Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3619-2025
https://doi.org/10.5194/nhess-25-3619-2025
Research article
 | 
26 Sep 2025
Research article |  | 26 Sep 2025

Disentangling atmospheric, hydrological, and coupling uncertainties in compound flood modeling within a coupled Earth system model

Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung

Related authors

An efficient hybrid downscaling framework to estimate high-resolution river hydrodynamics
Zeli Tan, Donghui Xu, Sourav Taraphdar, Jiangqin Ma, Gautam Bisht, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 3833–3852, https://doi.org/10.5194/hess-29-3833-2025,https://doi.org/10.5194/hess-29-3833-2025, 2025
Short summary
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025,https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Transformation rate maps of dissolved organic carbon in the contiguous US
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025,https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary

Cited articles

Abbaszadeh, P., Munoz, D. F., Moftakhari, H., Jafarzadegan, K., and Moradkhani, H.: Perspective on uncertainty quantification and reduction in compound flood modeling and forecasting, Iscience, 25, https://doi.org/10.1016/j.isci.2022.105201, 2022. 
Andreadis, K. M., Schumann, G. J. P., and Pavelsky, T.: A simple global river bankfull width and depth database, Water Resour. Res., 49, 7164–7168, https://doi.org/10.1002/wrcr.20440, 2013. 
Bakhtyar, R., Maitaria, K., Velissariou, P., Trimble, B., Mashriqui, H., Moghimi, S., Abdolali, A., Van der Westhuysen, A., Ma, Z., and Clark, E.: A new 1D/2D coupled modeling approach for a riverine-estuarine system under storm events: Application to Delaware river basin, J. Geophys. Res.-Oceans, 125, e2019JC015822, https://doi.org/10.1029/2019JC015822, 2020. 
Bao, D., Xue, Z. G., Warner, J. C., Moulton, M., Yin, D., Hegermiller, C. A., Zambon, J. B., and He, R.: A numerical investigation of Hurricane Florence-induced compound flooding in the Cape Fear Estuary using a dynamically coupled hydrological-ocean model, J. Adv. Model. Earth Sy., 14, e2022MS003131, https://doi.org/10.1029/2022MS003131, 2022. 
Download
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river, and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Share
Altmetrics
Final-revised paper
Preprint