Articles | Volume 25, issue 12
https://doi.org/10.5194/nhess-25-4755-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4755-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using network science to evaluate landslide hazards on Big Sur Coast, California, USA
Physics Department, North Carolina State University, Raleigh, NC, USA
North Carolina Institute for Climate Studies, Asheville, NC, USA
Alexander L. Handwerger
Joint Institute for Regional Earth System Science and Engineering, University of California Los Angeles, Los Angeles, CA, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Karen E. Daniels
Physics Department, North Carolina State University, Raleigh, NC, USA
Related authors
No articles found.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Jeffrey S. Munroe and Alexander L. Handwerger
Hydrol. Earth Syst. Sci., 27, 543–557, https://doi.org/10.5194/hess-27-543-2023, https://doi.org/10.5194/hess-27-543-2023, 2023
Short summary
Short summary
Rock glaciers are mixtures of ice and rock debris that are common landforms in high-mountain environments. We evaluated the role of rock glaciers as a component of mountain hydrology by collecting water samples during the summer and fall of 2021. Our results indicate that the water draining from rock glaciers late in the melt season is likely derived from old buried ice; they further demonstrate that this water collectively makes up about a quarter of streamflow during the month of September.
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022, https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. Compared to pre-fire conditions, postfire conditions yield dramatic increases in peak water discharge, substantially increasing debris flow susceptibility. Our work highlights the hydrologic model's utility in investigating and potentially forecasting postfire debris flows at regional scales.
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, https://doi.org/10.5194/tc-15-4823-2021, 2021
Short summary
Short summary
We use satellite InSAR to inventory and monitor rock glaciers, frozen bodies of ice and rock debris that are an important water resource in the Uinta Mountains, Utah, USA. Our inventory contains 205 rock glaciers, which occur within a narrow elevation band and deform at 1.94 cm yr-1 on average. Uinta rock glacier movement changes seasonally and appears to be driven by spring snowmelt. The role of rock glaciers as a perennial water resource is threatened by ice loss due to climate change.
Cited articles
Alaska Satellite Facility: HyP3 Insar Product Guide, https://hyp3-docs.asf.alaska.edu/guides/insar_product_guide/, last access: 17 July 2024. a
Barrat, A., Barthélemy, M., and Vespignani, A.: Dynamical Processes on Complex Networks, 1st Edn., Cambridge University Press, https://doi.org/10.1017/CBO9780511791383, 2008. a
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., and Grafton, S. T.: Dynamic reconfiguration of human brain networks during learning, Proceedings of the National Academy of Sciences, 108, 7641–7646, https://doi.org/10.1073/pnas.1018985108, 2011. a, b
Bennett, G. L., Roering, J. J., Mackey, B. H., Handwerger, A. L., Schmidt, D. A., and Guillod, B. P.: Historic drought puts the brakes on earthflows in Northern California, Geophysical Research Letters, 43, 5725–5731, https://doi.org/10.1002/2016GL068378, 2016. a
Berthier, E., Porter, M. A., and Daniels, K. E.: Forecasting failure locations in two-dimensional disordered lattices, Proceedings of the National Academy of Sciences, 116, 16742–16749, https://doi.org/10.1073/pnas.1900272116, 2019. a
Booth, A. M., McCarley, J. C., and Nelson, J.: Multi-year, three-dimensional landslide surface deformation from repeat lidar and response to precipitation: Mill Gulch earthflow, California, Landslides, 17, 1283–1296, https://doi.org/10.1007/s10346-020-01364-z, 2020. a
Cascini, L., Scoppettuolo, M. R., and Babilio, E.: Forecasting the landslide evolution: from theory to practice, Landslides, 19, 2839–2851, https://doi.org/10.1007/s10346-022-01934-3, 2022. a
Copernicus: Copernicus Digital Elevation Model, Copernicus Browser [data set], https://doi.org/10.5270/ESA-c5d3d65, 2021. a, b
Dai, K., Li, Z., Xu, Q., Burgmann, R., Milledge, D. G., Tomas, R., Fan, X., Zhao, C., Liu, X., Peng, J., Zhang, Q., Wang, Z., Qu, T., He, C., Li, D., and Liu, J.: Entering the Era of Earth Observation-Based Landslide Warning Systems: A Novel and Exciting Framework, IEEE Geoscience and Remote Sensing Magazine, 8, 136–153, https://doi.org/10.1109/MGRS.2019.2954395, 2020. a, b
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, International Journal of Climatology, 28, 2031–2064, https://doi.org/10.1002/joc.1688, 2008. a, b
Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A., Yueh, S., Jagdhuber, T., Chen, F., Crow, W., O'Neill, P. E., Walker, J. P., Berg, A., Bosch, D. D., Caldwell, T., Cosh, M. H., Collins, C. H., Lopez-Baeza, E., and Thibeault, M.: The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product, Remote Sensing of Environment, 233, 111380, https://doi.org/10.1016/j.rse.2019.111380, 2019. a
Das, S. and Tordesillas, A.: Near Real-Time Characterization of Spatio-Temporal Precursory Evolution of a Rockslide from Radar Data: Integrating Statistical and Machine Learning with Dynamics of Granular Failure, Remote Sensing, 11, 2777, https://doi.org/10.3390/rs11232777, 2019. a
Desai, V.: vddesai-97/networkLandslide: Publisher, Zenodo [code], https://doi.org/10.5281/zenodo.17643432, 2025. a
Desai, V. D., Handwerger, A. L., and Daniels, K. E.: Data from: Using Network Science to Evaluate Vulnerability of Landslides on Big Sur Coast, California, USA, Dryad [data set], https://doi.org/10.5061/dryad.1jwstqk42, 2024. a, b, c
Drabinski, K. and Bertola, A.: Update25, California Transportation, https://blogbigsur.wordpress.com/2023/03/07/highway-1-at-mill-creek-to-open-by-end-of-march-pauls-slide-still-set-for-long-term-closure/ (last access: 18 July 2024), 2023a. a, b, c, d
Drabinski, K. and Bertola, A.: Update31, California Transportation, https://blogbigsur.wordpress.com/2023/03/16/update-31-assessments-on-highway-1-continue-at-areas-damaged-by-most-recent-storms/ (last access: 18 July 2024), 2023b. a, b, c, d
Drabinski, K. and Bertola, A.: Update37, California Transportation, https://blogbigsur.wordpress.com/2023/03/31/update-37-with-repairs-underway-travel-opportunites-still-abound-on-the-big-sur-coast/ (last access: 18 July 2024), 2023c. a, b, c
Fan, X., Liu, Y., Gan, G., and Wu, G.: SMAP underestimates soil moisture in vegetation-disturbed areas primarily as a result of biased surface temperature data, Remote Sensing of Environment, 247, 111914, https://doi.org/10.1016/j.rse.2020.111914, 2020. a
Fazelpour, F., Desai, V. D., and Daniels, K. E.: Community detection forecasts material failure in a sheared granular material, arXiv [preprint], https://doi.org/10.48550/arXiv.2307.07501, 2023. a
Fletcher, K., European Space Agency, and European Space Research and Technology Centre (Eds.): InSAR principles: guidelines for SAR interferometry processing and interpretation, no. 19 in ESA TM, ESA Publications, ESTEC, Noordwijk, the Netherlands, oCLC: 137242934, ISBN 9789290922339, 2007. a
Glastonbury, J. and Fell, R.: Geotechnical characteristics of large slow, very slow, and extremely slow landslides, Canadian Geotechnical Journal, 45, 984–1005, https://doi.org/10.1139/T08-021, 2008. a
Gochis, D. and Barlage, M.: WRF-Hydro® Modeling System | Research Applications Laboratory, https://ral.ucar.edu/projects/wrf_hydro (last access: 20 July 2023), 2020. a
Handwerger, A. L., Fielding, E. J., Huang, M., Bennett, G. L., Liang, C., and Schulz, W. H.: Widespread Initiation, Reactivation, and Acceleration of Landslides in the Northern California Coast Ranges due to Extreme Rainfall, Journal of Geophysical Research: Earth Surface, 124, 1782–1797, https://doi.org/10.1029/2019JF005035, 2019. a
Handwerger, A. L., Fielding, E. J., Sangha, S. S., and Bekaert, D. P. S.: Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates, Geophysical Research Letters, 49, https://doi.org/10.1029/2022GL099499, 2022. a
Hogenson, K., Kristenson, H., Kennedy, J., Johnston, A., Rine, J., Logan, T., Zhu, J., Williams, F., Herrmann, J., Smale, J., and Meyer, F.: Hybrid Pluggable Processing Pipeline (HyP3): A cloud-native infrastructure for generic processing of SAR data, Zenodo [code], https://doi.org/10.5281/zenodo.4646138, 2020. a, b
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014. a
Jones, E. S., Mirus, B. B., Schmitt, R. G., Baum, R. L., Godt, J. W., Kirschbaum, D. B., Stanley, T. A., and MCCoy, K. E.: Summary Metadata – Landslide Inventories across the United States, USGS Science Data Catalog, https://doi.org/10.5066/P9E2A37P, 2019. a, b
Kirschbaum, D., Kapnick, S. B., Stanley, T., and Pascale, S.: Changes in Extreme Precipitation and Landslides Over High Mountain Asia, Geophysical Research Letters, 47, e2019GL085347, https://doi.org/10.1029/2019GL085347, 2020. a
Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A.: Multilayer networks, Journal of Complex Networks, 2, 203–271, https://doi.org/10.1093/comnet/cnu016, 2014. a, b
Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma, M. J.: On the Nature of Soil Moisture in Land Surface Models, Journal of Climate, 22, 4322–4335, https://doi.org/10.1175/2009JCLI2832.1, 2009. a
Lacroix, P., Handwerger, A. L., and Bièvre, G.: Life and death of slow-moving landslides, Nature Reviews Earth & Environment, 1, 404–419, https://doi.org/10.1038/s43017-020-0072-8, 2020. a
Li, C., Yu, G., Wang, J., and Horton, D. E.: Toward improved regional hydrological model performance using state-of-the-science data-informed soil parameters, Water Resources Research, https://doi.org/10.1029/2023WR034431, 2023. a, b, c
Mei, J., Ma, G., Guo, C., Wu, T., Zhao, J., and Zhou, W.: Deciphering Landslide Precursors From Spatiotemporal Ground Motion Using Persistent Homology, Journal of Geophysical Research: Earth Surface, 130, e2024JF007949, https://doi.org/10.1029/2024JF007949, 2025. a, b, c, d
Nabizadeh, M., Singh, A., and Jamali, S.: Structure and Dynamics of Force Clusters and Networks in Shear Thickening Suspensions, Physical Review Letters, 129, 068001, https://doi.org/10.1103/PhysRevLett.129.068001, 2022. a
Newman, M. E. J.: Networks: an introduction, Oxford University Press, Oxford, New York, ISBN 978-0-19-920665-0, 2010. a
Nguyen, C., Peetz, D., Elbanna, A. E., and Carlson, J. M.: Characterization of fracture in topology-optimized bioinspired networks, Physical Review E, 100, 042402, https://doi.org/10.1103/PhysRevE.100.042402, 2019. a
Palmer, J.: Creeping earth could hold secret to deadly landslides, Nature, 548, 384–386, https://doi.org/10.1038/548384a, 2017. a
Papadopoulos, L., Puckett, J. G., Daniels, K. E., and Bassett, D. S.: Evolution of network architecture in a granular material under compression, Physical Review E, 94, 032908, https://doi.org/10.1103/PhysRevE.94.032908, 2016. a, b, c
Porter, M. A. and Gleeson, J. P.: Dynamical Systems on Networks: A Tutorial, vol. 4 of Frontiers in Applied Dynamical Systems: Reviews and Tutorials, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-26641-1, 2016. a, b, c
Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P. P., Koster, R. D., and De Lannoy, G. J. M.: Assessment of MERRA-2 Land Surface Hydrology Estimates, Journal of Climate, 30, 2937–2960, https://doi.org/10.1175/JCLI-D-16-0720.1, 2017. a
Scheingross, J. S., Minchew, B. M., Mackey, B. H., Simons, M., Lamb, M. P., and Hensley, S.: Fault-zone controls on the spatial distribution of slow-moving landslides, Geological Society of America Bulletin, 125, 473–489, https://doi.org/10.1130/B30719.1, 2013. a
Singh, K. and Tordesillas, A.: Spatiotemporal Evolution of a Landslide: A Transition to Explosive Percolation, Entropy, 22, 67, https://doi.org/10.3390/e22010067, 2020. a, b
Tordesillas, A., Zhou, Z., and Batterham, R.: A data-driven complex systems approach to early prediction of landslides, Mechanics Research Communications, 92, 137–141, https://doi.org/10.1016/j.mechrescom.2018.08.008, 2018. a, b, c
Tordesillas, A., Zheng, H., Qian, G., Bellett, P., and Saunders, P.: Augmented Intelligence Forecasting and What-If-Scenario Analytics With Quantified Uncertainty for Big Real-Time Slope Monitoring Data, IEEE Transactions on Geoscience and Remote Sensing, 62, 1–29, https://doi.org/10.1109/TGRS.2024.3382302, 2024. a, b
Wang, J., Zhu, H., Zhang, W., Tan, D., and Pasuto, A.: Enhancing Landslide Displacement Prediction Using a Spatio-Temporal Deep Learning Model With Interpretable Features, Journal of Geophysical Research: Machine Learning and Computation, 2, e2025JH000592, https://doi.org/10.1029/2025JH000592, 2025. a, b, c, d
Wills, C., Manson, M. W., Brown, K., Davenport, C., and Domrose, C.: Landslides in the Highway 1 Corridor: Geology and Slope Stability along the Big Sur Coast between Point Lobos and San Carpoforo Creek, Monterey and San Luis Obispo Counties, California, Tech. rep., Coast Highway Management Plan, https://www.semanticscholar.org/paper/LANDSLIDES-IN-THE-HIGHWAY-1-CORRIDOR%3A-GEOLOGY-AND-Wills-Manson/e2e86d59abc5aaeb57653fe4bbdd226f9d291149 (last access: 30 July 2023), 2005. a
Young, A. P.: Recent deep-seated coastal landsliding at San Onofre State Beach, California, Geomorphology, 228, 200–212, https://doi.org/10.1016/j.geomorph.2014.08.005, 2015. a
Yunjun, Z., Fattahi, H., and Amelung, F.: Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, Computers & Geosciences, 133, 104331, https://doi.org/10.1016/j.cageo.2019.104331, 2019. a, b, c, d
Zhou, S., Tordesillas, A., Intrieri, E., Di Traglia, F., Qian, G., and Catani, F.: Pinpointing Early Signs of Impending Slope Failures From Space, Journal of Geophysical Research: Solid Earth, 127, https://doi.org/10.1029/2021JB022957, 2022. a, b, c, d
Short summary
Landslide events occur when soil, rock, and debris on slopes become unstable and move downhill, often triggered by heavy rain that reduces friction. Our research evaluates landslide vulnerability using a method that analyzes the spatiotemporal dynamics of landslide-prone areas. We've developed a statistical metric to track changing conditions in these regions. This approach can aid in early warning systems, helping communities and authorities take preventive measures and minimize damage.
Landslide events occur when soil, rock, and debris on slopes become unstable and move downhill,...
Altmetrics
Final-revised paper
Preprint