Articles | Volume 25, issue 12
https://doi.org/10.5194/nhess-25-4881-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4881-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constitution of a multicentennial multirisk database in a mountainous environment from composite sources: the example of the Vallouise-Pelvoux municipality (Ecrins, France)
Louise Dallons Thanneur
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Florie Giacona
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Laboratoire de Recherche Historique Rhône-Alpes (LARHRA) – UMR 5190, Grenoble Alpes and Lyon 2 Universities, 38400 Saint-Martin-d'Hères, 69000 Lyon, France
Nicolas Eckert
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Philippe Frey
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Related authors
No articles found.
Erich H. Peitzsch, Justin T. Martin, Ethan M. Greene, Nicolas Eckert, Adrien Favillier, Jason Konigsberg, Nickolas Kichas, Daniel K. Stahle, Karl W. Birkeland, Kelly Elder, and Gregory T. Pederson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2217, https://doi.org/10.5194/egusphere-2025-2217, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Snow avalanches pose substantial risks to communities and public safety in Colorado. We studied tree growth patterns impacted by avalanches from 1698 to 2020 alongside meteorological data. We found variations in avalanche frequency revealing a decline in regional avalanche activity and shifts in the causes of these types of large and widespread avalanche events. This knowledge can enhance avalanche safety measures and infrastructure design.
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023, https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Short summary
We assess projected changes in snowfall extremes in the French Alps as a function of elevation and global warming level for a high-emission scenario. On average, heavy snowfall is projected to decrease below 3000 m and increase above 3600 m, while extreme snowfall is projected to decrease below 2400 m and increase above 3300 m. At elevations in between, an increase is projected until +3 °C of global warming and then a decrease. These results have implications for the management of risks.
Léo Viallon-Galinier, Pascal Hagenmuller, and Nicolas Eckert
The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023, https://doi.org/10.5194/tc-17-2245-2023, 2023
Short summary
Short summary
Avalanches are a significant issue in mountain areas where they threaten recreationists and human infrastructure. Assessments of avalanche hazards and the related risks are therefore an important challenge for local authorities. Meteorological and snow cover simulations are thus important to support operational forecasting. In this study we combine it with mechanical analysis of snow profiles and find that observed avalanche data improve avalanche activity prediction through statistical methods.
Cécile Duvillier, Nicolas Eckert, Guillaume Evin, and Michael Deschâtres
Nat. Hazards Earth Syst. Sci., 23, 1383–1408, https://doi.org/10.5194/nhess-23-1383-2023, https://doi.org/10.5194/nhess-23-1383-2023, 2023
Short summary
Short summary
This study develops a method that identifies individual potential release areas (PRAs) of snow avalanches based on terrain analysis and watershed delineation and demonstrates its efficiency in the French Alps context using an extensive cadastre of past avalanche limits. Results may contribute to better understanding local avalanche hazard. The work may also foster the development of more efficient PRA detection methods based on a rigorous evaluation scheme.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Hippolyte Kern, Nicolas Eckert, Vincent Jomelli, Delphine Grancher, Michael Deschatres, and Gilles Arnaud-Fassetta
The Cryosphere, 15, 4845–4852, https://doi.org/10.5194/tc-15-4845-2021, https://doi.org/10.5194/tc-15-4845-2021, 2021
Short summary
Short summary
Snow avalanches are a major component of the mountain cryosphere that often put people, settlements, and infrastructures at risk. This study investigated avalanche path morphological factors controlling snow deposit volumes, a critical aspect of snow avalanche dynamics that remains poorly known. Different statistical techniques show a slight but significant link between deposit volumes and avalanche path morphology.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Cited articles
Allen, S., Linsbauer, A., Huggel, C., and Singh Randhawa, S.: Glacial Lake Outburst Flood Risk in Himachal Pradesh, India: An Integrative and Anticipatory Approach to Inform Adaptation Planning, EPSC2016-13545, 2016.
Altaweel, M., Virapongse, A., Griffith, D., Alessa, L., and Kliskey, A.: A typology for complex social-ecological systems in mountain communities, Sustainability: Science, Practice and Policy, 11, 1–13, https://doi.org/10.1080/15487733.2015.11908142, 2015.
Athimon, E., Maanan, M., and Pouzet, P.: Comparer les tempêtessur le temps long en quantifiant les dommages : proposition d'un nouvel outil, Bulletin de l'association de géographes français. Géographies, 98, 402–420, https://doi.org/10.4000/bagf.8308, 2022.
Baraille, S.: Les crues dommageables dans le bassin de la haute Durance (Hautes-Alpes, France). Recensement depuis le XIVe siècle ; signification climatique ; facteurs météorologiques et prévision, 665 pp., 2001.
Bard, A., Renard, B., Lang, M., Giuntoli, I., Korck, J., Koboltschnig, G., Janža, M., d'Amico, M., and Volken, D.: Trends in the hydrologic regime of Alpine rivers, Journal of Hydrology, 529, 1823–1837, https://doi.org/10.1016/j.jhydrol.2015.07.052, 2015.
Barriendos, M., Gil-Guirado, S., Pino, D., Tuset, J., Pérez-Morales, A., Alberola, A., Costa, J., Balasch, J. C., Castelltort, X., Mazón, J., and Ruiz-Bellet, J. L.: Climatic and social factors behind the Spanish Mediterranean flood event chronologies from documentary sources (14th–20th centuries), Global and Planetary Change, 182, 102997, https://doi.org/10.1016/j.gloplacha.2019.102997, 2019.
Beaumet, J., Ménégoz, M., Morin, S., Gallée, H., Fettweis, X., Six, D., Vincent, C., Wilhelm, B., and Anquetin, S.: Twentieth century temperature and snow cover changes in the French Alps, Reg. Environ. Change, 21, 114, https://doi.org/10.1007/s10113-021-01830-x, 2021.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Bisquert, A., Mainieri, R., Carladous, S., Robert, Y., Giacona, F., Verry, P., and Eckert, N.: La base de données événementielles RTM pour la connaissance des risquesnaturels en montagne : L’exemple du département de l’Isère (France), Journal of Alpine Research | Revue de géographie alpine, 113, https://doi.org/10.4000/137kf, 2025.
Blanchard, R., Coeur, D., and Ravanat, F.: Etude historique préalable à une cartographie informative des phénomène naturels, 2006.
Boisson, E., Wilhelm, B., Garnier, E., Mélo, A., Anquetin, S., and Ruin, I.: Geo-historical database of flood impacts in Alpine catchments (HIFAVa database, Arve River, France, 1850–2015), Nat. Hazards Earth Syst. Sci., 22, 831–847, https://doi.org/10.5194/nhess-22-831-2022, 2022.
Bonnefoy, M., Borrel, G., Richard, D., Bélanger, L., and Naaim, M.: La carte de localisation des phénomènes d'avalanche (CLPA) : enjeux et perspectives, Sciences Eaux and Territoires, 2, 6–14, https://doi.org/10.3917/set.002.0006, 2010.
Bourova, E., Maldonado, E., Leroy, J.-B., Alouani, R., Eckert, N., Bonnefoy-Demongeot, M., and Deschatres, M.: A new web-based system to improve the monitoring of snow avalanche hazard in France, Nat. Hazards Earth Syst. Sci., 16, 1205–1216, https://doi.org/10.5194/nhess-16-1205-2016, 2016.
Bourrier, F., Dorren, L., and Hungr, O.: The use of ballistic trajectory and granular flow models in predicting rockfall propagation, Earth Surface Processes and Landforms, 38, 435–440, https://doi.org/10.1002/esp.3372, 2013.
Bründl, M., Romang, H. E., Bischof, N., and Rheinberger, C. M.: The risk concept and its application in natural hazard risk management in Switzerland, Nat. Hazards Earth Syst. Sci., 9, 801–813, https://doi.org/10.5194/nhess-9-801-2009, 2009.
Cézard, M.-M.: La vallouise à travers l'histoire, Societe d'etudes des hautes alpes, ISBN 9782856270035, 1981.
Colas, A.: Recherches géomorphologiques en Vallouise (Hautes-Alpes, France), These de doctorat, Lille 1, 2000.
Corona C., Georges, R., Jérôme, L. S., Markus, S., and Pascal, P.: Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l'Oisans, France, CATENA, 83, 107–118, https://doi.org/10.1016/j.catena.2010.08.004, 2010.
Curt, C.: Multirisk: What trends in recent works? – A bibliometric analysis, Science of The Total Environment, 763, 142951, https://doi.org/10.1016/j.scitotenv.2020.142951, 2021.
Dallons Thanneur, L., Florie, G., Frey, P., and Eckert, N.: Constitution of a multicentennial multirisk database in a mountainous environment from composite sources: the example of the Vallouise-Pelvoux municipality (Ecrins, France) – source data, Zenodo [data set], https://doi.org/10.5281/zenodo.14848820, 2025.
Debelmas, J.: Les zones subbriançonnaise et briançonnaise occidentale entre Vallouise et Guillestre (Hautes-Alpes) – Alpes françaises, https://theses.hal.science/tel-00563860v2 (last access: May 2024), 2011.
Defernand, C.: Analyse diachronique de l'occupation des sols par classification d'images multi-sources d'une haute vallée alpine du massif des Ecrins, Master thesis, Master de Sciences Humaines et Sociales, Parcours GÉOgraphie, Information, Interface, Durabilité, EnvironnementS, Université Grenoble Alpes, 50 pp., 2021.
Dudill, A., Lafaye de Micheaux, H., Frey, P., and Church, M.: Introducing Finer Grains Into Bedload: The Transition to a New Equilibrium, Journal of Geophysical Research: Earth Surface 123, 2602–2619, https://doi.org/10.1029/2018JF004847, 2018.
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., Lesaffre, B.: Reanalysis of 47 Years of Climate in the French Alps (1958–2005): Climatology and Trends for Snow Cover, Journal of Applied Meteorology and Climatology, 48, 2487‑2512, https://doi.org/10.1175/2009JAMC1810.1, 2009.
Duquesne, A. and Carozza, J.-M.: Écrire la géohistoire d'un fleuve à faible énergie : les crues de la Charente entre Angoulême et Saintes, Physio-Géo, Géographie physique et environnement, 57–86, https://doi.org/10.4000/physio-geo.8942, 2019.
Eckert, N. and Giacona, F.: Towards a holistic paradigm for long-term snow avalanche risk assessment and mitigation, Ambio, 52, 711–732, https://doi.org/10.1007/s13280-022-01804-1, 2023.
Eckert, N., Deschatres, M., and Bélanger, L.: Analyse des fluctuations spatio-temporelles des nombres d'avalanches dans les Alpes du Nord à partir de l'EPA, Sciences Eaux and Territoires, 2, 16–25, https://doi.org/10.3917/set.002.0016, 2010.
Eckert, N., Keylock, C. J., Bertrand, D., Parent, E., Faug, T., Favier, P., and Naaim, M.: Quantitative risk and optimal design approaches in the snow avalanche field: Review and extensions, Cold Regions Science and Technology, 79–80, 1–19, https://doi.org/10.1016/j.coldregions.2012.03.003, 2012.
Eckert, N., Keylock, C. J., Castebrunet, H., Lavigne, A., and Naaim, M.: Temporal trends in avalanche activity in the French Alps and subregions: from occurrences and runout altitudes to unsteady return periods, Journal of Glaciology, 59, 93–114, https://doi.org/10.3189/2013JoG12J091, 2013.
Eckert, N., Mainieri, R., Bourrier, F., Giacona, F., Corona, C., Bidan, V., and Lescurier, A.: Une base de données événementielle du risque rocheux dans les Alpes Françaises, Revue Française de Géotechnique, 3, https://doi.org/10.1051/geotech/2020012, 2020.
Eckert, N., Corona, C., Giacona, F., Gaume, J., Mayer, S., van Herwijnen, A., Hagenmuller, P., and Stoffel, M.: Climate change impacts on snow avalanche activity and related risks, Nat. Rev. Earth Environ., 5, 369–389, https://doi.org/10.1038/s43017-024-00540-2, 2024.
Favillier, A., Guillet, S., Trappmann, D., Morel, P., Lopez-Saez, J., Eckert, N., Zenhäusern, G., Peiry, J.-L., Stoffel, M., and Corona, C.: Spatio-temporal maps of past avalanche events derived from tree-ring analysis: A case study in the Zermatt valley (Valais, Switzerland), Cold Regions Science and Technology, 154, 9–22, https://doi.org/10.1016/j.coldregions.2018.06.004, 2018.
Flageollet, J.-C., Maquaire, O., Martin, B., and Weber, D.: Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France), Geomorphology, 30, 65–78, https://doi.org/10.1016/S0169-555X(99)00045-8, 1999.
Frey, P. and Church, M.: How river beds move, Science, 325, 1509–1510, https://doi.org/10.1126/science.1178516, 2009.
Fuchs, S., Keiler, M., Sokratov, S., and Shnyparkov, A.: Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management, Nat. Hazards, 68, 1217–1241, https://doi.org/10.1007/s11069-012-0508-7, 2013.
García-Hernández, C., Ruiz-Fernández, J., Sánchez-Posada, C., Pereira, S., Oliva, M., and Vieira, G.: Reforestation and land use change as drivers for a decrease of avalanche damage in mid-latitude mountains (NW Spain), Global and Planetary Change, 153, 35–50, https://doi.org/10.1016/j.gloplacha.2017.05.001, 2017.
Giacona, F., Eckert, N., and Martin, B.: A 240 year history of avalanche risk in the Vosges Mountains based on non-conventional (re)sources, Nat. Hazards Earth Syst. Sci., 17, 887–904, https://doi.org/10.5194/nhess-17-887-2017, 2017a.
Giacona, F., Eckert, N., and Martin, B.: La construction du risque au prisme territorial : dans l'ombre de l'archétype alpin, les avalanches oubliées de moyenne montagne, Nat. Sci. Soc., 25, 148–162, https://doi.org/10.1051/nss/2017025, 2017b.
Giacona, F., Martin, B., Eckert, N., and Desarthe, J.: Une méthodologie de la modélisation en géohistoire : de la chronologie (spatialisée) des événements au fonctionnement du système par la mise en correspondance spatiale et temporelle, Physio-Géo. Géographie physique et environnement, 171–199, https://doi.org/10.4000/physio-geo.9186, 2019a.
Giacona, F., Martin, B., Furst, B., Glaser, R., Eckert, N., Himmelsbach, I., and Edelblutte, C.: Improving the understanding of flood risk in the Alsatian region by knowledge capitalization: the ORRION participative observatory, Nat. Hazards Earth Syst. Sci., 19, 1653–1683, https://doi.org/10.5194/nhess-19-1653-2019, 2019b.
Giacona, F., Eckert, N., Corona, C., Mainieri, R., Morin, S., Stoffel, M., Martin, B., and Naaim, M.: Upslope migration of snow avalanches in a warming climate, Proceedings of the National Academy of Sciences, 118, e2107306118, https://doi.org/10.1073/pnas.2107306118, 2021.
Giacona, F., Eckert, N., and Martin, B.: Comment interpréter une chronologie événementielle en géohistoire ? L'exemple de deux siècles et demi d'avalanches dans le Massif vosgien, Cybergeo: European Journal of Geography, https://doi.org/10.4000/cybergeo.39644, 2022.
Graham, T.: Natural Hazards: Explanation and Integration, Guilford Press, 388 pp., ISBN 9781462529186, 1997.
Granet-Abisset, A.-M.: Une mémoire transfrontalière, Hommes and migrations, Revue française de référence sur les dynamiques migratoires, 126–130, https://doi.org/10.4000/hommesmigrations.3578, 2016.
Han, A.: La Vallouise par un de ses fils, Imprimerie Louis-Jean, Gap, 272 pp., https://www.sudoc.abes.fr/cbs/DB=2.1//SRCH?IKT=12&TRM=011725435 (last access: December 2025), 1977.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer H.: High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–202, https://doi.org/10.1017/9781009157964.004, 2019.
Huggel, C., Muccione, V., Carey, M., James, R., Jurt, C., and Mechler, R.: Loss and Damage in the mountain cryosphere, Reg. Environ. Change, 19, 1387–1399, https://doi.org/10.1007/s10113-018-1385-8, 2019.
INSEE: Dossier complet – Commune de Vallouise-Pelvoux (05101), https://www.insee.fr/fr/statistiques/2011101?geo=COM-05101#consultersommaire (last access: July 204), 2021.
Jacquemart, M., Weber, S., Chiarle, M., Chmiel, M., Cicoira, A., Corona, C., Eckert, N., Gaume, J., Giacona, F., Hirschberg, J., Kaitna, R., Magnin, F., Mayer, S., Moos, C., van Herwijnen, A., and Stoffel, M.: Detecting the impact of climate change on alpine mass movements in observational records from the European Alps, Earth-Science Reviews, 104886, https://doi.org/10.1016/j.earscirev.2024.104886, 2024.
Jomelli, V., Pavlova, I., Giacona, F., Zgheib, T., and Eckert, N.: Respective influence of geomorphologic and climate conditions on debris-flow occurrence in the Northern French Alps, Landslides, 16, 1871–1883, https://doi.org/10.1007/s10346-019-01195-7, 2019.
Lardeux, P., Glasser, N., Holt, T., and Hubbard, B.: Glaciological and geomorphological map of Glacier Noir and Glacier Blanc, French Alps, Journal of Maps, 12, 582–596, https://doi.org/10.1080/17445647.2015.1054905, 2016.
Laslaz, L.: Terre d'élevage ou “nature préservée” en zone centrale des parcs nationaux français des Alpes du Sud ?, mediterranee, 53–66, https://doi.org/10.4000/mediterranee.462, 2006.
Laternser, M. and Schneebeli, M.: Temporal Trend and Spatial Distribution of Avalanche Activity during the Last 50 Years in Switzerland, Natural Hazards, 27, 201–230, https://doi.org/10.1023/A:1020327312719, 2002.
Lavigne, A., Eckert, N., Bel, L., and Parent, E.: Adding Expert Contributions to the Spatiotemporal Modelling of Avalanche Activity Under Different Climatic Influences, Journal of the Royal Statistical Society Series C: Applied Statistics, 64, 651–671, https://doi.org/10.1111/rssc.12095, 2015.
Lavorel, S., Anquetin, S., and Buclet, N.: Trajectories of socio-ecological change in mountains, Reg. Environ. Change, 23, 73, https://doi.org/10.1007/s10113-023-02063-w, 2023.
Le Roux, E., Evin, G., Eckert, N., Blanchet, J., and Morin, S.: Elevation-dependent trends in extreme snowfall in the French Alps from 1959 to 2019, The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, 2021.
Maanan, M., Athimon, E., and Pouzet, P.: Submersions marines sur le littoral atlantique français : 700 ans d'archives sociétales et environnementales pour une meilleure connaissance et gestion du risque, Bulletin de l'association de géographes français. Géographies, 98, 366–384, https://doi.org/10.4000/bagf.8226, 2022.
Mainieri, R., Corona, C., Chartoire, J., Eckert, N., Lopez-Saez, J., Stoffel, M., and Bourrier, F.: Dating of rockfall damage in trees yields insights into meteorological triggers of process activity in the French Alps, Earth Surface Processes and Landforms, 45, 2235–2250, https://doi.org/10.1002/esp.4876, 2020.
Mainieri, R., Eckert, N., Corona, C., Lopez-Saez, J., Stoffel, M., and Bourrier, F.: Limited impacts of global warming on rockfall activity at low elevations: Insights from two calcareous cliffs from the French Prealps, Progress in Physical Geography: Earth and Environment, 47, 50–73, https://doi.org/10.1177/03091333221107624, 2023.
Martin, B.: Les aléas naturels à Vars (Hautes-Alpes, France) : le rôle des facteurs naturels et des facteurs anthropiques dans leur occurence et leur évolution de 1800 à nos jours, These de doctorat, Université Louis Pasteur (Strasbourg) (1971–2008), 1996.
Martin, B., Holleville, N., Furst, B., Giacona, F., Glaser, R., Himmelsbach, I., and Schönbein, J.: La géohistoire des inondations au service de l'évaluation critique du zonage du Plan de Prévention des Risques d'Inondation : l'exemple de Thann (Haut-Rhin, France), Belgeo. Revue belge de géographie, https://doi.org/10.4000/belgeo.15926, 2015.
Météo France: Fiche Climatologique – Statistiques 1991–2020 et records, Vallouise-Pelvoux, https://donneespubliques.meteofrance.fr/ (last access: December 2024), 2024.
Mougin, P.: La restauration des Alpes, edited by: Imprimerie Nationale, Paris, France, Direction des eaux et du génie rural, Imprimerie Nationale, Paris, France, 584, xlviii pp., 1931.
Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., and Adler, C.: Climate Changes and Their Elevational Patterns in the Mountains of the World, Reviews of Geophysics, 60, e2020RG000730, https://doi.org/10.1029/2020RG000730, 2022.
Pescaroli, G. and Alexander, D.: Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework, Risk Analysis, 38, 2245–2257, https://doi.org/10.1111/risa.13128, 2018.
Pigeon, P.: Les Plans de Prévention des Risques (PPR) : essai d'interprétation géographique, Géocarrefour, 82, 27–34, https://doi.org/10.4000/geocarrefour.1426, 2007.
Pouzet, P., Athimon, E., and Maanan, M.: Géohistoire des tempêtes et submersions marines depuis 1000 ans : quelles interprétations climatiques dans l'ouest de la France ?, Bulletin de l'association de géographes français. Géographies, 98, 348–365, https://doi.org/10.4000/bagf.8168, 2022.
Prost, M.: Les ecclésiastiques et leurs familles. Étude des structures sociales et des pratiques migratoires en Haut-Dauphiné du XVe au XIXe siècle, Annales de démographie historique, 1, 197–214, 2004.
Prost, M.: Chaumont et Vallouise en Briançonnais à la fin du XVIIe siècle d'après les procès-verbaux de l'ultime révisions des feux de la Province du Dauphiné, Provence Généalogie, 24–32, https://shs.hal.science/halshs-00616966v1 (last access: October 2024), 2005.
Recking, A., Richard, D., and Degoutte, G.: Torrents et rivières de montagne: Dynamique et aménagement, Editions Quae, 338 pp., ISBN 978-2-8244-1228-7, 2013.
Reisinger, A., Howden, M., Vera, C., Garschagen, M., Hurlbert, M., Kreibiehl, S., Mach, K. J., Mintenbeck, K., O'Neill, B., and Pathak, M.: The concept of risk in the IPCC Sixth Assessment Report: A summary of cross-working group discussions, Intergovernmental Panel on Climate Change, 15, 130, 2020.
Sánchez-García, C. and Schulte, L.: Historical floods in the southeastern Iberian Peninsula since the 16th century: Trends and regional analysis of extreme flood events, Global and Planetary Change, 231, 104317, https://doi.org/10.1016/j.gloplacha.2023.104317, 2023.
Sarrazin, J. L. and Athimon, E.: Étudier les plus anciennes tempêtes à submersion identifiées sur la côte atlantique française (XIVe-XVIe siècles) : l’approche historique, Norois, 251, 27–42, https://doi.org/10.4000/norois.9138, 2019.
Schläppy, R., Jomelli, V., Grancher, D., Stoffel, M., Corona, C., Brunstein, D., Eckert, N., and Deschatres, M.: A New Tree-Ring-Based, Semi-Quantitative Approach for the Determination of Snow Avalanche Events: use of Classification Trees for Validation, Arctic, Antarctic, and Alpine Research, 45, 383–395, https://doi.org/10.1657/1938-4246-45.3.383, 2013.
Séranon, J. S.: La Vallouise : une vallée des Alpes pendant la Révolution, description, histoire, Imprimerie J. Nico, rue du Louvre, Aix, 176 pp., 1871.
Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., Lawrence, J., Lempert, R. J., Muccione, B., Mackey, B., New, M. G., O’Neill, B., Otto, F., Pörtner, A., Reisinger, A., Roberts, D., Schmidt, D.N., Seneviratne, S., Strongin, S., Van Aalst, M., Totin, E., and Trisos, C. H.: A framework for complex climate change risk assessment, One Earth, 4, 489–501, 2021.
Stoffel, M. and Bollschweiler, M.: Tree-ring analysis in natural hazards research – an overview, Nat. Hazards Earth Syst. Sci., 8, 187–202, https://doi.org/10.5194/nhess-8-187-2008, 2008.
Stoffel, M., Lièvre, I., Conus, D., Grichting, M. A., Raetzo, H., Gärtner, H. W., and Monbaron, M.: 400 Years of Debris-Flow Activity and Triggering Weather Conditions: Ritigraben, Valais, Switzerland, Arctic, Antarctic, and Alpine Research, 37, 387–395, https://doi.org/10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2, 2005.
Surell, A.: Etude sur les torrents des Hautes Alpes, Paris, France, Carilian-Goeury et V. Dalmont éditeurs, 280 pp., 1841.
Termier, P.: Les montagnes entre Briançon et Vallouise : (écailles briançonnaises, terrains cristallins de l’Eychauda, massif de Pierre-Eyrautz, etc.), https://insu.hal.science/insu-00848081v1 (last access: September 2024), 1903.
Thénoz, M.: La pratique touristique estivale et son impact dans un espace protégé : le cas de la Vallouise dans le parc national des Ecrins, Géocarrefour, 56, 275–302, https://doi.org/10.3406/geoca.1981.3952, 1981.
United Nations Office for Disaster Risk Reduction (UNDRR): The Sendai Framework Terminology on Disaster Risk Reduction. “Hazard”, https://www.undrr.org/terminology/hazard (last access: 28 June 2025), 2018.
Verfaillie, D., Lafaysse, M., Déqué, M., Eckert, N., Lejeune, Y., and Morin, S.: Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps, The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, 2018.
Veyret, P.: Trois glaciers du Pelvoux en 1951, Revue de Géographie Alpine, 40, 197–199, https://doi.org/10.3406/rga.1952.1973, 1952.
Vincent, C., Garambois, S., Thibert, E., Lefèbvre, E., Meur, E. L., and Six, D.: Origin of the outburst flood from Glacier de Tête Rousse in 1892 (Mont Blanc area, France), Journal of Glaciology, 56, 688–698, https://doi.org/10.3189/002214310793146188, 2010.
Wilhelm, B., Ballesteros Cánovas, J. A., Macdonald, N., Toonen, W. H. J., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., St. George, S., Stoffel, M., and Wetter, O.: Interpreting historical, botanical, and geological evidence to aid preparations for future floods, WIREs Water, 6, e1318, https://doi.org/10.1002/wat2.1318, 2019.
Wilhelm, B., Rapuc, W., Amann, B., Anselmetti, F. S., Arnaud, F., Blanchet, J., Brauer, A., Czymzik, M., Giguet-Covex, C., Gilli, A., Glur, L., Grosjean, M., Irmler, R., Nicolle, M., Sabatier, P., Swierczynski, T., and Wirth, S. B.: Impact of warmer climate periods on flood hazard in the European Alps, Nat. Geosci., 15, 118–123, https://doi.org/10.1038/s41561-021-00878-y, 2022.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zgheib, T., Giacona, F., Granet-Abisset, A.-M., Morin, S., and Eckert, N.: One and a half century of avalanche risk to settlements in the upper Maurienne valley inferred from land cover and socio-environmental changes, Global Environmental Change, 65, 102149, https://doi.org/10.1016/j.gloenvcha.2020.102149, 2020.
Zgheib, T., Giacona, F., Granet-Abisset, A.-M., Morin, S., Lavigne, A., and Eckert, N.: Spatio-temporal variability of avalanche risk in the French Alps, Reg. Environ. Change, 22, 8, https://doi.org/10.1007/s10113-021-01838-3, 2022.
Zhong, Y., Ballesteros–Cánovas, J. A., Favillier, A., Corona, C., Zenhäusern, G., Manchado, A. M. T., Guillet, S., Giacona, F., Eckert, N., Qie, J., Tscherrig, G., and Stoffel, M.: Historical flood reconstruction in a torrential alpine catchment and its implication for flood hazard assessments, Journal of Hydrology, 629, 130547, https://doi.org/10.1016/j.jhydrol.2023.130547, 2024.
Zscheischler, J., Westra, S., Van Den Hurk, B. J., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nature Climate Change, 8, 469–477, 2018.
Executive editor
The paper develops an innovative methodology for creating a comprehensive multirisk database spanning more than four centuries, which is exceptionally rare in natural hazard studies. Its temporal depth and detailed documentation of impacts provide valuable insights into the long-term dynamics of hazards and their interactions with society. By covering multiple hazard types and cascading events, the study offers broadly transferable methods and findings that will be of interest well beyond the case study area.
The paper develops an innovative methodology for creating a comprehensive multirisk database...
Short summary
This paper proposes a methodology to develop a long-range multirisk database. Combining scattered pre-existing records and intensive research in historical archives provides a 1600–2020 record of past events in a valley of the French Alps. It goes far beyond any inventory existing in terms of number of events, temporal coverage and detailed description of events characteristics in a mountain context. Spatio-temporal patterns are analysed, opening perspective for multirisk assessment.
This paper proposes a methodology to develop a long-range multirisk database. Combining...
Altmetrics
Final-revised paper
Preprint