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Abstract. Landslides, ranging from slips to catastrophic fail-
ures, pose significant challenges for prediction. This study
employs a physically inspired framework to assess land-
slide hazard at a regional scale (Big Sur Coast, Califor-
nia). Our approach integrates techniques from the study
of complex systems with multivariate statistical analysis to
identify areas prone to landslide hazards. We successfully
apply a technique originally developed on the 2017 Mud
Creek landslide and refine our statistical metrics to char-
acterize landslide hazard within a larger geographical area.
Our method is compared against factors such as landslide
location, slope, displacement, precipitation, and InSAR co-
herence using multivariate statistical analysis. Our network
analyses, which incorporates spatiotemporal dynamics, per-
form better as a monitoring technique than traditional meth-
ods. This approach has potential for real-time monitoring and
evaluating landslide hazard across multiple sites.

1 Introduction

With climate change leading to extreme weather conditions,
such as heavy precipitation, there is an increased global dan-
ger of landslide hazards (Kirschbaum et al., 2020). One of
the biggest challenges in real-time landslide hazard assess-
ment is identifying and quantifying the likelihood of land-
slides within a geographical area (Hungr et al., 2014; Palmer,
2017) due to the inherent variability of hillslopes presenting

non-uniform spatiotemporal dynamics (Lacroix et al., 2020;
Glastonbury and Fell, 2008).

On the coast of California, landslides are abundant due to
mechanically weak rocks, active uplift, and high seasonal
precipitation, all of which contribute to general instability
throughout the area. Hundreds of landslides have been iden-
tified as precipitation-induced by exploring the relationship
between rainfall and landslide velocity (Handwerger et al.,
2022; Scheingross et al., 2013; Bennett et al., 2016; Handw-
erger et al., 2019; Young, 2015; Booth et al., 2020; Wills
et al., 2005; Jones et al., 2019; California Department of Con-
servation, 2023). As water infiltrates the ground, the water ta-
ble rises, leading to an increase in pore-water pressure. This
rise in pore-water pressure reduces the effective normal stress
(difference between normal stress and pore-water pressure),
which in turn decreases the frictional strength of the hills-
lope. This instability can lead to rapid mass movement of
material (rock, earth, debris) down the hillslope, defined as
a landslide. Identifying areas that are at immediate risk can
help focus resources on the analysis, prevention, and risk re-
duction of these landslides.

In the winter of 2022–2023 (W22-3), the Big Sur Coast
witnessed acceleration of four deep-seated landslides. Three
of these four landslides – Dani Creek Slide (March 2023),
Mill Creek (January 2023), and Gilbert’s Slide (March 2023)
(Drabinski and Bertola, 2023b) – were recorded by the Cal-
ifornia Geological Survey and the U.S. Geological Survey
(California Department of Conservation, 2023) but were
not catastrophic. The fourth landslide occurred in January
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2023: Paul’s Slide, a deep slow-moving landslide, reactivated
where some material from the surface failed and engulfed
Highway 1 (Drabinski and Bertola, 2023a).

In this study, we apply network science techniques to iden-
tify patterns that evolve over space and time (Kivela et al.,
2014; Mucha et al., 2010; Porter and Gleeson, 2016). A net-
work framework gives us the ability to infer the underlying
dynamics of a creeping hillslope by capturing the relation-
ships and complexities of spatiotemporal interactions even
in the absence of detailed, particle-scale information. Instead,
we use larger-scale information about the spatiotemporal het-
erogeneities as a proxy to provide insights into susceptibil-
ity and rheological dynamics. Network techniques have been
applied across a broad range of physical, biological, and so-
cial contexts (Barrat et al., 2008; Nguyen et al., 2019; New-
man, 2010; Bassett et al., 2011), including the study of gran-
ular and disordered materials (Papadopoulos et al., 2016;
Nabizadeh et al., 2022; Berthier et al., 2019) and landslides
(Tordesillas et al., 2018; Mei et al., 2025; Zhou et al., 2022;
Wang et al., 2025).

The material beneath a hillslope consists of individual
grains; the key lesson learned from the granular studies is
that granular failure has a transitional period between sta-
ble deformation and catastrophic failure, and this is indi-
cated by a distinct dynamical pattern that has been observed
in landslides (Singh and Tordesillas, 2020; Tordesillas et al.,
2018, 2024; Dai et al., 2020). Building on the success of net-
work science in characterizing failure within granular sys-
tems, we previously developed a method to mathematically
describe this type of hillslope through spatiotemporal rela-
tionships (Desai et al., 2023). In our approach, the hillslope
is described as a set of geospatial points (nodes) connected
by lines (edges), where each edge encodes measurable infor-
mation about the relationship between nodes. In the context
of landslides and this study, such information is derived from
remote sensing observations. Network science enables us to
analyze landslide dynamics beyond examination of overall
deformation.

The objective of this paper is to integrate the techniques
developed in (Desai et al., 2023) with statistical analyses to
classify geographical regions as stable or hazard-prone based
on the likelihood of a landslide.

We first tested these network techniques on Mud Creek,
a slow-moving deep-seated landslide on the Big Sur Coast
that experienced acceleration on 20 May 2017. In our ear-
lier study, Desai et al. (2023), we used multilayer networks
(Papadopoulos et al., 2016; Porter and Gleeson, 2016) and
community detection methods (Mucha et al., 2010; Porter
et al., 2009) to retrospectively identify Mud Creek’s location
pre-failure and detect the transition from creeping to catas-
trophic failure.

In this paper, we extend these methods across a broader
section of the Big Sur Coast, shown in Fig. 1a, using veloc-
ity from Interferometric Synthetic Aperture Radar (InSAR)
time series and slope from a Digital Elevation Model (DEM).

We evaluate the effectiveness of the network-based approach
by comparing it to multivariate analysis using physical vari-
ables: topography, ground surface deformation, precipitation,
and InSAR temporal coherence.

2 Data

We used ground surface deformation, topographic character-
istics, and precipitation, which are commonly used in land-
slide hazard maps and forecasting. We also include InSAR
temporal coherence as a variable to measure the reliability of
the InSAR measurement quality after time series inversion.
The following sections discuss these variables.

2.1 Study Area

The Big Sur Coast is divided into 17 sub-regions of similar
size, roughly 5 km2, and shown in Fig. 1a. This allows for
the application of the technique on more varied terrain con-
taining both stable and unstable hillslopes (see discussion in
Sect. 5.1), as well as for testing the method as a prototype of
how this technique might be used in a monitoring context.

2.2 Topography

We used the Copernicus Digital Elevation Model (DEM)
(Copernicus, 2021), downsampled to 40 m× 40 m resolution
(matching to InSAR resolution) (Hogenson et al., 2020) on
a temporal interval of 6 or 12 d (corresponding to Sentinel-1
passes) and is shown in Fig. 1a, to calculate the slope of each
gridded cell within the study area, as depicted in Fig. 1b. We
write the elevation field as h(r), where r = (x,y) represents
the position in UTM coordinates.

2.3 Ground Surface Deformation

We processed the Sentinel-1 InSAR data using the Alaska
Satellite Facility’s (ASF) On-Demand InSAR processing
HyP3 platform (Hogenson et al., 2020). ASF’s On-Demand
InSAR tool constructs interferograms using the GAMMA
software. The InSAR data are inverted to time series using
the Miami InSAR Time-series software in Python (MintPy)
software (Yunjun et al., 2019). We processed data on de-
scending track 42 using two looks in azimuth and ten looks
in range. Spanning from 20 November 2015 to 1 December
2022, the dataset comprises 279 time slices at a resolution
of 40 m× 40 m per grid cell, covering the study area of the
Big Sur Coast. From the Sentinel-1 data, we utilized the dis-
placement time series and a temporal coherence map in our
analysis.

Each InSAR image provides line-of-sight displacement,
indicating motion either towards or away from the satellite.
Cumulative displacement, calculated as the difference be-
tween the last time slice on 1 December 2022 and the first
time slice on 20 November 2015, shows landslide activity
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Figure 1. Regional scale maps of study area. (a) Digital elevation model of the study area. The 4 recorded landslides by USGS and CA
are shown as white dots. The black outlined boxes are the 17 sub-regions we used in this analysis. (b) Topographic slope angle (degrees).
(c) Cumulative displacement from Sentinel-1 InSAR from November 2015 to December 2022. (d) InSAR temporal coherence map. (e) Ac-
cumulated precipitation from PRISM from 1 November 2015 to 30 November 2022.

over the seven years (as shown in Fig. 1c). Additionally, we
computed the mean and maximum cumulative displacement
values of each sub-region for use in multivariate analysis.

To analyze the motion of landslides for use in the network
science techniques, we calculated the velocity for each In-
SAR image t as v(x,y, t)=

1u(x,y)
1t

, where 1u represents
the relative displacement between pairs of adjacent snapshots
and 1t denotes the time interval between any two consecu-
tive snapshots. Due to the noise introduced by taking deriva-
tives of the InSAR displacement data, we apply a 3× 3 cell
Gaussian kernel to smooth the data.

The temporal coherence map (Fig. 1d) measures the relia-
bility of the InSAR displacement time series inversion. Pix-
els with coherence values below 65 % were masked from the
displacement maps. Low coherence values can occur due to
a number of factors, including obscured or significant defor-
mation (Fletcher et al., 2007; Yunjun et al., 2019). The ap-
plied mask excludes approximately 1.7 % of the total area,
with an average exclusion of 4.8 % within each sub-region.

2.4 Precipitation

The Parameter Elevation Regressions on Independent Slopes
Model (PRISM) database provides precipitation data mod-
eled on a 4 km× 4 km grid cell resolution using station data
and climate models (Oregon State Univeristy, 2015). We se-

lected PRISM due to its performance in mountainous and
coastal areas of the western United States and because there
are no station data within the study area (Daly et al., 2008).
The precipitation datasets span from 1 November 2015 to
30 November 2022 with daily maps, and we computed cu-
mulative precipitation by summing over the entire period (as
shown in Fig. 1e), with the mean precipitation calculated for
each sub-region.

2.5 Reported or Identified Landslides

The U.S. Geological Survey (Jones et al., 2019) and the Cali-
fornia Geological Survey (California Department of Conser-
vation, 2023) have reported and identified landslides, compil-
ing these into the Reported California Landslides Database
gathered from various local, state, and federal agencies. Al-
though this database is not exhaustive, the entries encompass
shallow landslides, slow-moving landslide activity, rockfalls,
and debris flows. The four landslides of W22-3, represented
as white points in Fig. 1a, are located from north to south
at Dani Creek Slide, Paul’s Slide, Mill Creek, and Gilbert’s
Slide. Each of these landslides involved seasonally-related
mass downslope movements of hillslope material. To pro-
vide a rough estimate of the surface area of each landslide,
we measured the landslides on Google Earth. Dani Creek
Slide estimated to be 3000 m2, Mill Creek 4000 m2, and
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Gilbert’s Slide 6700 m2. In contrast, Paul’s Slide, a notably
slow-moving landslide that reactivated in January 2023, un-
derwent over a year of repairs, is estimated to be 60 000 m2

(Drabinski and Bertola, 2023a, b, c).

3 Methods

3.1 Network Science

To classify sub-regions as hazard-prone, we used multilayer
networks (Kivela et al., 2014; Porter and Gleeson, 2016;
Papadopoulos et al., 2016; Bassett et al., 2011) to cou-
ple the temporally-resolved kinematics (velocity) with the
spatially-resolved susceptibility (slope) and community de-
tection (Porter et al., 2009; Mucha et al., 2010; Fazelpour
et al., 2023) to cluster regions that are moving at relatively
higher speeds and/or are on steeper slopes. A visual repre-
sentation of this method is shown in Fig. 3 of Desai et al.
(2023). Our methods were developed in Desai et al. (2023),
and are briefly summarized here (code is available at Desai,
2022).

In the multilayer network, each layer corresponds to an In-
SAR image that overlies the network topology; the network
topology consists of a static collection of nodes and edges
for each sub-region. Each node represents a patch of area,
determined using Poisson sampling, and edges connect the
nodes via Delaunay triangulation. Velocity and slope maps
from InSAR and DEM, respectively, are incorporated into
the network as edge weights that change for each layer in the
multilayer network.

In prior work, we calculated the average velocity and slope
of any two connected nodes and set that as the edge weight.
We successfully identified clusters (patches of area) exhibit-
ing similar hillslope movements that are distinct from sur-
rounding areas via a community detection algorithm that uses
modularity optimization (Desai et al., 2023). GenLouvain
(Mucha et al., 2010; Jeub et al., 2011–2019), a modularity
optimization algorithm, divides nodes into communities by
identifying where the edge weights are stronger within the
community than one would expect at random. This algorithm
outputs a matrix consisting of the community ID for each
node and time pair; the community ID is a unique numeric
identifier to for each of the different communities across
the entire spatiotemporal map (multilayer network). Within
this spatiotemporal community map, we identified areas of
persistent communities; these communities are an indicator
of areas that are strongly connected and have higher-than-
average edge weights – velocity and slope – than the rest of
the sub-region.

3.2 Community Persistence

To quantify steady communities, we previously developed
a measure known as community persistence (Desai et al.,
2023). This measures the persistence of the assignment of

nodes to communities over time defined as

5t =
1
N

∑
c

ct−1 ∩ ct

nc,t
, (1)

where N is the total number of nodes in the network, nc,t is
the number of nodes in community c at time t , and ct−1∩ct is
the number of nodes present in community c at both t, t − 1.

An increase in community persistence within a sub-region
indicates that a group of nodes is consistently more strongly
connected to each other (measured via edge weight) than to
the rest of the network, corresponding to localized motion.
Conversely, low persistence occurs when no distinct, consis-
tently clustered motion is observed, such as during dry sea-
sons.

As done in our prior work (Desai et al., 2023), we compare
relative changes in 5 across the 17 sub-regions using the Z-
score at time t

Zt =
5t −5

σ(5)
(2)

where 5 is the mean persistence over the entire time period,
establishing a baseline of the system, and σ(5) is its stan-
dard deviation. When Zt < 0, community persistence is be-
low average, typically indicating dry conditions with little
landslide activity. In the prior analysis of Mud Creek, we ob-
served that surrounding communities exhibited a drop in per-
sistence, while those within the Mud Creek zone increased
in persistence. This led to a statistically significant increase
in Zt , peaking at Z = 2.5, followed by a minor decline prior
to failure. The value at failure remained statistically signifi-
cant. To extend this analysis to the 17 sub-regions, we iden-
tify the final rising segment before the decline and extract
the peak Z value, which is the maximum Z-score in the
identified segment. We use peak Z to quantify differences
between sub-regions to better classify the regions as stable
(peak Z < 2.5) or hazard-prone (peak Z ≥ 2.5).

3.3 Multivariate Correlation

We characterized active landslides using data on precipita-
tion, deformation, topography, and InSAR coherence. These
indicators were used as benchmarks to evaluate the perfor-
mance of the community detection results. Specifically, we
constructed a correlation matrix to assess the relationship
between the peak Z-score and the geophysical indicators.
For each of the 17 sub-regions, we computed the following
seven variables: number of recorded landslides; mean slope;
mean precipitation; mean displacement; maximum displace-
ment; mean InSAR coherence; mean community persistence
5; and peak Z-score. These metrics were used to quantify
and compare the classification of hazard-prone regions with
observed landslides.
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Figure 2. Z-score for community persistence. (a) The Z-score for community persistence Z5t for a multilayer network containing informa-
tion from November 2015 to December 2022. Each color represents a sub-region. The size of the points corresponds to Zt , where the thicker
the point, the higher the Z-score. (b) Time from August 2022 to December 2022 is shown (inset from a), where regions with a continuous
increasing segment are outlined in black. (c) Spatial plot of peak Z-score, with regions colored from blue to red. The landslides that occurred
in W22-3 are initialed in (b) and shown as white dots in (c), with the corresponding images taken by CalTrans (Drabinski and Bertola,
2023a, b, c).

4 Results

We used a multilayer network combining slope and velocity
data spanning from November 2015 to December 2022 (just
before the observed landslides in January 2023 and March

2023) to determine the success of evaluating landslide haz-
ard via network science techniques. We visualize the evolu-
tion of Zt for each sub-region in Fig. 2. The size of the data
points is proportional to Zt , with larger circles indicating
more persistent communities (higher Z-scores). Only points
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Figure 3. Correlation of Landslide Variables. Correlation for mean precipitation, mean displacement, maximum displacement, mean slope,
mean coherence, mean community persistence, peak Z-score of community persistence, and number of landslides. Variables are scaled from
minimum to maximum, with darker colors indicating higher values.

with Zt > 0 are plotted, as negative Z-scores do not signify
landslide hazard. The colors in Fig. 2a and b correspond to
the 17 sub-regions shown in Fig. 1a.

Over the period shown, we observe cyclical changes in Zt
corresponding to the wet and dry seasons. Following wet sea-
sons, Zt is stronger and after dry seasons, Zt is weaker. Par-
ticularly, we observe high Zt values in fall of 2022; this is
because the study area experienced higher than average pre-
cipitation that year. The final 100 d of the period (Fig. 2b)
display differences inZ-scores across the sub-regions, aiding
in the identification of potentially stable and hazard-prone ar-
eas. A clear distinction is made between sub-regions with an
increasing Z-scores (outlined in black) and those exhibiting
relatively stable Z-scores during those last 100 d.

As previously discussed, a continuous increase in Z-score,
like that observed in Mud Creek, indicates high likelihood of
a landslide. To quantify the trends in Fig. 2a and b, we iden-
tify the peak Z of the final continuously increasing segment
and plot the values in Fig. 2c, where sub-regions Z < 2.5
are blue and sub-regions Z ≥ 2.5 are red. The landslides are
plotted as white dots with images taken by California Tran-
sit Authority (Drabinski and Bertola, 2023a, b, c) included
in Fig. 2c. All dots representing landslides appear in red re-
gions. Sub-regions with a relatively stable Z-score had peak
Z < 2.5. The sub-regions that had an increasing Z-score in
Fig. 2b and peak Z < 2.5 did not experience a landslide. All
sub-regions with peak Z ≥ 2.5 and a steady increase in Zt
experienced a landslide soon after December 2022, initialed
in Fig. 2b.

4.1 Multivariate Analysis

We used a multivariate analysis to compare the traits of
the active landslides using precipitation, deformation, to-

pography, and radar coherence with the results of commu-
nity detection. Figure 3 presents the correlation matrix be-
tween seven variables for the 17 sub-regions: number of
recorded landslides; mean slope; mean precipitation; mean
displacement; maximum displacement; mean InSAR coher-
ence; mean community persistence 5; and peak Z-score.
The spatial distribution for each of the variables is shown
in Fig. 3, where the variables are scaled from minimum to
maximum and darker color indicates a higher magnitude.

Peak Z-score is positively correlated with recorded land-
slides (0.84). Community persistence exhibits moderate cor-
relations with mean displacement (−0.53), and InSAR co-
herence (0.54). Mean displacement shows negative corre-
lations with slope (−0.57) and InSAR coherence (−0.62),
while maximum displacement is correlated positively with
precipitation (0.60), recorded landslides (0.63), peakZ-score
(0.56), and negatively with InSAR coherence (−0.56). More-
over, precipitation has a strong positive correlation with
recorded landslides (0.63) and peak Z-score (0.67).

5 Discussion

Through the integration of network science techniques, re-
mote sensing data, and multivariate analysis, this study iden-
tifies several key insights into the detection and characteri-
zation of landslide-prone regions. The results highlight the
promise of the peak Z-score as a method for early detec-
tion and classification of hazardous sub-regions. This finding
builds on recent work examining kinematic patterns in failure
zones using clustering and network-based techniques – such
as complex networks (Tordesillas et al., 2018), persistent ho-
mology (Mei et al., 2025), feature engineering (Zhou et al.,
2022), and neural networks (Wang et al., 2025) – to identify

Nat. Hazards Earth Syst. Sci., 25, 4755–4766, 2025 https://doi.org/10.5194/nhess-25-4755-2025



V. D. Desai et al.: Using network science to evaluate landslide hazards on Big Sur Coast, California, USA 4761

landslide precursors and offered alternatives to threshold-
based modeling. The present work extends those applica-
tions by distinguishing between stable and unstable slopes
over a large spatial domain, representing a step toward tran-
sitioning from static susceptibility mapping to dynamic, spa-
tiotemporal prediction at regional scales. Such advancements
have been enabled by the increasing availability and resolu-
tion of InSAR data, which provide a global framework for
using satellite radar observations to detect precursory defor-
mation and achieve near-real-time early warnings (Dai et al.,
2020; Tordesillas et al., 2024; Wang et al., 2025).

Because our analysis was conducted within a single geo-
graphic region and based on a limited number of documented
landslides, the outcomes should be viewed as a demonstra-
tion of potential rather than a universally generalizable result.
Further validation across different terrains, climates, and ge-
ologic settings will be essential to establish the broader ap-
plicability of this approach as a monitoring tool. Future work
might also draw on forecasting frameworks such as Cascini
et al. (2022), which emphasize the temporal evolution of dis-
placement trends and provide a pathway toward continuous
predictive monitoring.

5.1 Spatial Scale

Our analysis was conducted at a subregional scale of 5 km2,
larger than typical landslide areas of a few 0.1 km2, in or-
der to incorporate a mix of stable and unstable terrain within
each subregion. Such variation is critical for the modularity
optimization algorithm to identify clustered anomalous be-
havior (Zhou et al., 2022; Mei et al., 2025; Das and Torde-
sillas, 2019; Singh and Tordesillas, 2020). The presence of
stable hillslopes provides a baseline against which unstable
slopes transitioning to catastrophic failure can be detected
as outliers, given that nearby hillslopes experience simi-
lar weather conditions. Reducing the size of the subregion
would limit the amount of stable terrain, undermining the al-
gorithm’s ability to detect relative deviations. Conversely, in-
creasing the spatial extent would significantly raise compu-
tational demands without improving performance or sensi-
tivity. This trade-off between spatial scale and computational
efficiency is especially important when identifying early sig-
nals of slope reorganization that precede catastrophic failure.
A potential direction for future work is to assess whether ap-
plying this method at smaller spatial scales could improve
the model’s performance. While such an approach might en-
hance its utility for real-time landslide monitoring, it would
also reduce terrain heterogeneity, potentially diminishing the
algorithm’s capacity to distinguish anomalous behavior. If
this method were to be operationalized as a monitoring tool,
a detailed investigation of how terrain uniformity and subre-
gion size affect performance would be essential.

5.2 Comparison of Network-Based Metrics and
Geophysical Indicators

The correlation analysis highlights important relationships
between geophysical variables, network-based metrics, and
precipitation-induced landslide activity. Notably, the peak Z-
score shows a strong positive correlation with recorded land-
slides, maximum displacement, and precipitation. This sug-
gests that peak Z is an effective proxy for capturing patterns
indicative of an increased potential for landslides, particu-
larly in response to seasonal hydrologic forcing.

Conversely, the negative correlation between both mean
and max displacement and InSAR coherence supports previ-
ous findings that landslides moving rapidly often evade de-
tection by InSAR (Yunjun et al., 2019). Although slope ex-
hibits a weak relationship with 5, it shows a strong corre-
lation with mean displacement. This indicates that the mul-
tilayer network is not biased towards steep slopes but rather
amplifies steeper hillslopes undergoing deformation. Collec-
tively, these findings demonstrate that network-based met-
rics – community persistence and peak Z – not only align
with traditional indicators of landslide hazard but addition-
ally captures evolving structural patterns in hillslope dynam-
ics which improve classification of hillslopes as hazardous.

Furthermore, several distinct features emerge when com-
paring the spatial variability along the eight coastline graphs
in Fig. 3. Both mean and maximum displacement promi-
nently highlight the sub-region containing Paul’s Slide
and Dani Creek Slide. However, notable differences exist
throughout the rest of the study area. While measuring mean
displacement tends to smooth over localized or sudden de-
formation and instead emphasizes areas with multiple slow-
moving landslides, maximum displacement highlights acute
deformation signaling higher instability. Peak Z similarly
emphasizes Paul’s Slide as a high-risk region – validated by
a major slip off Highway 1 at Paul’s Slide in January 2023,
occurring just a month after the analysis period.

Despite both maximum displacement and peak Z-score
highlighting Paul’s Slide, differences between the two vari-
ables is evident in other sub-regions. Some sub-regions with
the highest peak Z-score do not exhibit the greatest dis-
placement, and sub-regions with similar displacement mag-
nitudes show a wide range of peak Z-scores. These discrep-
ancies suggest that community detection is capturing addi-
tional mesoscale dynamics, such as localized shifts in slope
behavior or evolving stability, that are not solely influenced
by landslide deformation or slope susceptibility.

While the volume removed in Paul’s Slide is much larger
than for the other landslides, the initial surface area of mo-
tion is comparable to the three other landslides. The signal
detected by the network method arises from a combination
of dynamic surface factors, not the eventual scale of failure.
Since our analysis is based solely on surface movement, the
volume ultimately displaced during a landslide is not an in-
put for our calculations – underscoring that our method cap-
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tures precursory surface behavior rather than relying on post-
failure consequences.

This reinforces the value of network-based methods in re-
vealing nuanced temporal patterns and transitions that would
otherwise remain hidden when relying solely on conven-
tional geophysical variables (Mei et al., 2025; Zhou et al.,
2022; Wang et al., 2025).

5.3 Hydrologic Integration

To evaluate whether hydrological forcing could improve
community detection outcomes, we incorporated precipita-
tion data from PRISM (Oregon State Univeristy, 2015) in
combination with velocity and slope (see Appendix A). How-
ever, no notable changes were observed in the community
detection results. This lack of sensitivity may stem from the
low resolution of PRISM grids, as well as limited data avail-
ability near the coasts, potentially rendering the changes too
coarse for the community detection algorithm to detect.

To further test this hypothesis, we repeated the experiment
using high-resolution precipitation input from a WRF-Hydro
model (Li et al., 2023). Even with this improved spatial res-
olution, there was little improvement in the analysis. The
strong correlation (0.67) between peak Z and precipitation
data (see Fig. 3) suggests that community detection metrics
already captures underlying hydrological mechanisms, or at
least the surface hydrology, and therefore makes the inclu-
sion of precipitation redundant. Advancements in in-situ soil
moisture measurements could further improve the applicabil-
ity of hydrological models, particularly for deep-seated land-
slide studies.

6 Conclusions

The extension of network science techniques from the Mud
Creek case study to the broader Big Sur region yielded
promising results. By subdividing the region into smaller
sub-regions for varied terrain, we tested the effectiveness
of this method as a monitoring technique. The outcomes of
community detection served as robust indicators of the land-
slides in W22-23, as seen in Fig. 2. Notably, the steady in-
crease in Zt leading up to failure, alongside the magnitude
of Zt , emerged as a crucial indicator. For instance, Paul’s
Slide exemplifies how outliers in Zt can serve as early indi-
cators of increased likelihood of landslides. Had this analy-
sis been conducted in the relevant time frame, Paul’s Slide,
alongside Mill’s Creek, Dani Creek Slide, and Gilbert’s
Slide, could have been identified as areas of concern, po-
tentially allowing for preemptive monitoring and mitigation
measures.

Our comparison of landslide susceptibility factors – land-
slide inventory, slope, cumulative displacement, precipita-
tion, and InSAR coherence – with the outcomes of com-
munity detection, peak Z-score, underscores the importance

of integrating multiple data sources. Each factor taken alone
does not yield enough information to predict landslide, high-
lighting the need for comprehensive analyses. Furthermore,
incorporating the entire temporal period captured by InSAR
into the multilayer network improved classification between
stable and hazard-prone sub-regions. However, it is crucial
to ensure that remote sensing data accurately capture ground
surface deformation for statistical analyses to be reliable.

Overall, the physically informed framework developed
here – relying on measured creep velocity and slope –
demonstrated strong potential for enhancing landslide hazard
assessment. In particular, network metrics such as the peak
Z -score offered a sensitive and scalable means of identify-
ing emerging instability, even prior to failure. These findings
support the utility of community detection techniques as a
complement to conventional geophysical indicators, paving
the way for improved, near real-time monitoring systems that
can generate dynamic hazard maps and inform timely risk
management strategies.

Appendix A: Inclusion of hydrological information into
the multilayer network

Landslide studies often use precipitation data from (1) site-
specific rain gauges with limited spatial coverage and
nonuniform temporal resolution, or (2) spatially continuous
interpolated gridded rain data. Effective and efficient mon-
itoring of hydrological data has not yet caught up with re-
mote sensing technology to produce high spatial and tempo-
ral datasets. Satellite-derived data, such as Soil Moisture Ac-
tive Passive maps, which use passive microwave techniques
and remotely sensed surface soil moisture on a global scale,
underestimates in heavily vegetated areas (Das et al., 2019;
Reichle et al., 2017; Fan et al., 2020). Remote sensing tech-
niques only detect surface-level soil moisture, and process-
based land surface models typically extend the soil moisture
estimates to one to two meters below the ground surface but
have low spatial resolution (Koster et al., 2009). Therefore,
we consider two hydrological datasets: PRISM (Parameter-
elevation Relationships on Independent Slopes Model) for
precipitation and WRF-Hydro (Weather Research and Fore-
casting Hydrological modeling framework) for soil moisture
and precipitation on the Big Sur Coast.

A1 PRISM

The PRISM Climate Group develops spatial climate datasets
using various monitoring networks and modeling techniques
(Daly et al., 2008). These datasets include daily, monthly,
and annual precipitation, and minimum and maximum tem-
peratures for the contiguous United States. PRISM interpo-
lates station measurements using a climate-elevation regres-
sion model that considers factors such as coastal distance,
topography, and atmospheric conditions. There are about
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13 000 stations that collect precipitation data and 10 000 for
temperature. PRISM datasets have shown improved results
for mountainous and coastal regions of the western United
States, including our study sites.

A2 WRF-Hydro

WRF-Hydro is an open-source, physics-informed hydrolog-
ical model (Gochis and Barlage, 2020). The model dis-
aggregates precipitation at the land surface and simulates
landslide-relevant processes such as water table depth, infil-
tration, subsurface lateral flow, and soil moisture using infor-
mation like soil type, topography, and antecedent conditions.
Li et al. (2023) utilized WRF-Hydro to simulate soil moisture
within the Big Sur Coast region, incorporating seven in-situ
soil moisture stations and nine USGS stream gages. This re-
gion has a complex terrain with heterogeneous vegetation,
elevation, and slope. The data used in this study has a default
soil column with a depth of 2 m, divided into four layers: 0–
10, 10–40, 40–100, and 100–200 cm. Li et al. (2023) demon-
strated that WRF-Hydro outperforms many established soil
moisture products through data-informed methods that im-
prove soil parameters.

The two datasets differ in resolution and the type of hydro-
logical forcing they represent. PRISM has a 4 km2 resolution
with daily precipitation outputs in mm, while WRF-Hydro
has a 1 km2 resolution with outputs of soil moisture at differ-
ent depths.

We considered soil moisture, water table depth, and pre-
cipitation as additional information to incorporate into the
multilayer network as weights in addition to velocity and
slope. There was insufficient difference in the community
persistence signal when including hydrological information
of any type. This is likely because velocity already incor-
porates underlying hydrological mechanics. When there is
enough water in the soil, frictional resistance reduces, caus-
ing slow-moving hillslopes to speed up. As the soil dries,
the hillslopes slow down. Since this information is already
included in the multilayer network, adding hydrology data
is redundant. Another reason the hydrology data might not
be useful is that Mud Creek is a deep-seated landslide, and
the data only went to 200 cm below the surface. To test the
effects of adding in hydrological information on the commu-
nity persistence of the 17 study sites, we applied precipitation
data from PRISM (chosen for its success in the Western US)
as one of the weights, along with velocity and slope, for the
multilayer network. Figure A1 shows the mean community
persistence 5, as discussed in the paper. The results for the
multilayer network with weights w = vs, where v is velocity
and s is slope, is shown in Fig. A1a and b shows the results
for weights w = vsp, where p is precipitation from PRISM.
We observe that including precipitation as a weight shows
minimal differences in the community detection.

Figure A1. Geographical distribution of Z-scores. Mean Z-Score
for (a) weights w = vs compared against (b) weights w = vsp. The
white dots are the landslides.

Code and data availability. The extents of the sub-regions are
archived on DataDryad (https://doi.org/10.5061/dryad.1jwstqk42,
Desai et al., 2024). Copernicus DEMs are available at
https://doi.org/10.5270/ESA-c5d3d65 (Copernicus, 2021). On-
Demand InSAR products were downloaded via Alaska Satellite Fa-
cility’s HyP3 platform, availabe at https://hyp3-docs.asf.alaska.edu
(). Sentinel-1 data are available at https://search.asf.alaska.edu/ (last
access: last access: 25 September 2023), the ASF data search ver-
tex. The full list of interferograms used are archived on DataDryad
(Desai et al., 2024). The Miami INsar Time-Series software in
PYthon (MintPy) is available at https://github.com/insarlab/MintPy
(last access: 25 Sept 2023; Yunjun et al., 2019). Precipi-
tation data is provided by Parameter-elevation Regressions
on Independent Slopes Model (PRISM) and is available at
https://prism.oregonstate.edu/ (Oregon State Univeristy, 2015).
Daily precipitation time series is taken for each of the sub-
regions. The code used for creating the multilayer networks
is available at https://github.com/vddesai-97/networkLandslide
(Desai, 2022, https://doi.org/10.5281/zenodo.17643432, De-
sai, 2025), and running the community detection algorithm
is on https://github.com/GenLouvain/GenLouvain (Jeub
et al., 2011–2019). The multilayer networks (nodes, edges,
weights) for each of the sub-regions are archived on DataDryad
(https://doi.org/10.5061/dryad.1jwstqk42, Desai et al., 2024).
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