Articles | Volume 25, issue 12
https://doi.org/10.5194/nhess-25-4815-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4815-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying cascading impacts through road network analysis in an insular volcanic setting: the 2021 Tajogaite eruption of La Palma Island (Spain)
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Sébastien Biass
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Corine Frischknecht
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Alana Weir
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
María-Paz Reyes-Hardy
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Luigia Sara Di Maio
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Nemesio Pérez
Instituto Volcanológico de Canarias (INVOLCAN), San Cristóbal de La Laguna, 38320, Spain
Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, 38600, Spain
Costanza Bonadonna
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Related authors
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Simon Thivet, Gholamhossein Bagheri, Przemyslaw M. Kornatowski, Allan Fries, Jonathan Lemus, Riccardo Simionato, Carolina Díaz-Vecino, Eduardo Rossi, Taishi Yamada, Simona Scollo, and Costanza Bonadonna
Atmos. Meas. Tech., 18, 2803–2824, https://doi.org/10.5194/amt-18-2803-2025, https://doi.org/10.5194/amt-18-2803-2025, 2025
Short summary
Short summary
This work presents an innovative way of sampling and analyzing volcanic clouds using an unoccupied aircraft system (UAS). The UAS can reach hazardous environments to sample volcanic particles and measure in situ key parameters, such as the atmospheric concentration of volcanic aerosols and gases. Acquired data bridge the gap between the existing approaches of ground sampling and remote sensing, thereby contributing to the understanding of volcanic cloud dispersion and impact.
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025, https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
Nicola J. McDonald, Leslie Dowling, Emily P. Harvey, Alana M. Weir, Mark S. Bebbington, Nam Bui, Christina Magill, Heather M. Craig, Garry W. McDonald, Juan J. Monge, Shane J. Cronin, Thomas M. Wilson, and Duncan Walker
Nat. Hazards Earth Syst. Sci., 25, 1543–1571, https://doi.org/10.5194/nhess-25-1543-2025, https://doi.org/10.5194/nhess-25-1543-2025, 2025
Short summary
Short summary
In this paper, we develop a model to quantify the future economic impacts of volcanic events for dairy farms in Taranaki, Aotearoa / New Zealand. We use the model to simulate 10 000 possible volcanic futures and collate results into risk-type metrics. The results highlight the variation in risk exposure across farms and show that volcanic risk should play an important role in shaping the future of Taranaki’s dairy sector. This model could be applied to other hazard and agricultural land use contexts.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
John Ericksen, Tobias P. Fischer, G. Matthew Fricke, Scott Nowicki, Nemesio M. Pérez, Pedro Hernández Pérez, Eleazar Padrón González, and Melanie E. Moses
Atmos. Meas. Tech., 17, 4725–4736, https://doi.org/10.5194/amt-17-4725-2024, https://doi.org/10.5194/amt-17-4725-2024, 2024
Short summary
Short summary
Volcanic eruptions emit significant quantities of carbon dioxide (CO2) to the atmosphere. We present a new method for directly determining the CO2 emission from a volcanic eruption on the island of La Palma, Spain, using an unpiloted aerial vehicle (UAV). We also collected samples of the emitted CO2 and analyzed their isotopic composition. Together with the emission rate the isotopic data provide valuable information on the state of volcanic activity and the potential evolution of the eruption.
Noa Ligot, Patrick Bogaert, Sébastien Biass, Guillaume Lobet, and Pierre Delmelle
Nat. Hazards Earth Syst. Sci., 23, 1355–1369, https://doi.org/10.5194/nhess-23-1355-2023, https://doi.org/10.5194/nhess-23-1355-2023, 2023
Short summary
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Frances Beckett, Eduardo Rossi, Benjamin Devenish, Claire Witham, and Costanza Bonadonna
Atmos. Chem. Phys., 22, 3409–3431, https://doi.org/10.5194/acp-22-3409-2022, https://doi.org/10.5194/acp-22-3409-2022, 2022
Short summary
Short summary
As volcanic ash is transported through the atmosphere, it may collide and stick together to form aggregates. Neglecting the process of aggregation in atmospheric dispersion models could lead to inaccurate forecasts used by civil aviation for hazard assessment. We developed an aggregation scheme for use with the model NAME, which is used by the London Volcanic Ash Advisory Centre. Using our scheme, we investigate the impact of aggregation on simulations of the 2010 Eyjafjallajökull ash cloud.
Eduardo Rossi and Costanza Bonadonna
Geosci. Model Dev., 14, 4379–4400, https://doi.org/10.5194/gmd-14-4379-2021, https://doi.org/10.5194/gmd-14-4379-2021, 2021
Short summary
Short summary
SCARLET-1.0 is a MATLAB package that creates virtual aggregates starting from a population of irregular shapes. Shapes are described in terms of the Standard Triangulation Language (STL) format, and this allows importing a great variety of shapes, such as from 3D scanning. The package produces a new STL file as an output and different analytical information about the packing, such as the porosity. It has been specifically designed for use in volcanology and scientific education.
Cited articles
Alenazi, M. J. F.: ENRN: A System for Evaluating Network Resilience against Natural Disasters, Mathematics, 11, https://doi.org/10.3390/math11204250, 2023
Barthélemy, M.: Spatial networks, Phys. Rep., 499, 1–101, https://doi.org/10.1016/j.physrep.2010.11.002, 2011.
Bhatia, U., Kumar, D., Kodra, E., and Ganguly, A. R.: Network science based quantification of resilience demonstrated on the indian railways network, PLoS One, 10, 1–17, https://doi.org/10.1371/journal.pone.0141890, 2015.
Biass, S., Reyes-Hardy, M. P., Gregg, C., Di Maio, L. S., Dominguez, L., Frischknecht, C., Bonadonna, C., and Perez, N.: The spatiotemporal evolution of compound impacts from lava flow and tephra fallout on buildings: lessons from the 2021 Tajogaite eruption (La Palma, Spain), Bull. Volcanol., 86, 1–24, https://doi.org/10.1007/s00445-023-01700-w, 2024.
Blake, D. M.: Impacts of volcanic ash on surface transportation networks: considerations for Auckland City, New Zealand, https://doi.org/10.26021/7058, 2016.
Blake, D. M., Deligne, N. I., Wilson, T. M. D., and Wilson, G.: Improving volcanic ash fragility functions through laboratory studies: example of surface transportation networks, J. Appl. Volcanol., 6, https://doi.org/10.1186/s13617-017-0066-5, 2017a.
Blake, D. M., Wilson, T. M., Cole, J. W., Deligne, N. I., and Lindsay, J. M.: Impact of volcanic ash on road and airfield surface skid resistance, Sustain., 9, https://doi.org/10.3390/su9081389, 2017b.
Blake, D. M., Wilson, T. M., and Stewart, C.: Visibility in airborne volcanic ash: considerations for surface transportation using a laboratory-based method, Nat. Hazards, 92, 381–413, https://doi.org/10.1007/s11069-018-3205-3, 2018.
Boeing, G.: OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks, Comput. Environ. Urban Syst., 65, 126–139, https://doi.org/10.1016/j.compenvurbsys.2017.05.004, 2017.
Boeing, G.: Measuring the complexity of urban form and design, Urban Des. Int., 23, 281–292, https://doi.org/10.1057/s41289-018-0072-1, 2018.
Bonadonna, C., Biass, S., Calder, E., Frischknecht, C., Gregg, C., Jenkins, S., Loughlin, S., Menoni, S., Takarada, S., and Wilson, T.: 1st IAVCEI-GVM Workshop From Volcanic Hazard to Risk Assessment, IAVCEI-GVM, Geneva, https://theghub.org/resources/4498 (last access: 2 December 2025), 2018.
Bonadonna, C., Pistolesi, M., Biass, S., Voloschina, M., Romero, J., Coppola, D., Folch, A., D'Auria, L., Martin-Lorenzo, A., Dominguez, L., Pastore, C., Reyes Hardy, M. P., and Rodríguez, F.: Physical Characterization of Long-Lasting Hybrid Eruptions: The 2021 Tajogaite Eruption of Cumbre Vieja (La Palma, Canary Islands), J. Geophys. Res. Solid Earth, 127, https://doi.org/10.1029/2022JB025302, 2022.
Bonadonna, C., Pistolesi, M., Dominguez, L., Freret-Lorgeril, V., Rossi, E., Fries, A., Biass, S., Voloschina, M., Lemus, J., Romero, J. E., Zanon, V., Pastore, C., Reyes Hardy, M. P., Di Maio, L. S., Gabellini, P., Martin-Lorenzo, A., Rodriguez, F., and Perez, N. M.: Tephra sedimentation and grainsize associated with pulsatory activity: the 2021 Tajogaite eruption of Cumbre Vieja (La Palma, Canary Islands, Spain), Front. Earth Sci., 11, 1–24, https://doi.org/10.3389/feart.2023.1166073, 2023.
Brooks, J. O., Crisler, M. C., Klein, N., Goodenough, R., Beeco, R. W., Guirl, C., Tyler, P. J., Hilpert, A., Miller, Y., Grygier, J., Burroughs, B., Martin, A., Ray, R., Palmer, C., and Beck, C.: Speed choice and driving performance in simulated foggy conditions, Accid. Anal. Prev., 43, 698–705, https://doi.org/10.1016/j.aap.2010.10.014, 2011.
Brusini Dominguez, C.: Análisis de la organización de la emergencia volcánica de La Palma de 2021, Universidad de Las Palmas de Gran Canaria, 424 pp., https://accedacris.ulpgc.es/jspui/handle/10553/116988, 2022.
Cabrera García, A. J.: Ecomaterials for reconstruction and recovery or road infrastructure in volcanic environments, Transp. Res. Procedia, 71, 101–108, https://doi.org/10.1016/j.trpro.2023.11.063, 2023.
Carracedo, J. C. and Troll, V. R.: The Geology of the Canary Islands, Elsevier, 621 pp., ISBN 9780128096635, 2016.
Carracedo, J. C., Troll, V. R., Day, J. M. D., Geiger, H., Aulinas, M., Soler, V., Deegan, F. M., Perez-Torrado, F. J., Gisbert, G., Gazel, E., Rodriguez-Gonzalez, A., and Albert, H.: The 2021 eruption of the Cumbre Vieja volcanic ridge on La Palma, Canary Islands, Geol. Today, 38, 94–107, https://doi.org/10.1111/gto.12388, 2022.
Castanho, R. A., Lousada, S., Naranjo Gómez, J. M., Escórcio, P., Cabezas, J., Fernández-Pozo, L., and Loures, L.: Dynamics of the Land Use Changes and the Associated Barriers and Opportunities for Sustainable Development on Peripheral and Insular Territories: The Madeira Island (Portugal), in: Land Use – Assessing the Past, Envisioning the Future, https://doi.org/10.5772/intechopen.80827, 2019.
Castanho, R. A., Behradfar, A., Vulevic, A., and Gómez, J. M. N.: Analyzing Transportation Sustainability in the Canary Islands Archipelago, Infrastructures, 5, 1–14, https://doi.org/10.3390/infrastructures5070058, 2020.
Civico, R., Ricci, T., Scarlato, P., Taddeucci, J., Andronico, D., Del Bello, E., D'Auria, L., Hernández, P. A., and Pérez, N. M.: High-resolution Digital Surface Model of the 2021 eruption deposit of Cumbre Vieja volcano, La Palma, Spain, Sci. Data, 9, 1–7, https://doi.org/10.1038/s41597-022-01551-8, 2022.
Comisión Mixta para la Reconstrucción, Recuperación y Apoyo a la Isla de La Palma: Informe sobre las actuaciones y medidas emprendidas tras la erupción del volcán de Cumbre Vieja (La Palma), seis meses después del inicio de la emergencia, https://www.mpr.gob.es/prencom/notas/Documents/2022/060622-informe_palma.pdf (last access: 25 November 2025) 2022.
Cottrell, E.: Global Distribution of Active Volcanoes, in: Volcanic Hazards, Risks and Disasters, Elsevier, 1–16, https://doi.org/10.1016/B978-0-12-396453-3.00001-0, 2015.
Cutter, S. L.: Compound, cascading, or complex disasters: What's in a name?, Environment, 60, 16–25, https://doi.org/10.1080/00139157.2018.1517518, 2018.
D'Auria, L., Koulakov, I., Prudencio, J., Cabrera-Pérez, I., Ibáñez, J. M., Barrancos, J., García-Hernández, R., Martínez van Dorth, D., Padilla, G. D., Przeor, M., Ortega, V., Hernández, P., and Peréz, N. M.: Rapid magma ascent beneath La Palma revealed by seismic tomography, Sci. Rep., 12, 1–13, https://doi.org/10.1038/s41598-022-21818-9, 2022.
Dekker, A. H. and Colbert, B. D.: Network Robustness and Graph Topology, Canberra, 359–368, https://api.semanticscholar.org/CorpusID:5075579 (last access: 28 NOvember 2025), 2004.
Dominguez, L., Bonadonna, C., Frischknecht, C., Menoni, S., and Garcia, A.: Integrative Post-event Impact Assessment Framework for Volcanic Eruptions: A Disaster Forensic Investigation of the 2011–2012 Eruption of the Cordón Caulle Volcano (Chile), Front. Earth Sci., 9, 2012–2019, https://doi.org/10.3389/feart.2021.645945, 2021.
Dominguez, L., Biass, S., Frischknecht, C., Weir, A., Reyes-Hardy, M. P., Di Maio, L. S., Pérez, N., and Bonadonna, C.: Supplementary dataset for Quantifying cascading impacts through road network analysis in an insular volcanic setting: the 2021 Tajogaite eruption of La Palma Island (Spain), Zenodo [data set], https://doi.org/10.5281/zenodo.17543235, 2025.
Dóniz-Páez, J., Németh, K., Becerra-Ramírez, R., Hernández, W., Gosálvez, R. U., Escobar, E., and González, E.: Tajogaite 2021 Eruption (La Palma, Canary Islands, Spain): An Exceptional Volcanic Heritage to Develop Geotourism, 26, https://doi.org/10.3390/iecg2022-13748, 2023.
Ecoavant: Tajogaite, el nuevo nombre del volcán de La Palma, Ecoavant la Actual. del medio Ambient., 4th July, 2022.
El Time News: Los primeros coches conquistan la vía entre la Laguna y Las Norias, https://eltime.es/isla-bonita/39877-los-primeros-coches-conquistan-la-via-entre-la-laguna-y-las-norias.html (last access: 15 December 2024), 31 May 2022.
Ferreira, A. M., Marchezini, V., Mendes, T. S. G., Trejo-Rangel, M. A., and Iwama, A. Y.: A Systematic Review of Forensic Approaches to Disasters: Gaps and Challenges, Int. J. Disaster Risk Sci., 14, 722–735, https://doi.org/10.1007/s13753-023-00515-9, 2023.
Freire, S., Florczyk, A. J., Pesaresi, M., and Sliuzas, R.: An improved global analysis of population distribution in proximity to active volcanoes, 1975–2015, ISPRS Int. J. Geo-Information, 8, https://doi.org/10.3390/ijgi8080341, 2019.
GAR: Global Assessment Report on Disaster RIsk Reduction Forensic Insights for Future Resilience, Learning from Past Disasters, United Nations Office for Disaster Risk Reduction, Geneva, 106 pp., 2024.
Garcia-Aristizabal, A., Capuano, P., Russo, R., and Gasparini, P.: Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment, Energy Procedia, 125, 116–125, https://doi.org/10.1016/j.egypro.2017.08.087, 2017.
Garcia-Aristizabal, A., Kocot, J., Russo, R., and Gasparini, P.: A probabilistic tool for multi-hazard risk analysis using a bow-tie approach: application to environmental risk assessments for geo-resource development projects, Acta Geophys., 67, 385–410, https://doi.org/10.1007/s11600-018-0201-7, 2019.
Gómez, J. M. N., Lousada, S., Velarde, J. G., Castanho, R. A., and Loures, L.: Land-use changes in the canary archipelago using the CORINE data: A retrospective analysis, Land, 9, 1–15, https://doi.org/10.3390/land9070232, 2020.
Hagberg, A. A., Schult, D. A., and Swart, P. J.: Exploring Network Structure, Dynamics, and Function using NetworkX, in: Proceedings of the 7th Python in Science Conference, 11–15, https://doi.org/10.25080/TCWV9851, 2008.
Hayes, J. L., Biass, S., Jenkins, S. F., Meredith, E. S., and Williams, G. T.: Integrating criticality concepts into road network disruption assessments for volcanic eruptions, J. Appl. Volcanol., 11, 1–21, https://doi.org/10.1186/s13617-022-00118-x, 2022.
Hossain, E., Roy, S., Mohammad, N., Nawar, N., and Dipta, D. R.: Metrics and enhancement strategies for grid resilience and reliability during natural disasters, Appl. Energy, 290, https://doi.org/10.1016/j.apenergy.2021.116709, 2021.
IAEA: Root Cause Analysis Following an Event at a Nuclear Installation: Reference Manual, Vienna, ISBN 978-92-0-110014-6, 2015.
IGME: Instituto Geológico y Minero de España, Erupción Cumbre Vieja La Palma (19-sept 2021), Coladas, YouTube channel https://www.youtube.com/watch?v=_8DjDa3SmpA&t=60s (last access: 15 December 2024), 2021a.
IGME: Instituto Geológico y Minero de España, Recopilatorio diario visual del volcán de la erupción de Cumbre Vieja, La Palma, YouTube channel https://www.youtube.com/watch?v=TlAH0NqhFMY (last access: 15 December 2024), 2021b.
Instituto Nacional de Estadística (INE): Cifras oficiales de población resultantes de la revisión del Padrón municipal a 1 de enero, https://www.ine.es/jaxiT3/Datos.htm?t=2921#_tabs-tabla (last access: 25 November 2025), 2021.
Jenkins, S. F., Wilson, T. M., Magill, C., Miller, V., Stewart, C., Blong, R., Marzocchi, W., Boulton, M., Bonadonna, C., and Costa, A.: Volcanic ash fall hazard and risk, in: Global Volcanic Hazards and Risk, edited by: Loughlin, S., Sparks, R. S. J., Brown, S., Jenkins, S., and Vye-Brown, C., Cambridge, 1–410, https://doi.org/10.1017/CBO9781316276273, 2015.
Jenkins, S. F., Day, S. J., Faria, B. V. E., and Fonseca, J. F. B. D.: Damage from lava flows: insights from the 2014–2015 eruption of Fogo, Cape Verde, J. Appl. Volcanol., 6, https://doi.org/10.1186/s13617-017-0057-6, 2017.
Kandaperumal, G. and Srivastava, A. K.: Resilience of the electric distribution systems: Concepts, classification, assessment, challenges, and research needs, IET Smart Grid, 3, 133–143, https://doi.org/10.1049/iet-stg.2019.0176, 2020.
Kehkashan, F., Hussain, S., and Abdullah Akram, B.: An insight into power system resilience and its confounding traits, 2022 Int. Semin. Appl. Technol. Inf. Commun. Technol. 4.0 Smart Ecosyst. A New W. Doing Digit. Business, iSemantic 2022, 226–231, https://doi.org/10.1109/iSemantic55962.2022.9920458, 2022.
Kim, K., Pant, P., Yamashita, E., and Ghimire, J.: Analysis of Transportation Disruptions from Recent Flooding and Volcanic Disasters in Hawai'i, Transp. Res. Rec., 2673, 194–208, https://doi.org/10.1177/0361198118825460, 2019.
Kirianov, V. Y.: Geography of Volcanic Zones and Distribution of Active Volcanoes, in: Natural and human induced hazards, vol. I, Encyclopedia of Life Support Systems (EOLSS), 2007.
Kuzubaş, T. U., Ömercikoglu, I., and Saltoglu, B.: Network centrality measures and systemic risk: An application to the Turkish financial crisis, Phys. A Stat. Mech. its Appl., 405, 203–215, https://doi.org/10.1016/J.PHYSA.2014.03.006, 2014.
Marrero, J. M., García, A., Berrocoso, M., Llinares, Á., Rodríguez-Losada, A., and Ortiz, R.: Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: The example of la Palma (Canary Islands), J. Appl. Volcanol., 8, https://doi.org/10.1186/s13617-019-0085-5, 2019.
Martí, J., López, C., Bartolini, S., Becerril, L., and Geyer, A.: Stress controls of monogenetic volcanism: A review, Front. Earth Sci., 4, 1–17, https://doi.org/10.3389/feart.2016.00106, 2016.
Martí, J., Becerril, L., and Rodríguez, A.: How long-term hazard assessment may help to anticipate volcanic eruptions: The case of La Palma eruption 2021 (Canary Islands), J. Volcanol. Geotherm. Res., 431, 107669, https://doi.org/10.1016/j.jvolgeores.2022.107669, 2022.
Menoni, S., Bonadonna, C., Fernandez, M. G., and Schwarze, R.: Recording Disaster Losses for improving risk modelling capacities, Sci. Disaster Risk Manag. 2017, Knowing Better Losing Less, ISBN 978-92-79-60679-3, 2017.
Meredith, E. S., Jenkins, S. F., and Hayes, J. L.: Lava flow impacts on the built environment: Insights from a new global dataset, 1–30, https://doi.org/10.1186/s13617-023-00140-7, 2023.
Mossoux, S., Kervyn, M., and Canters, F.: Assessing the impact of road segment obstruction on accessibility of critical services in case of a hazard, Nat. Hazards Earth Syst. Sci., 19, 1251–1263, https://doi.org/10.5194/nhess-19-1251-2019, 2019.
Nemeth, N., Johnson, M. S., Mocatta, G., and Hawley, E.: Communicational responses for compound natural hazards: A systematic review, Int. J. Disaster Risk Reduct., 115, 1–20, https://doi.org/10.1016/j.ijdrr.2024.105041, 2024.
Pescaroli, G. and Alexander, D.: A definition of cascading disasters and cascading effects: Going beyond the “toppling dominos” metaphor, GRF Davos Planet@Risk, 3, 58–67, 2015.
Pitilakis, K., Argyroudis, S., Kakderi, K., and Argyroudi, A.: Systemic Seismic Vulnerability and Risk Analysis for Buildings, Lifeline Networks and Infrastructures Safety Gain (Presentation), JRC Scientific and Policy Reports, 1–164, https://doi.org/10.2788/23242, 2013.
Planeta Canario News: Lanchas de la Armada trasladan ya a los agricultores hasta la playa de Puerto Naos para regar las plataneras aisladas por la lava, https://planetacanario.com/lanchas-de-la-armada-trasladan-ya-a-los-agricultores-hasta-la-playa-de-puerto-naos-para-regar-las-plataneras-aisladas-por-la-lava/, (last access: 28 November 2025), 2021.
Rey, T., Leone, F., Candela, T., Defossez, S., Vinet, F., Parat, F., Gherardi, M., Medina, L., Lavigne, F., Martin, I., and Guillet, Z.: L'éruption du Tajogaite (Cumbre Vieja) à La Palma, Canaries: de l'éruption volcanique à la crise territoriale, EchoGéo, 0–30, https://doi.org/10.4000/echogeo.24450, 2023.
Reyes-Hardy, M.-P., Di Maio, L. S., Dominguez, L., Frischknecht, C., Biass, S., Guimarães, L. F., Nieto-Torres, A., Elissondo, M., Pedreros, G., Aguilar, R., Amigo, Á., García, S., Forte, P., and Bonadonna, C.: Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes, Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, 2024.
Rinaldi, S. M.: Modeling and simulating critical infrastructures and their interdependencies, Proc. Hawaii Int. Conf. Syst. Sci., 37, 873–880, https://doi.org/10.1109/hicss.2004.1265180, 2001.
Rodríguez-Pérez, M. C., Ferrer, M. E. F., Boada, L. D., Pérez, A. D. A., Aguilar, M. C. D., Jerónimo, J. F. F., Talavera, I. G., Gangotena, L. V., de la Torre, A. H., Simbaña-Rivera, K., and de León, A. C.: Health impact of the Tajogaite volcano eruption in La Palma population (ISVOLCAN study): rationale, design, and preliminary results from the first 1002 participants, Environ. Heal. A Glob. Access Sci. Source, 23, 1–13, https://doi.org/10.1186/s12940-024-01056-4, 2024.
Romero, J. E., Burton, M., Cáceres, F., Taddeucci, J., Civico, R., Ricci, T., Pankhurst, M. J., Hernández, P. A., Bonadonna, C., Llewellin, E. W., Pistolesi, M., Polacci, M., Solana, C., D'Auria, L., Arzilli, F., Andronico, D., Rodríguez, F., Asensio-Ramos, M., Martín-Lorenzo, A., Hayer, C., Scarlato, P., and Perez, N. M.: The initial phase of the 2021 Cumbre Vieja ridge eruption (Canary Islands): Products and dynamics controlling edifice growth and collapse, J. Volcanol. Geotherm. Res., 431, https://doi.org/10.1016/j.jvolgeores.2022.107642, 2022.
Rossi, A. G., Blake, D., Timmermann, A., Tonks, I., and Wermers, R.: Network centrality and delegated investment performance, J. financ. econ., 128, 183–206, https://doi.org/10.1016/j.jfineco.2018.02.003, 2018.
Rouhana, F. and Jawad, D.: A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas, ISPRS Int. J. Geo-Information, 14, 1–17, https://doi.org/10.3390/ijgi14070261, 2025.
Scaini, C., Felpeto, A., Martí, J., and Carniel, R.: A GIS-based methodology for the estimation of potential volcanic damage and its application to Tenerife Island, Spain, J. Volcanol. Geotherm. Res., 278–279, 40–58, https://doi.org/10.1016/j.jvolgeores.2014.04.005, 2014.
Taddeucci, J., Scarlato, P., Andronico, D., Ricci, T., Civico, R., Del Bello, E., Spina, L., D'Auria, L., Asensio-Ramos, M., Calvo, D., Padrón, E., Hernández, P. A., and Pérez, N. M.: The Explosive Activity of the 2021 Tajogaite Eruption (La Palma, Canary Islands, Spain), Geochemistry, Geophys. Geosystems, 24, 1–21, https://doi.org/10.1029/2023gc010946, 2023.
Tambe, S., Ballal, A., Tomar, R., Wyborn, C., DeFries, R., Ganguly, S., and Scarlett, L.: Bridging science, policy and practice for sustainability: Towards a conceptual framework, Environ. Sci. Policy, 145, 208–216, https://doi.org/10.1016/j.envsci.2023.04.007, 2023.
Televisión Canaria: Documentary “Después del volcán: las voces”, YouTube channel, https://www.youtube.com/watch?v=5d0den0xgkY (last access: 15 December 2024), 2023.
Troll, V. R., Aulinas, M., Carracedo, J. C., Geiger, H., Soler, V., Deegan, F. M., Bloszies, C., and Weis, F.: The 2021 La Palma eruption; social dilemmas resulting from living close to an active volcano, EarthArXiv [preprint], 2023.
Turvey, R.: Vulnerability assessment of developing countries: The case of small-island developing States, Dev. Policy Rev., 25, 243–264, https://doi.org/10.1111/j.1467-7679.2007.00368.x, 2007.
Wardman, J., Sword-Daniels, V., Stewart, C., and Wilson, T.: Impact assessment of the May 2010 eruption of Pacaya volcano, Guatemala, 90 pp., ISBN 978-0-478-19889-8, 2012.
Weir, A. M., Wilson, T. M., Bebbington, M. S., Beaven, S., Gordon, T., Campbell-Smart, C., Mead, S., Williams, J. H., and Fairclough, R.: Approaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: application to Taranaki Mounga, Springer Netherlands, 9327–9360, https://doi.org/10.1007/s11069-023-06386-z, 2024a.
Weir, A. M., Wilson, T. M., Bebbington, M. S., Campbell-Smart, C., Williams, J. H., and Fairclough, R.: Quantifying systemic vulnerability of interdependent critical infrastructure networks: a case study for volcanic hazards, Int. J. Disaster Risk Reduct., 104165, https://doi.org/10.1016/j.ijdrr.2024.104997, 2024b.
Wild, A. J., Bebbington, M. S., Lindsay, J. M., and Charlton, D. H.: Modelling spatial population exposure and evacuation clearance time for the Auckland Volcanic Field, New Zealand, J. Volcanol. Geotherm. Res., 416, 107282, https://doi.org/10.1016/j.jvolgeores.2021.107282, 2021.
Wilson, G., Wilson, T. M., Deligne, N. I., and Cole, J. W.: Volcanic hazard impacts to critical infrastructure: A review, J. Volcanol. Geotherm. Res., 286, 148–182, https://doi.org/10.1016/j.jvolgeores.2014.08.030, 2014.
Wilson, G., Wilson, T. M., Deligne, N. I., Blake, D. M., and Cole, J. W.: Framework for developing volcanic fragility and vulnerability functions for critical infrastructure, J. Appl. Volcanol., 6, https://doi.org/10.1186/s13617-017-0065-6, 2017.
Wyborn, C., Leith, P., Hutton, J., Ryan, M., Montana, J., and Gallagher, L.: The Science, Policy and Practice interface, 23 pp., 113806, 2017.
Xie, H., Sun, X., Chen, C., Bie, Z., and Catalao, J. P. S.: Resilience Metrics for Integrated Power and Natural Gas Systems, IEEE Trans. Smart Grid, 13, 2483–2486, https://doi.org/10.1109/TSG.2022.3145635, 2022.
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By...
Altmetrics
Final-revised paper
Preprint