Articles | Volume 16, issue 2
https://doi.org/10.5194/nhess-16-371-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-16-371-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia
Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisboa, Portugal
A. M. Ramos
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
J. L. Zêzere
Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisboa, Portugal
R. M. Trigo
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
J. M. Vaquero
Departamento de Física, Universidad de Extremadura, Mérida, Spain
Related authors
Olga Petrucci, Luigi Aceto, Cinzia Bianchi, Victoria Bigot, Rudolf Brázdil, Moshe Inbar, Abdullah Kahraman, Özgenur Kılıç, Vassiliki Kotroni, Maria Carmen Llasat, Montserrat Llasat-Botija, Michele Mercuri, Katerina Papagiannaki, Susana Pereira, Jan Řehoř, Joan Rossello Geli, Paola Salvati, Freddy Vinet, and José Luis Zêzere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-154, https://doi.org/10.5194/essd-2020-154, 2020
Preprint withdrawn
Short summary
Short summary
EUFF 2020 database (EUropean Flood Fatalities-FF) contains 2483 flood fatalities (1980–2018) occurred in 8 countries. Gender, age, activity of FF and dynamics of accidents were obtained from documentary sources. 64.8 % of FF were killed by floods killing less than 10 people. Males were more numerous than females due higher proportion of them driving and working outdoors. FF 30–64 years old died traveling to home/work, driving vehicles dragged by water. Elderly people were trapped indoor by flood.
Bruno M. Meneses, Susana Pereira, and Eusébio Reis
Nat. Hazards Earth Syst. Sci., 19, 471–487, https://doi.org/10.5194/nhess-19-471-2019, https://doi.org/10.5194/nhess-19-471-2019, 2019
Teresa Vaz, José Luís Zêzere, Susana Pereira, Sérgio Cruz Oliveira, Ricardo A. C. Garcia, and Ivânia Quaresma
Nat. Hazards Earth Syst. Sci., 18, 1037–1054, https://doi.org/10.5194/nhess-18-1037-2018, https://doi.org/10.5194/nhess-18-1037-2018, 2018
Short summary
Short summary
This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using centenary landslide and rainfall data. The method includes the identification of critical rainfall related to each landslide event, the calculation and calibration of rainfall thresholds and the evaluation of rain gauge spatial representativeness. Results show that thresholds based on a probabilistic approach are highly recommended and can be easily included in early warning systems.
C. Guillard-Gonçalves, J. L. Zêzere, S. Pereira, and R. A. C. Garcia
Nat. Hazards Earth Syst. Sci., 16, 311–331, https://doi.org/10.5194/nhess-16-311-2016, https://doi.org/10.5194/nhess-16-311-2016, 2016
Short summary
Short summary
This paper presents a semi-quantitative assessment of the physical vulnerability of buildings to landslides, and quantitative landslide risk analysis computed as the product of the landslide hazard by the vulnerability and the economic value of the buildings. The work was developed for a Portuguese municipality (Loures). The highest risk was found for the landslides 3 m deep, because these landslides combine a relatively high frequency with a substantial potential damage.
Maite deCastro, Jose González-Cao, Nicolás deCastro, Juan J. Taboada, Jose M. Vaquero, and Moncho Gómez-Gesteira
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-49, https://doi.org/10.5194/cp-2024-49, 2024
Preprint under review for CP
Short summary
Short summary
Torrential rains in the Eastern Atlantic during 1768–1769 caused the worst agricultural crisis in Galicia and Northern Portugal. Using the EKF400v2 paleo-reanalysis dataset, it was found that the rainfall anomaly was positive in 11 out of 12 months. June 1768 saw the highest positive rain anomaly of the century, and September 1768 the second-highest. The atmospheric synoptic patterns show negative anomalies in sea level pressure and 500 hPa. These patterns induce surface low-pressure systems.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Gabriele Messori, Antonio Segalini, and Alexandre M. Ramos
Earth Syst. Dynam., 15, 1207–1225, https://doi.org/10.5194/esd-15-1207-2024, https://doi.org/10.5194/esd-15-1207-2024, 2024
Short summary
Short summary
Simultaneous heatwaves or cold spells in remote geographical regions have potentially far-reaching impacts on society and the environment. Despite this, we have little knowledge of when and where these extreme events have occurred in the past decades. In this paper, we present a summary of past simultaneous heatwaves or cold spells and provide a computer program to enable other researchers to study them.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-130, https://doi.org/10.5194/nhess-2024-130, 2024
Preprint under review for NHESS
Short summary
Short summary
Here we investigate the synoptic evolution associated with the occurrence of an atmospheric river leading to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on day 12.
Diego Fernández-Nóvoa, Alexandre M. Ramos, José González-Cao, Orlando García-Feal, Cristina Catita, Moncho Gómez-Gesteira, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 24, 609–630, https://doi.org/10.5194/nhess-24-609-2024, https://doi.org/10.5194/nhess-24-609-2024, 2024
Short summary
Short summary
The present study focuses on an in-depth analysis of floods in the lower section of the Tagus River from a hydrodynamic perspective by means of the Iber+ numerical model and on the development of dam operating strategies to mitigate flood episodes using the exceptional floods of February 1979 as a benchmark. The results corroborate the model's capability to evaluate floods in the study area and confirm the effectiveness of the proposed strategies to reduce flood impact in the lower Tagus valley.
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
EGUsphere, https://doi.org/10.5194/egusphere-2023-2522, https://doi.org/10.5194/egusphere-2023-2522, 2023
Short summary
Short summary
The month of June 1925 was detected as exceptional in the SW interior of Iberia due to the large number of thunderstorms and the significant impacts that caused, with serious losses in human lives and material resources. We analyzed this event from different, complementary perspectives: the reconstruction of the history of the events from newspapers; the study of monthly meteorological variables of the longest series available in Iberia; and the analysis of the meteorological synoptic situation.
Nieves Bravo-Paredes, María Cruz Gallego, Ricardo M. Trigo, and José Manuel Vaquero
Clim. Past, 19, 1397–1408, https://doi.org/10.5194/cp-19-1397-2023, https://doi.org/10.5194/cp-19-1397-2023, 2023
Short summary
Short summary
We present the earliest records made in San Fernando, very close to Cádiz (SW Spain). Several previous works have already recovered a significant number of meteorological records of interest in these localities. However, more than 40 000 daily meteorological observations recorded at the Royal Observatory of the Spanish Navy (located in San Fernando) were previously unnoticed and remained neither digitized nor studied. We analyze in detail these newly recovered meteorological readings.
Miguel M. Lima, Célia M. Gouveia, and Ricardo M. Trigo
Ocean Sci., 18, 1419–1430, https://doi.org/10.5194/os-18-1419-2022, https://doi.org/10.5194/os-18-1419-2022, 2022
Short summary
Short summary
This article aims to explore the interaction between tropical cyclones and the ocean in a less studied area regarding these events. Tropical cyclones generally create an area of colder waters behind them, which in turn can contribute to an increase in biological activity. In the Azores region, the intensity, track geometry, and impact area of the cyclones are the most important factors to determine these responses. The speed of the cyclones was found to be more important for biological activity.
Rafaello Bergonse, Sandra Oliveira, José Luís Zêzere, Francisco Moreira, Paulo Flores Ribeiro, Miguel Leal, and José Manuel Lima e Santos
EGUsphere, https://doi.org/10.5194/egusphere-2022-342, https://doi.org/10.5194/egusphere-2022-342, 2022
Preprint archived
Short summary
Short summary
We distinguish fire regimes in Central Portugal and investigate the degree to which they are influenced by a set of biophysical drivers. Results show four fire regimes and indicate these can be differentiated using biophysical drivers, among which land use/land cover type, slope and spring rainfall are the foremost. Our results highlight the relations between vegetation (type, availability, and rate of regeneration) and topography with fire regimes in the study area.
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022, https://doi.org/10.5194/wcd-3-305-2022, 2022
Short summary
Short summary
Atmospheric blocking is associated with stationary, self-sustaining and long-lasting high-pressure systems. They can cause or at least influence surface weather extremes, such as heat waves, cold spells, heavy precipitation events, droughts or wind extremes. The location of the blocking determines where and what type of extreme event will occur. These relationships are also important for weather prediction and may change due to global warming.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Gerard van der Schrier, Richard P. Allan, Albert Ossó, Pedro M. Sousa, Hans Van de Vyver, Bert Van Schaeybroeck, Roberto Coscarelli, Angela A. Pasqua, Olga Petrucci, Mary Curley, Mirosław Mietus, Janusz Filipiak, Petr Štěpánek, Pavel Zahradníček, Rudolf Brázdil, Ladislava Řezníčková, Else J. M. van den Besselaar, Ricardo Trigo, and Enric Aguilar
Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, https://doi.org/10.5194/cp-17-2201-2021, 2021
Short summary
Short summary
The 1921 drought was the most severe drought to hit Europe since the start of the 20th century. Here the climatological description of the drought is coupled to an overview of its impacts, sourced from newspapers, and an analysis of its drivers. The area from Ireland to the Ukraine was affected but hardest hit was the triangle between Brussels, Paris and Lyon. The drought impacts lingered on until well into autumn and winter, affecting water supply and agriculture and livestock farming.
Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210, https://doi.org/10.5194/esd-12-197-2021, https://doi.org/10.5194/esd-12-197-2021, 2021
Short summary
Short summary
Extensive, long-standing dry and wet episodes are frequent climatic extreme events (EEs) in the Iberian Peninsula (IP). A method for ranking regional extremes of persistent, widespread drought and wet events is presented, using different SPEI timescales. Results show that there is no region more prone to EE occurrences in the IP, the most extreme extensive agricultural droughts evolve into hydrological and more persistent extreme droughts, and widespread wet and dry EEs are anti-correlated.
Olga Petrucci, Luigi Aceto, Cinzia Bianchi, Victoria Bigot, Rudolf Brázdil, Moshe Inbar, Abdullah Kahraman, Özgenur Kılıç, Vassiliki Kotroni, Maria Carmen Llasat, Montserrat Llasat-Botija, Michele Mercuri, Katerina Papagiannaki, Susana Pereira, Jan Řehoř, Joan Rossello Geli, Paola Salvati, Freddy Vinet, and José Luis Zêzere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-154, https://doi.org/10.5194/essd-2020-154, 2020
Preprint withdrawn
Short summary
Short summary
EUFF 2020 database (EUropean Flood Fatalities-FF) contains 2483 flood fatalities (1980–2018) occurred in 8 countries. Gender, age, activity of FF and dynamics of accidents were obtained from documentary sources. 64.8 % of FF were killed by floods killing less than 10 people. Males were more numerous than females due higher proportion of them driving and working outdoors. FF 30–64 years old died traveling to home/work, driving vehicles dragged by water. Elderly people were trapped indoor by flood.
Alexandre M. Ramos, Pedro M. Sousa, Emanuel Dutra, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 20, 877–888, https://doi.org/10.5194/nhess-20-877-2020, https://doi.org/10.5194/nhess-20-877-2020, 2020
Sílvia A. Nunes, Carlos C. DaCamara, Kamil F. Turkman, Teresa J. Calado, Ricardo M. Trigo, and Maria A. A. Turkman
Nat. Hazards Earth Syst. Sci., 19, 1459–1470, https://doi.org/10.5194/nhess-19-1459-2019, https://doi.org/10.5194/nhess-19-1459-2019, 2019
Short summary
Short summary
Portugal is recurrently affected by large wildfire events. We present a statistical model to estimate the probability that the summer burned area exceeds a given threshold. The model allows making outlooks of wildfire potential with up to 1 month in advance of the fire season. When applied to the 39-year period 1980-2018, only 1 severe (one weak) year is not anticipated as potentially severe (weak). The model will assist the fire community when planning prevention and combating fire events.
Bruno M. Meneses, Susana Pereira, and Eusébio Reis
Nat. Hazards Earth Syst. Sci., 19, 471–487, https://doi.org/10.5194/nhess-19-471-2019, https://doi.org/10.5194/nhess-19-471-2019, 2019
Víctor M. S. Carrasco, Enric Aragonès, Jorge Ordaz, and José M. Vaquero
Hist. Geo Space. Sci., 9, 133–139, https://doi.org/10.5194/hgss-9-133-2018, https://doi.org/10.5194/hgss-9-133-2018, 2018
Short summary
Short summary
An analysis is made of the records made by Spanish observers of a notable aurora on 18 January 1770 in order to study the characteristics of this event. The records indicate that the phenomenon was observed in both continental and insular territories of Spain. In general, observers described the aurora as red in colour, from sunset to midnight. Calculations of the geomagnetic latitudes of the observation locations indicate this aurora was observed over a wide range of abnormally low latitudes.
Hisashi Hayakawa, José M. Vaquero, and Yusuke Ebihara
Ann. Geophys., 36, 1153–1160, https://doi.org/10.5194/angeo-36-1153-2018, https://doi.org/10.5194/angeo-36-1153-2018, 2018
Short summary
Short summary
A record has been found of an "aurora" observed on 27 October 1856 in the Philippines, practically at the magnetic equator. An analysis of this report indicates that it could belong to a "sporadic aurora" because of low magnetic activity at that time. We provide a possible physical mechanism that could explain the appearance of this sporadic, low-latitude aurora, according to the analyses on the observational report and magnetic observations at that time.
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary
Short summary
ARTMIP (Atmospheric River Tracking Method Intercomparison Project) is a community effort with the explicit goal of understanding the uncertainties, and the implications of those uncertainties, in atmospheric river science solely due to detection algorithm. ARTMIP strives to quantify these differences and provide guidance on appropriate algorithmic choices for the science question posed. Project goals, experimental design, and preliminary results are provided.
Patrícia Páscoa, Célia M. Gouveia, Ana C. Russo, Roxana Bojariu, Sergio M. Vicente-Serrano, and Ricardo M. Trigo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-264, https://doi.org/10.5194/hess-2018-264, 2018
Revised manuscript not accepted
Teresa Vaz, José Luís Zêzere, Susana Pereira, Sérgio Cruz Oliveira, Ricardo A. C. Garcia, and Ivânia Quaresma
Nat. Hazards Earth Syst. Sci., 18, 1037–1054, https://doi.org/10.5194/nhess-18-1037-2018, https://doi.org/10.5194/nhess-18-1037-2018, 2018
Short summary
Short summary
This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using centenary landslide and rainfall data. The method includes the identification of critical rainfall related to each landslide event, the calculation and calibration of rainfall thresholds and the evaluation of rain gauge spatial representativeness. Results show that thresholds based on a probabilistic approach are highly recommended and can be easily included in early warning systems.
Julien Ruffault, Thomas Curt, Nicolas K. Martin-StPaul, Vincent Moron, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 18, 847–856, https://doi.org/10.5194/nhess-18-847-2018, https://doi.org/10.5194/nhess-18-847-2018, 2018
Short summary
Short summary
Extreme wildfires events (EWE) have been recorded during the past year in the Mediterranean. By analyzing the climatic conditions associated with the French 2003 and 2016 fires seasons, we found that EWE were associated to two distinct climatic events whose frequencies are both expected to increase with global changes: hot droughts and long droughts. These results suggest that EWE are likely to become more common in the future and will certainly challenge fire management.
Raquel Melo, Theo van Asch, and José L. Zêzere
Nat. Hazards Earth Syst. Sci., 18, 555–570, https://doi.org/10.5194/nhess-18-555-2018, https://doi.org/10.5194/nhess-18-555-2018, 2018
Short summary
Short summary
Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. This research aims to simulate the debris flow run-out for the entire basin, using a dynamic model. Three scenarios were developed and the results were confronted with the existing buildings exposed in the study area. The worst-case scenario showed a potential inundation that may affect 345 buildings.
Miguel M. Pinto, Carlos C. DaCamara, Isabel F. Trigo, Ricardo M. Trigo, and K. Feridun Turkman
Nat. Hazards Earth Syst. Sci., 18, 515–529, https://doi.org/10.5194/nhess-18-515-2018, https://doi.org/10.5194/nhess-18-515-2018, 2018
Short summary
Short summary
We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts. Results obtained show that about 72 % of severe events releasing daily energy above 10 000 GJ belong to the
extremeclass of fire danger. The procedure is expected to assist in wildfire management and in decision making on prescribed burning.
Jorge Eiras-Barca, Alexandre M. Ramos, Joaquim G. Pinto, Ricardo M. Trigo, Margarida L. R. Liberato, and Gonzalo Miguez-Macho
Earth Syst. Dynam., 9, 91–102, https://doi.org/10.5194/esd-9-91-2018, https://doi.org/10.5194/esd-9-91-2018, 2018
Short summary
Short summary
This paper analyses the potential role of atmospheric rivers in the explosive cyclone deepening. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific basins for the extended winter months (ONDJFM).
Sérgio C. Oliveira, José L. Zêzere, Sara Lajas, and Raquel Melo
Nat. Hazards Earth Syst. Sci., 17, 1091–1109, https://doi.org/10.5194/nhess-17-1091-2017, https://doi.org/10.5194/nhess-17-1091-2017, 2017
Short summary
Short summary
Approaches to assess shallow slide susceptibility at the basin scale are conceptually different depending on the use of statistical or physically based methods. Two hypotheses are tested: (i) both methods generate similar shallow slide susceptibility results and (ii) the combination of both susceptibility maps generates a more reliable susceptibility model. Model combinations registered a higher predictive capacity and the identification of areas where the results from both models are uncertain.
José M. Vaquero
Hist. Geo Space. Sci., 8, 53–56, https://doi.org/10.5194/hgss-8-53-2017, https://doi.org/10.5194/hgss-8-53-2017, 2017
Short summary
Short summary
An analysis is given of the account of a
globe of fireobserved in Zafra (Spain) in the middle of the 16th century. During a strong storm, Conde Don Pedro observed what he described as a
globe of firethat was directed against the city and abruptly changed course. He attributed the change in course to a miracle. He described neither any damage nor sound.
Ricardo A. C. Garcia, Sérgio C. Oliveira, and José L. Zêzere
Nat. Hazards Earth Syst. Sci., 16, 2769–2782, https://doi.org/10.5194/nhess-16-2769-2016, https://doi.org/10.5194/nhess-16-2769-2016, 2016
Short summary
Short summary
Assessing the numbers and locations of exposed people is crucial in landslide risk management and emergency planning. This study applies dasymetric cartography to assessing the potentially exposed population per building and comparing it with results from the basic census units. A dasymetric approach increases the spatial resolution of the population and enables the use of detailed landslide susceptibility maps, which is highly valuable for assessing the exposed population.
Alexandre M. Ramos, Raquel Nieto, Ricardo Tomé, Luis Gimeno, Ricardo M. Trigo, Margarida L. R. Liberato, and David A. Lavers
Earth Syst. Dynam., 7, 371–384, https://doi.org/10.5194/esd-7-371-2016, https://doi.org/10.5194/esd-7-371-2016, 2016
Short summary
Short summary
An atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs that affected western European coasts between 1979 and 2014. A Lagrangian analysis was then applied in order to identify the main sources of moisture of the ARs that reach western European coasts. Results confirm not only the advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical one.
C. Guillard-Gonçalves, J. L. Zêzere, S. Pereira, and R. A. C. Garcia
Nat. Hazards Earth Syst. Sci., 16, 311–331, https://doi.org/10.5194/nhess-16-311-2016, https://doi.org/10.5194/nhess-16-311-2016, 2016
Short summary
Short summary
This paper presents a semi-quantitative assessment of the physical vulnerability of buildings to landslides, and quantitative landslide risk analysis computed as the product of the landslide hazard by the vulnerability and the economic value of the buildings. The work was developed for a Portuguese municipality (Loures). The highest risk was found for the landslides 3 m deep, because these landslides combine a relatively high frequency with a substantial potential damage.
L. Gimeno, M. Vázquez, R. Nieto, and R. M. Trigo
Earth Syst. Dynam., 6, 583–589, https://doi.org/10.5194/esd-6-583-2015, https://doi.org/10.5194/esd-6-583-2015, 2015
Short summary
Short summary
There appears to be a connection between two climate change indicators: an increase in evaporation over source regions and Arctic ice melting.
A. Bastos, C. M. Gouveia, R. M. Trigo, and S. W. Running
Biogeosciences, 11, 3421–3435, https://doi.org/10.5194/bg-11-3421-2014, https://doi.org/10.5194/bg-11-3421-2014, 2014
S. Jerez, P. Jimenez-Guerrero, J. P. Montávez, and R. M. Trigo
Atmos. Chem. Phys., 13, 11195–11207, https://doi.org/10.5194/acp-13-11195-2013, https://doi.org/10.5194/acp-13-11195-2013, 2013
M. L. R. Liberato, J. G. Pinto, R. M. Trigo, P. Ludwig, P. Ordóñez, D. Yuen, and I. F. Trigo
Nat. Hazards Earth Syst. Sci., 13, 2239–2251, https://doi.org/10.5194/nhess-13-2239-2013, https://doi.org/10.5194/nhess-13-2239-2013, 2013
Related subject area
Atmospheric, Meteorological and Climatological Hazards
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Examining the Eastern European heatwave of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
A modelled multi-decadal hailday time series for Switzerland
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Wind as a natural hazard in Poland
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The anomalous thundery month of June 1925 in SW Iberia: description and synoptic analysis
The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Shallow and deep learning of extreme rainfall events from convective atmospheres
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Joona Samuel Cornér, Clément Gael Francis Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria Anne Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-1749, https://doi.org/10.5194/egusphere-2024-1749, 2024
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETC) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
EGUsphere, https://doi.org/10.5194/egusphere-2024-1207, https://doi.org/10.5194/egusphere-2024-1207, 2024
Short summary
Short summary
Eastern Europe's heatwave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heatwaves (HW): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2024-371, https://doi.org/10.5194/egusphere-2024-371, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past haildays in Switzerland from 1959–2022. This new timeseries reveals a significant increase in hail occurrences over the last seven decades. We link this trend to climate factors, showcasing the impact of increasing moisture and instability in the atmosphere. The last two decades have seen a surge in early hailseason events. This time series can now be used to study what drives the strong year-to-year variability of Swiss hailstorms.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023, https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Short summary
The paper deals with wind speeds of extreme wind events in Poland and the descriptions of their effects. Two recent estimations developed by the Institute of Meteorology and Water Management in Warsaw and by Halina Lorenc are presented and briefly described. The 37 annual maximum gusts of wind speeds measured between 1971 and 2007 are analysed. Based on the measured and estimated wind speeds, the authors suggest new estimations for extreme winds that may occur in Poland.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023, https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
Short summary
Lightning activity in China is analyzed. Low latitudes, undulating terrain, seaside, and humid surfaces are beneficial for lightning occurrence. Summer of the year or afternoon of the day is the high period. Large cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning on either a temporal or spatial scale. Interestingly, the discharge intensity difference between the two types of lightning shrinks on the Tibetan Plateau.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
EGUsphere, https://doi.org/10.5194/egusphere-2023-2522, https://doi.org/10.5194/egusphere-2023-2522, 2023
Short summary
Short summary
The month of June 1925 was detected as exceptional in the SW interior of Iberia due to the large number of thunderstorms and the significant impacts that caused, with serious losses in human lives and material resources. We analyzed this event from different, complementary perspectives: the reconstruction of the history of the events from newspapers; the study of monthly meteorological variables of the longest series available in Iberia; and the analysis of the meteorological synoptic situation.
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023, https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
Short summary
This work shows how local observations can improve precipitation forecasting for severe weather events. The improvement lasts for at least 6 h of forecast.
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023, https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Cited articles
Barriendos, M. and Rodrigo, F. S.: Study of historical flood events on
Spanish rivers using documentary data, Hydrolog. Sci. J., 51, 765–783,
https://doi.org/10.1623/hysj.51.5.765, 2006.
Benito, G., Diéz-Herrero, A., and Villalta, M.: Magnitude and frequency
of flooding in the Tagus basin (Central Spain) over the last millennium,
Climatic Change, 58, 171–192, 2003.
Brunet, M., Sigró, J., Saladie, O., Aguilar, E., Moberg, A., Lister, D.,
and Walther, A.: Long-term changes in extreme temperatures and precipitation
in Spain, Contrib. Sci., 3, 331–342, https://doi.org/10.2436/20.7010.01.11, 2007.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project,
Q. J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Cortesi, N., Trigo, R. M., Gonzalez-Hidalgo, J. C., and Ramos, A. M.:
Modelling monthly precipitation with circulation weather types for a dense
network of stations over Iberia, Hydrol. Earth Syst. Sci., 17, 665–678,
https://doi.org/10.5194/hess-17-665-2013, 2013.
Cortesi, N., Gonzalez-Hidalgo, J. C., Trigo, R. M., and Ramos, A. M.: Weather
types and spatial variability of precipitation in the Iberian Peninsula,
Int. J. Climatol., 34, 2661–2677, https://doi.org/10.1002/joc.3866, 2014.
Couto, F. T., Salgado, R., and Costa, M. J.: Analysis of intense rainfall
events on Madeira Island during the 2009/2010 winter, Nat. Hazards Earth
Syst. Sci., 12, 2225–2240, https://doi.org/10.5194/nhess-12-2225-2012, 2012.
Daveau, S.: Geografia de Portugal: O Ritmo Climático e a Paisagem,
João Sá da Costa, Lisbon, 1998.
Dettinger, M.: Climate Change, Atmospheric Rivers, and Floods in California – A
Multimodel Analysis of Storm Frequency and Magnitude Changes, J. Am. Water
Resour. Assoc., 47, 514–523, https://doi.org/10.1111/j.1752-1688.2011.00546.x, 2011.
Domínguez-Castro, F., Ramos, A. M., García-Herrera, R., and Trigo,
R. M.: Iberian extreme precipitation 1855/1856: an analysis from early
instrumental observations and documentary sources, Int. J. Climatol., 35,
142–153, https://doi.org/10.1002/joc.3973, 2015.
Fragoso, M., Trigo, R. M., Pinto, J. G., Lopes, S., Lopes, A., Ulbrich, S.,
and Magro, C.: The 20 February 2010 Madeira flash-floods: synoptic analysis
and extreme rainfall assessment, Nat. Hazards Earth Syst. Sci., 12, 715–730,
https://doi.org/10.5194/nhess-12-715-2012, 2012.
Fragoso, M., Marques, D., Santos, J., Alcoforado, M., Amorim, I., Garcia,
J., Silva, L., and Nunes, M.: Climatic extremes in Portugal in the 1780s
based on documentary and instrumental records, Clim. Res., 66, 141–159,
https://doi.org/10.3354/cr01337, 2015.
Gallego, M. C., Trigo, R. M., Vaquero, J. M., Brunet, M., García, J.
A., Sigró, J., and Valente, M. A.: Trends in frequency indices of daily
precipitation over the Iberian Peninsula during the last century, J.
Geophys. Res., 116, D02109, https://doi.org/10.1029/2010JD014255, 2011.
García, J. A., Gallego, M. C., Serrano, A., and Vaquero, J. M.: Trends
in Block-Seasonal Extreme Rainfall over the Iberian Peninsula in the Second
Half of the Twentieth Century, J. Climate, 20, 113–130, https://doi.org/10.1175/JCLI3995.1, 2007.
Gimeno, L., Nieto, R., Vázquez, M., and Lavers, D. A.: Atmospheric
rivers: a mini-review, Front. Earth Sci., 2, 1–6, https://doi.org/10.3389/feart.2014.00002, 2014.
Goodess, C. M. and Jones, P. D.: Links between circulation and changes in
the characteristics of Iberian rainfall, Int. J. Climatol., 22, 1593–1615,
https://doi.org/10.1002/joc.810, 2002.
Hurrel, J. W.: Decadal trends in the North Atlantic Oscilation: regional
temperatures and precipitation, Science, 269, 676–679, 1995.
Jarvis, A., Reuter, H. I., Nelson, E., and Guevara, E.: Hole-filled SRTM for
the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database,
available at: http://srtm.csi.cgiar.org (last access: 9 November 2015), 2008.
Kirchner-Bossi, N., García-Herrera, R., Prieto, L., and Trigo, R. M.: A
long-term perspective of wind power output variability, Int. J. Climatol.,
35, 2635–2646, https://doi.org/10.1002/joc.4161, 2014.
Lavers, D. A., Allan, R. P., Wood, E. F., Villarini, G., Brayshaw, D. J., and
Wade, A. J.: Winter floods in Britain are connected to atmospheric rivers,
Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783, 2011.
Liberato, M. L., Ramos, A. M., Trigo, R. M., Trigo, I. F., Durán-Qesada,
A. M., Nieto, R., Gimeno, L., Durán-Quesada, A. M., Nieto, R., and
Gimeno, L.: Moisture Sources and Large-Scale Dynamics Associated With a
Flash Flood Event, in: Lagrangian Modeling of the Atmosphere, edited by:
Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P.,
American Geophysical Union, Washington, D.C., 111–126, 2013.
Llasat, M. D. C., Rigo, T., and Barriendos, M.: The “Montserrat-2000”
flash-flood event: a comparison with the floods that have occurred in the
northeastern Iberian Peninsula since the 14th century, Int. J. Climatol.,
23, 453–469, https://doi.org/10.1002/joc.888, 2003.
Llasat, M.-C., Barriendos, M., Barrera, A., and Rigo, T.: Floods in Catalonia
(NE Spain) since the 14th century. Climatological and meteorological aspects
from historical documentary sources and old instrumental records, J. Hydrol.,
313, 32–47, https://doi.org/10.1016/j.jhydrol.2005.02.004, 2005.
Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero,
A., and Benito, G.: Flood frequency analysis of historical flood data under
stationary and non-stationary modelling, Hydrol. Earth Syst. Sci., 19,
2561–2576, https://doi.org/10.5194/hess-19-2561-2015, 2015.
Morán-Tejeda, E., Lorenzo-Lacruz, J., López-Moreno, J. I.,
Ceballos-Barbancho, A., Zabalza, J., and Vicente-Serrano, S. M.: Reservoir
Management in the Duero Basin (Spain): Impact on River Regimes and the
Response to Environmental Change, Water Resour. Manage., 26, 2125–2146,
https://doi.org/10.1007/s11269-012-0004-6, 2012.
Ortega, J. A. and Garzón, A.: Influencia de la oscilación del
Atlántico norte en las inundaciones del Río Guadiana, in: Riesgos
naturales y antrópicos en Geomorfología, edited by: Benito, G. and
Diez-Herrero, A., CSIC, Madrid, 117–126, 2004.
Pereira, S., Zêzere, J. L., Quaresma, I., Santos, P. P., and Santos, M.:
Mortality patterns of hydro-geomorphologic disasters, Risk Anal., 22, https://doi.org/10.1111/risa.12516, 2015.
Ramos, A. M., Trigo, R. M., Liberato, M. L. R., and Tomé, R.: Daily
Precipitation Extreme Events in the Iberian Peninsula and Its Association
with Atmospheric Rivers, J. Hydrometeorol., 16, 579–597, https://doi.org/10.1175/JHM-D-14-0103.1, 2015.
Rodrigues, R., Brandão, C., and Costa, J. P.: As cheias no Douro ontem,
hoje e amanhã, SNIRH, Instituto da Água, Lisbon, 2003.
Salgueiro, A. R., Machado, M. J., Barriendos, M., Pereira, H. G., and Benito,
G.: Flood magnitudes in the Tagus River (Iberian Peninsula) and its
stochastic relationship with daily North Atlantic Oscillation since mid-19th Century,
J. Hydrol., 502, 191–201, https://doi.org/10.1016/j.jhydrol.2013.08.008, 2013.
Santisteban, J. I. and Schulte, L.: Fluvial networks of the Iberian
Peninsula: a chronological framework, Quaternary Sci. Rev., 26, 2738–2757,
https://doi.org/10.1016/j.quascirev.2006.12.019, 2007.
Serrano, J. A., Garcia, J. A., Mateos, V. L., Cancillo, M. L., and Garrido,
J.: Monthly Modes of Variation of Precipitation over the Iberian Peninsula,
J. Climate, 12, 2894–2919, 1999.
Shapiro, M. A. and Keyser, D.: Fronts, jet streams and the tropopause, in:
Extratropical Cyclones: The Erik Palmen Memorial Volume, edited by: Newton,
C. W. and Holopainen, E. O., American Meteorological Society, 167–191, 1990.
Silva, A. T., Portela, M. M., and Naghettini, M.: Nonstationarities in the
occurrence rates of flood events in Portuguese watersheds, Hydrol. Earth
Syst. Sci., 16, 241–254, https://doi.org/10.5194/hess-16-241-2012, 2012.
Stickler, A., Brönnimann, S., Valente, M. A., Bethke, J., Sterin, A.,
Jourdain, S., Roucaute, E., Vasquez, M. V., Reyes, D. A., Allan, R., and Dee,
D.: ERA-CLIM: Historical Surface and Upper-Air Data for Future Reanalyses,
B. Am. Meteorol. Soc., 95, 1419–1430, https://doi.org/10.1175/BAMS-D-13-00147.1, 2014.
Trigo, R. M. and Palutikof, J. P.: Precipitation Scenarios over Iberia?: A
Comparison between Direct GCM Output and Different Downscaling Techniques,
J. Climate, 14, 4422–4446, 2001.
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y.,
Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic oscillation
influence on precipitation, river flow and water resources in the Iberian
Peninsula, Int. J. Climatol., 24, 925–944, https://doi.org/10.1002/joc.1048, 2004.
Trigo, R. M., Valente, M. A., Trigo, I. F., Miranda, P. M. A., Ramos, A. M.,
Paredes, D., and García-Herrera, R.: The impact of North Atlantic wind
and cyclone trends on European precipitation and significant wave height in
the Atlantic, Ann. N.Y. Acad. Sci., 1146, 212–234, https://doi.org/10.1196/annals.1446.014, 2008.
Trigo, R. M., Varino, F., Ramos, A. M., Valente, M., Zêzere, J. L.,
Vaquero, J. M., Gouveia, C. M., and Russo, A.: The record precipitation and
flood event in Iberia in December 1876: description and synoptic analysis,
Front. Earth Sci., 2, 1–15, https://doi.org/10.3389/feart.2014.00003, 2014.
Trigo, R. M., Ramos, C., Pereira, S., Ramos, A. M., Zêzere, J. L., and
Liberato, M. L.: The deadliest storm of the 20th century striking Portugal;
flood impacts and atmospheric circulation, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2015.10.036, in press, 2015.
Vicente-Serrano, S., Trigo, R. M., López-Moreno, J., Liberato, M. L.,
Lorenzo-Lacruz, J., Beguería, S., Morán-Tejeda, E., and El Kenawy,
A.: Extreme winter precipitation in the Iberian Peninsula in 2010:
anomalies, driving mechanisms and future projections, Clim. Res., 46, 51–65,
https://doi.org/10.3354/cr00977, 2011.
Zêzere, J. L. and Trigo, R. M.: Impacts of the North Atlantic
Oscillation on Landslides, in: Hydrological, socioeconomic and ecological
impacts of the North Atlantic Oscillation in the Mediterranean Region,
advances in global change research, edited by: Vicente-Serrano, S. and
Trigo, R. M., Springer, Dordrecht, Heidelberg, London, New York, 199–212,
https://doi.org/10.1007/978-94-007-1372-7, 2011.
Zêzere, J. L., Pereira, S., Tavares, A. O., Bateira, C., Trigo, R. M.,
Quaresma, I., Santos, P. P., Santos, M. and Verde, J.: DISASTER: a GIS
database on hydro-geomorphologic disasters in Portugal, Nat. Hazards, 72,
503–532, https://doi.org/10.1007/s11069-013-1018-y, 2014.
Zêzere, J. L., Vaz, T., Pereira, S., Oliveira, S. C., Marques, R., and
Garcia, R. A. C.: Rainfall thresholds for landslide activity in Portugal: a
state of the art, Environ. Earth Sci., 73, 2917–2936, https://doi.org/10.1007/s12665-014-3672-0, 2015.
Short summary
This work explores the meteorological conditions of the hydro-geomorphologic event of December 1909 that triggered the highest floods in more than 100 years at the Douro river's mouth and caused important social impacts over the Portuguese and Spanish territories.
The study of this extreme event contributes to a comprehensive and systematic synoptic evaluation of the second most deadly hydro-geomorphologic disaster event occurred in Portugal since 1865.
This work explores the meteorological conditions of the hydro-geomorphologic event of December...
Altmetrics
Final-revised paper
Preprint