 1993 superstorm, Mon. Weather Rev., 127,
1433–1457, 1999.
Barker, D. M., Huang, W., Guo, Y.-R., and Xiao, Q. N.: A Three-Dimensional
Variational Data Assimilation System for MM5: Implementation And Initial
Results, Mon. Weather Rev., 132, 897–914, 2004.
Barker, D. M., Huang, X.-Y., Liu, Z., Aulignè, T., Zhang, X., Rugg ,S.,
Ajjaji, R., Bourgeois, A., Bray, J., Chen ,Y., Demirtas, M.,. Guo, Y.-R,
Henderson, T., Huang, W, Lin, H. C., Michalakes, J., Rizvi, S., and Zhang,
X.: The Weather Research and Forecasting (WRF) Model's Community
Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol.
Soc., 93, 831–843, 2012.
Betz, H.-D., Schmidt, K., Oettinger, P., and Wirz, M.: Lightning detection with
3D-discrimination of intracloudandcloud-to-grounddischarges, J. Geophys. Res.
Lett., 31, L11108, https://doi.org/10.1029/2004GL019821, 2004.
Betz, H. D., Schmidt, K., Laroche, P., Blanchet, P., Oettinger, P., Defer,
E., Dziewit, Z., and Konarski, J.: LINET-an international lightning
detection network in Europe, Atmos. Res., 91, 564–573, 2009.
Buzzi, A. and Tibaldi, S.: Cyclogenesis in the lee of the Alps: A case
study, Q. J. Roy. Meteor. Soc., 104, 271–287, https://doi.org/10.1002/qj.49710444004, 1978.
Carey, L. D. and Rutledge, S. A.: Electrical and multiparameter radar
observations of a severe hailstorm, J. Geophys. Res., 103, 13979–14000,
https://doi.org/10.1029/97JD02626, 1998.
Caumont, O., Ducrocq, V., Wattrelot, E., Jaubert, G., and Pradier-Vabre, S.:
1D+3DVar assimilation of radar reflectivity data: a proof of
concept, Tellus A, 62, 173–187,
https://doi.org/10.1111/j.1600-0870.2009.00430.x,
2010.
Chang, D. E., Weinman, J. A., Morales, C. A., and Olson, W. S.: The effect
of spaceborn microwave and ground-based continuous lightning measurements on
forecasts of the 1998 Groundhog Day storm, Mon. Weather Rev., 129,
1809–1833, 2001.
Chen, C. and Cotton, W. R.: A One-Dimensional Simulation of the
Stratocumulus-Capped Mixed Layer, Bound.-Lay. Meteorol., 25, 289–321,
1983.
Cotton, W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C. J.,
Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G.,
and McFadden, J. P.: RAMS 2001: Current status and future directions,
Meteorol. Atmos. Phys., 82, 5–29, 2003.
Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach, Q. J.
Roy. Meteor. Soc., 120, 1367–1387, 1994.
Dahl, J. M. L., Höller, H., and Schumann, U.: Modeling the Flash Rate of
Thunderstorms. Part II: Implementation, Mon. Weather Rev., 139,
3112–3124, 2011.
Deierling, W. and Peterse, W. A.: Total lightning activity as an indicator
of updraft characteristics, J. Geophys. Res., 113, D16210,
https://doi.org/10.1029/2007JD009598, 2008.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A.,
Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S.,
Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin,
M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U.,
Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P.,
Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley,
J.J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F.S., Molinié, G.,
Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said,
F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M.,
and Tamayo, J.: HYMEX-SOP1 The Field Campaign Dedicated to Heavy
Precipitation and Flash Flooding in the Northwestern Mediterranean, B.
Am. Meteorol. Soc., 95, 1083–1100,
https://doi.org/10.1175/BAMS-D-12-00244.1, 2014.
Emersic, C., and Saunders, C. P. R.: Further laboratory investigations
into the relative diffusional growth rate theory of thunderstorm
electrification, Atmos. Res., 98, 327–340,
https://doi.org/10.1016/j.atmosres.2010.07.011, 2010.
Fabry, F. and Sun, J.: For how long should what data be assimilated for the
mesoscale forecasting of convection and why? Part I: On the propagation of
initial condition errors and their implications for data
assimilation, Mon. Weather Rev., 138, 242–255, 2010.
Federico, S.: Implementation of a 3D-Var system for atmospheric profiling data assimilation into the RAMS model: initial results, Atmos. Meas. Tech., 6, 3563–3576, https://doi.org/10.5194/amt-6-3563-2013, 2013.
Federico, S.: Implementation of the WSM5 and WSM6 Single Moment Microphysics
Scheme into the RAMS Model: Verification for the HyMeX-SOP1, Adv.
Meteorol., 2016, 17 pp., https://doi.org/10.1155/2016/5094126, 2016.
Federico, S., Avolio, E., Petracca, M., Panegrossi, G., Sanò, P., Casella, D., and Dietrich, S.: Simulating lightning into the RAMS model: implementation and preliminary results, Nat. Hazards Earth Syst. Sci., 14, 2933–2950, https://doi.org/10.5194/nhess-14-2933-2014, 2014.
Federico, S., Petracca, M., Panegrossi, G., and Dietrich, S.: Improvement of RAMS precipitation forecast at the short-range through lightning data assimilation, Nat. Hazards Earth Syst. Sci., 17, 61–76, https://doi.org/10.5194/nhess-17-61-2017, 2017a.
Federico, S., Petracca, M., Panegrossi, G., Transerici, C., and Dietrich,
S.: Impact of the assimilation of lightning data on the precipitation
forecast at different forecast ranges, Adv. Sci. Res., 14, 187–194, 2017b.
Federico, S., Torcasio, R. C., Avolio, E., Caumont, O., Montopoli, M., Baldini, L., Vulpiani, G., and Dietrich, S.: The impact of lightning and radar data assimilation on the performance of very short term rainfall forecast for two case studies in Italy, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-319, in review, 2018.
Ferretti, R., Pichelli, E., Gentile, S., Maiello, I., Cimini, D., Davolio, S., Miglietta, M. M., Panegrossi, G., Baldini, L., Pasi, F., Marzano, F. S., Zinzi, A., Mariani, S., Casaioli, M., Bartolini, G., Loglisci, N., Montani, A., Marsigli, C., Manzato, A., Pucillo, A., Ferrario, M. E., Colaiuda, V., and Rotunno, R.: Overview of the first HyMeX Special Observation Period over Italy: observations and model results, Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, 2014.
Fierro, A. O., Gilmore, M. S., Mansell, E. R., Wicker, L. J., and Straka, J. M.: Electrification and lightning in an idealized boundary-crossing supercell
simulation of 2 June 1995, Mon. Weather Rev., 134, 3149–3172,
https://doi.org/10.1175/MWR3231.1, 2006.
Fierro, A. O., Mansell, E., Ziegler, C., and MacGorman, D.: Application of a
lightning data assimilation technique in the WRFARW model at cloud-resolving
scales for the tornado outbreak of 24 May 2011, Mon. Weather Rev., 140,
2609–2627, 2012.
Fierro, A. O., Gao, J., Ziegler, C., Mansell, E. R., MacGorman, D. R., and
Dembek, S.: Evaluation of a cloud scale lightning data assimilation technique
and a 3DVAR method for the analysis and short-term forecast of the 29 June
2012 derecho event, Mon. Weather Rev., 142, 183–202, https://doi.org/10.1175/MWR-D-13-00142.1, 2014.
Fierro, A. O., A. J. Clark, E. R. Mansell, D. R. MacGorman, S. Dembek, and
C. Ziegler: Impact of storm-scale lightning data assimilation on WRF-ARW
precipitation forecasts during the 2013 warm season over the contiguous
United States, Mon. Weather Rev., 143, 757–777,
https://doi.org/10.1175/MWR-D-14-00183.1, 2015.
Fierro, A. O., Gao, L., Ziegler, C. L., Calhoun, K. M., Mansell, E. R., and
MacGorman, D. R.: Assimilation of Flash Extent Data in the Variational
Framework at Convection-Allowing Scales: Proof-of-Concept and Evaluation for
the Short-Term Forecast of the 24 May 2011 Tornado Outbreak, Mon. Weather
Rev., 144, 4373–4393, https://doi.org/10.1175/MWR-D-16-0053.1, 2016.
Giannaros, T. M., Kotroni, V., and Lagouvardos, K.: WRFLTNGDA: A lightning
data assimilation technique implemented in the WRF model for improving
precipitation forecasts, Environ. Model. Softw., 76, 54–68,
https://doi.org/10.1016/j.envsoft.2015.11.017, 2016.
Hong, S. Y. and Lim, J. J. O.: The WRF single-moment 6-class microphysics scheme
(WSM6), J. Korean Meteorol. Soc., 42, 129–151, 2006.
Hu, M., Xue, M., and Brewster, K.: 3DVAR and cloud analysis with WSR-88D
level-II data for the prediction of the Fort Worth, Texas, tornadic
thunderstorms. Part I: Cloud analysis and its impact, Mon. Weather Rev., 134,
675–698, https://doi.org/10.1175/MWR3092.1, 2006.
Ikuta, Y. and Honda, Y.: Development of 1D+4DVAR data assimilation of
radar reflectivity in JNoVA. Tech, Report, 01.09–01.10, available at:
http://www.wcrp-climate.org/WGNE/BlueBook/2011/individual-articles/01_Ikuta_Yasutaka_WGNE2011_1D4DVAR.pdf (last access: 8 August 2019), 2011.
Jones, C. D. and Macpherson, B.: A latent heat nudging scheme for the
assimilation of precipitation into an operational mesoscale model, Meteorol.
Appl., 4, 269–277, 1997.
Jones, T. A., Otkin, J. A., Stensrud, D. J., and Knopfmeier, K.: Forecast
evaluation of an observing system simulation experiment assimilating both
radar and satellite data, Mon. Weather Rev., 142, 107–124,
https://doi.org/10.1175/MWR-D-13-00151.1, 2014.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale
models: the Kain-Fritsch scheme. The representation of cumulus convection in
numerical models, Meteor. Monogr. No. 46, Am. Meteor. Soc., Boston,
165–170, 1993.
Kuhlman, K. M., Zielger, C. L., Mansell, E. R., MacGorman, D. R., and
Straka, J. M.: Numerically simulated electrification and lightning of the 29 June
2000 STEPS supercell storm, Mon. Weather Rev., 134, 2734–2757,
https://doi.org/10.1175/MWR3217.1, 2006.
Kummerow, C., Hong, Y., Olson, W. S., Yang. S., Adler, R. F., McCollum, J.,
Ferraro, R., Petty, G., Shin. D.-B., and Wilheit, T. T.: The evolution of the
Goddard profiling algorithm (GPROF) for rainfall estimation from passive
microwave sensors, J. Appl. Meteorol., 40, 1801–1820, 2001.
Lagouvardos, K., Kotroni, V., Betz, H.-D., and Schmidt, K.: A comparison of lightning data provided by ZEUS and LINET networks over Western Europe, Nat. Hazards Earth Syst. Sci., 9, 1713–1717, https://doi.org/10.5194/nhess-9-1713-2009, 2009.
Lynn, B. H.: The Usefulness and Economic Value of Total Lightning
Forecasts Made with a Dynamic Lightning Scheme Coupled with Lightning Data
Assimilation, Weather
Forecast., 32, 645–663, https://doi.org/10.1175/WAF-D-16-0031.1, 2017.
Lynn, B. H., Kelman, G., and Ellrod, G.: An evaluation of the ef?cacy of using
observed lightning to improve convective lightning forecasts, Weather
Forecast., 30, 405–423 https://doi.org/10.1175/WAF-D-13-00028.1, 2015.
MacGorman, D. R. and Nielsen, K. E.: Cloud-to-Ground Lightning in a Tornadic
Storm on 8 May 1986, Mon. Weather Rev., 119, 1557–1574,
https://doi.org/10.1175/1520-0493(1991)119<1557:CTGLIA>2.0.CO;2, 1991.
MacGorman, D. R., Burgess, D. W., Mazur, V., Rust, W. D., Taylor, W. L., and Johnson, B. C.: Lightning rates relative to tornadic storm evolution on 22
May 1981, J. Atmos. Sci., 46, 221–251, https://doi.org/10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2, 1989.
MacGorman, D. R., Apostolakopoulos, I. R., Lund, N. R., Demetriades, N. W. S., Murphy, M. J., and Krehbiel, P. R.: The timing of cloud-to-ground lightning relative
to total lightning activity, Mon. Weather Rev., 139, 3871–3886,
https://doi.org/10.1175/MWR-D-11-00047.1, 2011.
MacGorman, D. R., Apostolakopoulos, I. R., Lund, N. R., Demetriades, N. W. S., Murphy, M. J., and Krehbiel, P. R.: The
electrical structure of two supercell storms during STEPS, Mon. Weather Rev.,
133, 2583–2607, https://doi.org/10.1175/MWR2994.1, 2005.
Mansell, E. R., Ziegler, C. L., and MacGorman, D. R.: A lightning data
assimilation technique for mesoscale forecast models, Mon. Weather Rev.,
135, 1732–1748, 2007.
Marchand, M. and Fuelberg, H.: Assimilation of lightning data using a
nudging method involving low-level warming, Mon. Weather Rev., 142, 4850–4871,
https://doi.org/10.1175/MWR-D-14-00076.1, 2014.
Mass, C. F., Ovens, D., Westrick, K., and Colle, B. A.: Does increasing
horizontal resolution produce more skilful forecasts?, B. Am. Meteorol.
Soc., 83, 407–430, 2002.
Mellor, G. and Yamada, T.: Development of a Turbulence Closure Model for
Geophysical Fluid Problems, Review of Geophysics and Space Physics, 20,
851–875, 1982.
Mittermaier, M., Roberts, N., and Thompson, S. A.: A long-term assessment of
precipitation forecast skill using the Fractions Skill Score, Meteor. Appl.,
20, 176–186, https://doi.org/10.1002/met.296, 2013.
Molinari, J. and Corsetti, T.: Incorporation of cloud-scale and mesoscale
down-drafts into a cumulus parametrization: results of one and
three-dimensional integrations, Mon. Weather Rev., 113, 485–501, 1985.
nowcast: available at:
https://www.nowcast.de, last access: 8 August 2019.
Olson, W. S., Kummerow, C. D., Heymsfield, G. M., and Giglio, L.: A method
for combined passive-active microwave retrievals of cloud and precipitation
profiles, J. Appl. Meteorol., 35, 1763–1789, 1996.
Papadopoulos, A., Chronis, T. G., and Anagnostou, E. N.: Improving convective
precipitation forecasting through assimilation of regional lightning
measurements in a mesoscale model, Mon. Weather Rev., 133, 1961–1977, 2005.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
Spectral Statistical Interpolation analysis system, Mon. Weather Rev.,
120, 1747–1763, 1992.
Pessi, A. T. and Businger, S.: Relationships among Lightning,
Precipitation, and Hydrometeor Characteristics over the North Pacific
Ocean, J. Appl. Meteor. Clim., 48, 833–848,
https://doi.org/10.1175/2008JAMC1817.1, 2009.
Petracca, M., Casella, D., Dietrich, S., Milani, L., Panegrossi, G., Sanò, P., Möhrlein, M., Riso, S., and Betz, H. D.: Lightning strokes frequency
homogenization for climatological analysis: application to LINET data
records over Europe, 2nd TEA – IS Summer School, 23–27 June,
Collioure, France, 2014.
Petracca, M., D'Adderio, L. P., Porcù, F., Vulpiani, G., Sebastianelli, S.,
and Puca, S.: Validation of GPM Dual-Frequency Precipitation Radar (DPR)
rainfall products over Italy, J.
Hydrometeorol., 19, 907–925, https://doi.org/10.1175/JHM-D-17-0144.1, 2018.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical recipes in Fortran 77, second ed., Cambridge University Press,
Cambridge, 992 pp., 1992.
Qie, X., Zhu, R., Yuan, T., Wu, X., Li, W., and Liu, D.: Application of
total-lightning data assimilation in a mesoscale convective system based on
the WRF model, Atmos. Res., 145–146, 255–266, 2014.
Ricciardelli, E., Di Paola, F., Gentile, S., Cersosimo, A., Cimini, D.,
Gallucci, D., Geraldi, E., Larosa, S., Nilo, S. T., Ripepi, E., Romano, F.,
and Viggiano, M.: Analysis of Livorno Heavy Rainfall Event: Examples of
Satellite-Based Observation Techniques in Support of Numerical Weather
Prediction, Remote Sensing, 2018, 1549, https://doi.org/10.3390/rs10101549, 2018.
Ridal, M. and Dahlbom, M.: Assimilation of multinational radar reflectivity
data in a mesoscale model: a proof of concept, J. Appl.
Meteorol. Clim., 56, 1739–1751,
https://doi.org/10.1175/jamc-d-16-0247.1, 2017.
Roebber, P. J.: Visualizing multiple measures of forecast quality, Weather Forecast., 24, 601–608, 2009.
Rohn, M., Kelly, G., and Saunders, R. W.: Impact of a New Cloud Motion Wind
Product from Meteosat on NWP Analyses and Forecasts, Mon. Weather Rev.,
129, 2392–2403, 2001.
Smagorinsky, J.: General circulation experiments with the primitive
equations. Part I, The basic experiment, Mon. Weather Rev., 91, 99–164,
1963.
Stensrud, D. J. and Fritsch, J. M.: Mesoscale convective systems in weakly
forced large-scale environments. Part II: Generation of a mesoscale initial
condition, Mon. Weather Rev., 122, 2068–2083, 1994.
Stensrud, D. J., Xue, M., Wicker, L. J., Kelleher, K. E., Foster, M. P.,
Schaefer, J. T., Schneider, R. S., Benjamin, S. G., Weygandt, S. S., Ferree, J. T., and
Tuell, J. P.: Convective-Scale Warn-on-Forecast System, B. Am. Meteorol.
Soc., 90, 1487–1500, https://doi.org/10.1175/2009BAMS2795.1,
2009.
Stewart, L. M., Dance, S. L., and Nichols, N. K.: Data assimilation with
correlated observation errors: experiments with a 1-D shallow water
model, Tellus A, 65, 19546, https://doi.org/10.3402/tellusa.v65i0.19546, 2013.
Sun, J. and Crook, N. A.: Dynamical and Microphysical Retrieval from
Doppler RADAR Observations Using a Cloud Model and Its Adjoint, Part I:
Model Development and Simulated Data Experiments, J. Atmos. Sci., 54,
1642–1661, 1997.
Sun, J. and Crook, N. A.: Dynamical and Microphysical Retrieval from
Doppler RADAR Observations Using a Cloud Model and Its Adjoint, Part II:
Retrieval Experiments of an Observed Florida Convective Storm, J. Atmos.
Sci., 55, 835–852, 1998.
Takahashi, T.: Riming electrification as a charge generation mechanism in
thunderstorms, J. Atmos. Sci., 35, 1536–1548,
https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2, 1978.
Vulpiani, G., Rinollo, A., Puca, S., and Montopoli, M.: A quality-based
approach for radar rain field reconstruction and the H-SAF precipitation
products validation. Proc. Eighth European Radar Conf.,
Garmish-Partenkirchen, Germany, ERAD, Abstract 220, 6 pp., available at:
http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/220_Vulpiani.pdf (last access: 8 August 2019), 2014.
Walko, R. L., Band, L. E., Baron, J., Kittel, T. G., Lammers, R., Lee, T. J.,
Ojima, D., Pielke Sr., R. A., Taylor, C., Tague, C., Tremback, C. J., and
Vidale, P. L.: Coupled Atmosphere-Biosphere-Hydrology Models for
environmental prediction, J. Appl. Meteorol., 39, 931–944, 2000.
Wattrelot, É., Caumont, O., and Mahfouf, J. F.: Operational
implementation of the 1D+3D-Var assimilation method of radar reflectivity
data in the AROME model, Mon. Weather Rev., 142, 1852–1873,
https://doi.org/10.1175/MWR-D-13-00230.1, 2014.
Weisman, M. L., Skamarock, W. C., and Klemp, J. B.: The resolution
dependence of explicitly modeled convective systems, Mon. Weather Rev., 125,
527–548, 1997.
Weygandt, S. S., Benjamin, S. G., Hu, M., Smirnova, T. G., and Brown, J. M.:
Use of lightning data to enhance radar assimilation within the RUC and Rapid
Refresh models. Third Conf. on Meteorological Applications of Lightning
Data, 20–24 January 2008, New Orleans, LA, Amer. Meteor. Soc., 8.4,
available at: https://ams.confex.com/ams/88Annual/webprogram/Paper134112.html (last
access: 3 October 2018), 2008.
Wiens, K. C., Rutledge, S. A., and Tessendorf, S. A.: The 29 June 2000
supercell observed during STEPS. Part II: Lightning and charge structure, J.
Atmos. Sci., 62, 4151–4177, https://doi.org/10.1175/JAS3615.1, 2005.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, London, 627 pp., 2006.
Xu, Q., Wei, L., Gu, W., Gong, J., and Zhao, Q.: A 3.5-dimensional
variational method for Doppler radar data assimilation and its application
to phased array radar observations, Adv. Meteorol., 2010,
797265, https://doi.org/10.1155/2010/797265, 2010.
Xue, M., Wang, D., Gao, J., Brewster, K., and Droegemeier, K. K.: The
Advanced Regional Prediction System (ARPS), storm scale numerical weather
prediction and data assimilation, Meteorol. Atmos. Phys., 82, 139–170, 2003.
Zhao, Q., Cook, J., Xu, Q., and Harasti, P. R.: Using radar wind
observations to improve mesoscale numerical weather prediction, Weather
Forecast., 21, 502–522, 2006.
Short summary
This study shows the possibility to improve the weather forecast at the very short range (0–3 h) using lightning and/or radar reflectivity observations. We consider two challenging events that occurred over Italy, named Serrano and Livorno, characterized by moderate and exceptional rainfall, respectively.
The improvement given to the forecast by using the lightning and/or radar reflectivity observations is considerable. The best performance is obtained when using both data.
This study shows the possibility to improve the weather forecast at the very short range (0–3 h)...
Altmetrics
Final-revised paper
Preprint