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Abstract. Compound riverine and coastal flooding is usu-
ally driven by complex interactions among meteorological,
hydrological, and ocean extremes. However, existing efforts
to model this phenomenon often do not integrate hydro-
logical processes across atmosphere—land-river—ocean sys-
tems, leading to substantial uncertainties that have not been
fully examined. To bridge this gap, we leverage the new
capabilities of the Energy Exascale Earth System Model
(E3SM) that enable a multi-component framework that inte-
grates coastally refined atmospheric, terrestrial, and oceanic
components. We evaluate compound uncertainties arising
from two-way land-river—ocean coupling in E3SM and track
the cascading meteorological and hydrological uncertain-
ties through ensemble simulations over the Delaware River
basin and estuary during Hurricane Irene (2011). Our find-
ings highlight the importance of two-way river—ocean cou-
pling to compound flood modeling and demonstrate E3SM’s
capability in capturing compound flood extent near the coast,
with a hit rate over 0.75. Our study shows the growing un-
certainties that transition from atmospheric forcings to flood
distribution and severity. Furthermore, an analysis based on
artificial neural networks is used to assess the roles of hy-
drological drivers, such as infiltration and soil moisture, in
the generation of compound flooding. The response of com-
pound floods to tropical cyclones (TCs) is found to be sus-
ceptible to these often overlooked drivers. For instance, the
flooded area could increase more than 2-fold ( ~ 2.4) if Hur-

ricane Irene were preceded by an extreme antecedent soil
moisture condition (AMC). The results not only support the
use of a multi-component framework for interactive flood-
ing processes, but also underscore the necessity of broader
definitions of compound flooding that encompass the simul-
taneous occurrence of intense precipitation, storm surge, and
high AMC during TCs.

1 Introduction

Compound flooding (CF) is a significant and complex
hazard encompassing multiple concurrent drivers such as
heavy rainfall, storm surges, and rain-on-snow events (Li et
al., 2019) that cause severe socioeconomic and environmen-
tal damage (Zscheischler et al., 2018). In coastal regions, CF
often arises from a complex interplay of meteorological, hy-
drological, fluvial, and oceanic processes triggered by tropi-
cal cyclones (TCs) (Leonard et al., 2014; Bilskie and Hagen,
2018; Hendry et al., 2019; Loveland et al., 2021). Character-
ized by high wind speeds and low surface atmospheric pres-
sure, TCs can bring intense rainfall over land and significant
storm surge above normal tide levels (Fig. 1). CF poses el-
evated risks compared to single-source pluvial, fluvial, and
coastal flooding due to its broader spatial coverage and ex-
tended durations (Wahl et al., 2015; Moftakhari et al., 2017).
Sarhadi et al. (2024) suggested that the frequency and inten-
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sity of CF events will increase up to 5-fold by the end of
this century, driven by factors such as intensified TCs and
rising sea levels (Feng et al., 2022). This bleak projection
highlights the critical need for advanced, integrated model-
ing strategies, aiming to effectively mitigate future flood risks
and improve resilient infrastructure and adaptive community
response plans (Bates et al., 2021).

Modeling CF is inherently challenging because it is trig-
gered and impacted by the interactions of processes within
multiple Earth system components, including atmosphere,
land, river, and ocean, as well as the associated uncertain-
ties (Xu et al., 2023). Traditional CF modeling is typically
based on coupled hydrological models (Feng et al., 2022;
Ikeuchi et al., 2017), hydraulic models (Bakhtyar et al., 2020;
Bermiidez et al., 2021; Gori et al., 2020b), and hydrodynamic
coastal/ocean models (Bennett et al., 2023; Kerns and Chen,
2023; Xiao et al., 2021; Ye et al., 2020) at local, regional,
and global scales. Over time, more sophisticated methodolo-
gies have been developed to enhance CF modeling. These in-
clude combined statistical-numerical modeling approaches
(Olbert et al., 2023), deep learning (Feng et al., 2023a;
Muiioz et al., 2021), data assimilation (Muifioz et al., 2022),
reduced-physics ocean models (Eilander et al., 2023; Leijnse
et al., 2021), new compound inundation models (Santiago-
Collazo et al., 2024), and two-way river—ocean model cou-
pling (Bao et al., 2022, 2024; Feng et al., 2024; Shen et
al., 2024; Zhang et al., 2024). The CF modeling uncertain-
ties can be sourced from model structures, parameters, in-
put data, and boundary and initial conditions (Abbaszadeh
et al., 2022; Beven et al., 2018; Fan et al., 2021). These un-
certainties may also cascade through the system (Meresa et
al., 2021; Tanim and Goharian, 2021), and their contributions
change dynamically over time (Muifioz et al., 2024).

A recently developed approach is the use of fully coupled
Earth system models (ESMs) to simulate compound flood-
ing (Feng et al., 2024; Zhang and Yu, 2024). By integrating
multiple Earth system components in a single, tightly cou-
pled framework, ESMs allow for predictive understanding of
multi-scale flow processes and their interactions with other
relevant processes involving heat, energy, and biogeochemi-
cal and sediment transport, as well as their impacts on Earth’s
climate (Ward et al., 2020). Feng et al. (2024) performed
the first fully coupled ESM simulation for CF using the En-
ergy Exascale Earth System Model (E3SM), by integrating
recent advancements in E3SM including regionally refined
unstructured meshes for atmosphere, land/river, and ocean
components in the global domain (Deb et al., 2024; Feng et
al., 2022), two-way online land-river—ocean coupling (Xu et
al., 2022b; Feng et al., 2024), and a two-dimensional (2D)
barotropic ocean model (Lilly et al., 2023).

While state-of-the-art ESMs are being implemented to
simulate local extremes, this advancement can inevitably in-
troduce uncertainties. Compared with regional simulations
using prescribed atmospheric forcing derived from observa-
tion or reanalysis datasets, the model-simulated atmospheric
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forcings are more uncertain (Hersbach et al., 2020). At-
mospheric forcing has critical impacts on flood simulation
(Cloke and Pappenberger, 2009; Hjelmstad et al., 2021; Xu
et al., 2025). Specifically, the river discharge intensity, storm
surge levels, and CF inundation extents are directly influ-
enced by the TC’s track and intensity, as well as by the
rainfall rate and timing (Gori et al., 2020a; Pappenberger
et al., 2005; Zhong et al., 2010). These factors are the pri-
mary drivers of the riverine and coastal flooding dynamics.
The uncertainty that originates from atmospheric forcings
propagates to land, river, and ocean components through the
multi-component framework (Deb et al., 2023; Blanton et
al., 2020; Joyce et al., 2018). Likewise, the hydrological un-
certainties in the land and river components (Giuntoli et al.,
2018; Feng et al., 2023b) and the model coupling schemes
can also propagate and even amplify the uncertainties. How-
ever, the cascading meteorological uncertainty has not been
systematically estimated for CF modeling (Abbaszadeh et
al., 2022; Xu et al., 2023). It remains unclear whether such
uncertainty will be amplified or diminished when constrained
by the physical processes inherent in ESMs.

The cascading uncertainty in ESMs becomes even more
complex with two-way interactive model coupling. In on-
line two-way coupling, a downstream model, while receiv-
ing data from its upstream component, sends back real-time
computed information at predefined time intervals, enabling
bidirectional data exchange. For instance, a river model may
send floodplain inundated water extent to the land surface
model for estimating flood water infiltration on the flood-
plain (Xu et al., 2022b). Similarly, an ocean model provides
its predicted water levels (Bao et al., 2022, 2024; Feng et
al., 2024), velocities (Zhang et al., 2024), or fluxes (Shen
et al., 2024) to the river model for capturing the backwater
effect. While other uncertainties have been extensively dis-
cussed (Camacho et al., 2015; Feng et al., 2019; Muiioz et
al., 2024; Willis et al., 2019), the uncertainty relevant to the
two-way model coupling has rarely been explored because
the coupling capabilities have only recently been developed.
Questions are raised regarding the role of model coupling
and the magnitude of related uncertainty compared to me-
teorological uncertainty, especially given the characteristic
spatiotemporal scales invoked in land-river and river—ocean
coupling. Addressing these questions is critical to refining
the performance of interactively coupled ESMs, which is es-
sential for achieving a more comprehensive understanding
of the complex interactions and uncertainties associated with
CF simulations. Moreover, assessing the enhancements pro-
vided by the two-way coupling schemes sheds light on the
application of these couplings in future scenarios.

Furthermore, the cascading uncertainty changes with the
variability and complexity of hydrological drivers repre-
sented in models because these factors are critical for de-
termining how precipitation is partitioned into runoff and
infiltration. As rainfall initially infiltrates the soil, subsur-
face runoff moves slowly through the soil layers. When
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Figure 1. Compound flooding processes in a coastal river basin during a TC event. This conceptual diagram shows the key elements con-
tributing to CF, resulting from combined riverine and coastal inundation along the river channels and adjacent coastal areas.

the rainfall intensity exceeds the soil’s absorption capac-
ity, saturation-excess water leads to surface runoff. The
rate of infiltration, which determines the balance between
surface and subsurface runoff, is influenced by soil prop-
erties, antecedent soil moisture conditions (AMCs) (Ivan-
cic and Shaw, 2015), and land cover types. The runoffs
are then routed through river networks, resulting in high
river discharge (Fig. 1) (Bevacqua et al., 2020). Under-
standing the hydrological drivers, including the sensitivity of
flood responses to various conditions such as different AMC
and rainfall scenarios, is crucial (Tramblay et al., 2010).
These factors provide key insights for predicting different
flood scenarios (Miguez-Macho and Fan, 2012; Schrapffer
et al., 2020). In particular, AMC plays a critical role in the
generation of peak runoff and modulating riverine flooding
characteristics during heavy-precipitation events (Berghuijs
et al., 2019; Nanditha and Mishra, 2022). A saturated AMC
can significantly amplify flood impacts compared to drier
conditions. The relative importance of rainfall and AMC
varies depending on the watershed area. Soil moisture be-
comes a more dominant factor in larger watersheds (Ran
et al., 2022). However, the role of these hydrologic drivers
in cascading uncertainties sourced from atmospheric forcing
has not been thoroughly investigated in the context of CF,
partly due to the absence of a tightly coupled modeling sys-
tem (Jalili Pirani and Najafi, 2020) or insufficient investiga-
tion into hydrological processes (Lin et al., 2024). Although
Bilskie et al. (2021) and Santiago-Collazo et al. (2024) high-
lighted the critical consequences if CF is preceded by an an-
tecedent rainfall event, their implementation of the rain-on-
grid method does not account for the hydrological processes,
such as runoff generation. Addressing these processes would
require a detailed hydrological model or land surface compo-
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nent of ESMs. The fully coupled E3SM provides a feasible
framework for quantifying the hydrological uncertainties in
the CF modeling.

The above-mentioned uncertainties are complicated but
must be carefully evaluated for ESMs as they will be more
frequently applied for CF simulations in the context of cli-
mate change. A variety of approaches have been adopted for
understanding the uncertainties of CF modeling. These ap-
proaches offer trade-offs between computational cost, phys-
ical interpretability, and the ability to disentangle complex
drivers. Ensemble-based methods remain a primary strategy
for characterizing the cascading uncertainty from the forc-
ing data (Hamill et al., 2011; Hou et al., 2017; Villarini et
al., 2019). Multiple realizations with perturbed initial con-
ditions and/or model physics represent a range of scenarios
that evolve differently based on the dynamics of the mod-
els (Blanton et al., 2020; Saleh et al., 2017; Nederhoff et
al., 2024; Wang et al., 2024). Probabilistic frameworks, such
as Bayesian inference (Beven and Binley, 1992), provide
more robust treatment of parameters and model uncertain-
ties (Naseri and Hummel, 2022) but often rely on strong as-
sumptions and intensive sampling. Machine learning tech-
niques have been increasingly applied to flood modeling (Hu
et al., 2019) and are effective at capturing nonlinear relation-
ships of CF drivers (Muiioz et al., 2024), though they re-
quire large training datasets and may sacrifice physical inter-
pretability (Shen et al., 2023). Structural equation modeling
(SEM; Wright, 1921) has also been adopted to disentangle
complex, interacting processes (Du et al., 2015; Santoro et
al., 2023). SEM offers a balance between statistical rigor and
interpretability in multi-driver systems without a significant
number of data. Despite these advances, uncertainty quantifi-
cation within fully coupled ESM frameworks remains rela-
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tively underexplored due to high computational demands and
limited methodological integration across domains.

This study focuses on exploring and disentangling the
atmospheric, hydrological, and coupling uncertainties of
coastal CF modeling within the coupled E3SM framework.
We first provide a comprehensive description of the physical
processes during a TC-induced CF event. We then evaluate
the model coupling uncertainties and the cascading meteoro-
logical uncertainty using a simulation ensemble of a specific
TC event. Using the atmospheric ensemble as a basis, we
generated an expanded ensemble and proposed a new ma-
chine learning approach to analyze the relative contributions
of different hydrological drivers to CF and how these contri-
butions affect the accuracy and reliability of CF simulations
over time. Finally, various hydrological and meteorological
scenarios are used to delineate a spectrum of plausible CF
outcomes in the designated region.

2 Materials and methodology
2.1 Model configuration

This study uses a recently developed configuration in the
Energy Exascale Earth System Model (E3SMv2) (Feng et
al., 2024). E3SM represents a significant advancement in
Earth system modeling (Golaz et al., 2019, 2022). As a fully
coupled ESM, E3SM supports dynamic exchanges and prop-
agation of information across its different components. Ad-
ditionally, several other developments have been recently im-
plemented to further improve the modeling of coastal ex-
tremes, including the introduction of high-resolution region-
ally refined unstructured meshes in global river models (Feng
et al., 2022; Liao et al., 2022, 2023a, b), the implementa-
tion of interactively coupled land-river—ocean models (Xu et
al., 2022b; Feng et al., 2024), and the global tide model with
a wetting and drying scheme in the ocean component (Barton
et al., 2022; Pal et al., 2023). Compared with regional mod-
els that may provide more detailed inundation at the street
level (Costabile et al., 2023; Ivanov et al., 2021), E3SM ex-
cels at coupling processes across various Earth system com-
ponents. This capability is crucial for capturing the complex
responses of Earth systems to climate change and projecting
climate-driven flood hazards.

The new E3SM configuration (hereafter “E3SM coastal
configuration”) integrates the global three-dimensional (3D)
E3SM atmospheric model (EAM), one-dimensional (1D)
E3SM land model (ELM), 1D E3SM river model MOSART
(MOSART: Model for Scale Adaptive River Transport), and
two-dimensional (2D) barotropic version of the E3SM ocean
model MPAS-O (MPAS-O: Model for Prediction Across
Scales ocean model) (Fig. 2a). This configuration uses three
different variable-resolution meshes to improve the E3SM’s
capability in modeling coastal processes. The EAM mesh
features a global resolution of 100km, with enhanced re-
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finement to about 25 km over the North Atlantic Ocean and
eastern North America. Both ELM and MOSART use a land
mesh with a coarse resolution of 60 km globally, which is fur-
ther refined to 30 km across the contiguous US and to 3 km
within the Mid-Atlantic watersheds. The MPAS-O mesh of-
fers the highest resolution of 250 m along the US East Coast,
specifically designed to capture estuary dynamics, with a
broader global resolution of around 1km everywhere else.
The global ELM-MOSART simulations are computation-
ally efficient, requiring less than 10 min using 400 CPUs,
while the fully coupled ELM-MOSART-MPAS-O simula-
tions take approximately Sh. The global bathymetry data
of MOSART and MPAS-O are sampled from the 90 m Hy-
droSHEDS digital elevation model (DEM) (Lehner et al.,
2008) and the 450 m GEBCO dataset (IOC and IHO, 2020),
respectively. The river networks and flow directions are de-
rived using HexWatershed, which performs hybrid depres-
sion filling and stream burning for river routing in unstruc-
tured meshes (Liao et al., 2022, 2023a, b). The river bankfull
width and depth were derived using the power law function
with bankfull discharge (Andreadis et al., 2013).

The novel two-way hydrological coupling between land
and river components enables E3SM to capture the in-
filtration of inundated river water in floodplains and,
subsequently, the enhancement of subsurface runoff and
evapotranspiration from saturated floodplain soils (Xu et
al., 2022b). The two-way river—ocean coupling was devel-
oped for E3SM to better represent the dynamic interaction
between rivers and oceans, especially during CF events (Feng
et al., 2024). This new approach allows for an accurate rep-
resentation of coastal backwater effects and the mutual influ-
ences of river discharge and ocean sea surface height (SSH),
providing a more realistic assessment of CF hazards (Feng et
al., 2022).

Using the E3SM coastal configuration, we first simulated
Hurricane Irene, a TC event that occurred in August 2011 and
had large flooding impacts across the Mid-Atlantic region
(Fig. 2b). Irene led to significant riverine and coastal flood-
ing in the Delaware River basin (DRB) and Delaware Bay
estuary (DBE) due to concurrent intense precipitation and
storm surge. Following Feng et al. (2024), an ensemble of
25 EAM simulations with perturbed model parameters were
performed to reproduce Irene and associated meteorological
outcomes. EAM is initialized from ECMWF Reanalysis v5
(Hersbach et al., 2020) at 00:00Z on 26 August 2011. Atmo-
spheric nudging is not applied. The EAM ensemble can re-
produce the TC characteristics, including the storm track and
intensity (see Appendix A in Deb et al., 2024). These “pre-
run” EAM simulations were then prescribed within E3SM to
drive the land, river, and ocean components. EAM (in “data
mode”) provides atmospheric forcing to ELM and MPAS-
O at a 15 min frequency. MOSART is interactively coupled
with ELM and MPAS-O at the 1 h interval via the E3SM cou-
pler (Craig et al., 2012). The model outputs are archived at
15 min for EAM and hourly for ELM, MOSART, and MPAS-
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Figure 2. (a) The multi-component E3SM framework and drivers used for analyses within each model component. The black arrows represent
the data flow via the one-way coupled framework. The white arrows are the new flow directions from the two-way land-river and river—ocean
models. (b) Map of the Delaware River basin (DRB) and Delaware Bay estuary (DBE), with the observed (red) and modeled (black) Irene
tracks. The topographic map in (b) is from the ESRI world topographic map (ESRI, 2012).

0. We spun up ELM and MOSART from a 10-year his-
torical simulation forced by Global Soil Wetness Projects
version 3 (GSWPv3; Kim, 2017) and MPAS-O from a 1-
month simulation with the global tide model. MOSART was
validated against the streamflow measurements at 6 USGS
gauges along the Delaware River main channel with an av-
eraged coefficient of determination (r%) of 0.79 and Kling—
Gupta efficiency (KGE; Gupta et al., 2009) of 0.84. MPAS-O
was assessed for water level at 6 NOAA tidal gauges across
the DBE, showing an averaged r2 of 0.72 and root mean
squared error (RMSE) of 0.41 m. Please refer to Feng et al.
(2024) for a more detailed description of the E3SM configu-
ration and the model evaluation.

Fluvial and coastal inundations are simulated in MOSART
and MPAS-O, respectively. The riverine inundation in
MOSART is simulated using a macroscale inundation
scheme that assumes the inundation occurs from the lower
elevation to higher elevation within each grid cell (Luo et
al., 2017; Yamazaki et al., 2011). Coastal inundation sim-
ulated on the MPAS-O inland mesh is aggregated onto the
coarser MOSART mesh in the DRB. Within each MOSART
grid cell, the inundation fraction is determined by the per-
centage of MPAS-O cells with a simulated water depth over
1 m. This threshold does not imply a spatially uniform ad-
justment of the GEBCO bathymetry data used by MPAS-O.
Instead, it serves as a practical criterion to mitigate biases
arising from upscaling inundation extents from the higher-
resolution MPAS-O mesh to the coarser MOSART grid.
Whenever there is a discrepancy between the inundation area
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from MOSART and MPAS-O in their overlapping cells near
the coastline, the MPAS-O inundation is considered more ac-
curate and will be used.

Here, the total simulated inundation extent of Irene is
benchmarked against a 250 m resolution inundation extent
dataset based on satellite imagery (Tellman et al., 2021). The
dataset is aggregated onto the MOSART mesh for compar-
ison. Within each MOSART cell, we compute the fraction
of the observed inundation. The model performance is eval-
uated using flood metrics defined by Wing et al. (2017), in-
cluding the hit rate (HR), false rate (FR), and success index
(SD:

M By
HR= L (1)
M\ B+ MoB,
M By
FR=__ 120 )
M By + M By
M B,
SI 3)

~ M\Bi+MoB,+M By’
where M and B are the pixels (or grid cells) from model sim-
ulations and benchmark data, respectively. The subscripts 1
and O represent wet (inundated) and dry cells, respectively.
For all three metrics, a score of 0 indicates poor performance,
while a score of 1 represents perfect model performance. In
our simulations, a wet cell is identified if the simulated in-
undation fraction is above a small unitless threshold of 0.02.
This threshold minimizes the influence of cells that may only
be marginally inundated — likely due to data and model un-
certainties — thus ensuring a more reliable assessment of
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flood extent. The predicted flooded area (FA) is calculated
by multiplying the flooded fraction by the corresponding cell
area.

2.2 Model coupling uncertainty

The model coupling uncertainty is evaluated using three ex-
periments (Table 1). The first two experiments implement
one-way and two-way coupled ELM and MOSART, re-
spectively, while the third experiment interactively couples
MPAS-O with MOSART. All experiments are driven by the
same EAM ensemble atmospheric forcing. The MOSART-
and MPAS-O-simulated inundation extent is first evaluated
against the benchmark data to justify the necessity of consid-
ering both riverine and coastal flooding within the coupled
ESM. We then compared the streamflow along the Delaware
River mainstem and riverine inundation in DRB in terms of
flood metrics among different experiments to demonstrate
the uncertainty of two-way coupling. The comparison of
riverine inundation between Experiments 1 and 2 and be-
tween Experiments 1 and 3 shows the uncertainty from two-
way land-river and river—ocean coupling, respectively. The
comparison of total inundation between Experiments 1 and
3 quantifies the uncertainty if the ocean component is ne-
glected in the CF simulation.

2.3 Cascading meteorological uncertainty

To understand the evolution of the meteorological uncer-
tainty cascaded from atmospheric simulations through the
multi-component framework, we applied the configuration
of Experiment 3 (Table 1) and analyzed the interactions
of those physically interconnected variables from the atmo-
sphere, land, river, and ocean components of E3SM (Fig. 2a)
including precipitation (precip), air pressure (Pair), and wind
speed (Uying) from EAM; surface runoff (Qgy), subsur-
face runoff (Qgyp), infiltration (Qing), and soil water storage
(Qsoil) from ELM; river discharge (Q) and riverine inunda-
tion area (Ariver) from MOSART; and SSH and coastal inun-
dation area (Aocean) from MPAS-O. The flux and state vari-
ables are represented by their event-accumulated and event-
peak values, respectively, within the Delaware River drainage
basin (Fig. 2b). The estimated relationship between these
variables represents the impact of one E3SM component on
another component. For MOSART and MPAS-O, due to two-
way river—ocean coupling, mutual relationships can occur be-
tween the related variables.

The magnitude of uncertainty amplification or diminish-
ment is quantified using normalized median absolute devia-
tion (NMAD),

median(|X; — median(X)|)

NMAD = - , @)
median(X)
and the coefficient of variation (CV),
o
CV=—, Q)
u
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where X; represents a variable X modeled at the ith ensem-
ble run and u and o are the mean and standard deviation
of the corresponding variable computed from all ensemble
simulations. These two metrics measure the spread of simu-
lations with respect to the ensemble median and mean values
separately.

Additionally, structural equation modeling (SEM) is ap-
plied as a path analysis method (Wright, 1921) to trace the
flow of data and uncertainty from the 25 ensemble mem-
bers. SEM estimates the complex relationships between two
groups of variables by fitting multivariate regressions and
uses the coefficient of a predictor to represent its contribution
to the response variable. The Python library semopy is used
in our SEM analyses (Igolkina and Meshcheryakov, 2020).

2.4 Uncertainty of hydrological drivers

The hydrological drivers we selected for uncertainty analy-
sis include surface runoff, subsurface runoff, infiltration, and
soil water storage. As the influence of these hydrological
drivers shifts throughout a TC event due to changes in precip-
itation patterns, we chose to examine the cumulative impacts
of these drivers across the entire event and track the temporal
evolution of each driver’s influence. For this purpose, we ex-
pand the original EAM simulation ensemble by introducing
variations in AMC and runoff generation parameters within
ELM. This expanded ensemble enables us to apply a machine
learning approach to compute the permutation importance of
each hydrological driver, providing insights into their roles in
modulating flood exposure. We focus exclusively on riverine
flooding in this analysis. To avoid the substantial computa-
tional burden associated with MPAS-O, we impose MPAS-
O-simulated water level as the coastal boundary condition of
MOSART (Feng et al., 2022). This approach represents the
coastal backwater effects during CF, comparable to those ob-
tained from the two-way river—ocean coupled configuration
in Experiment 3 (Feng et al., 2024).

2.4.1 Expanded ensemble simulation

The original EAM ensemble is expanded by first selecting
5 ensemble members whose river discharge and precipita-
tion values span the full range of the ensemble and are ap-
proximately evenly spaced across that range during Hurri-
cane Irene (Fig. S1 and S2 in the Supplement) and then run-
ning each member with multiple AMC scenarios and differ-
ent sets of runoff generation parameters. Five AMC scenarios
were chosen to reflect a broad range of hydrological drivers
based on historical soil moisture trends, spanning the driest
to the wettest states. Specifically, we used the Oth, 25th, 50th,
75th, and 100th percentiles of basin-averaged soil moisture
(0.067-0.087 kgm~2) during hurricane seasons from 2005—
2011 as modeled in a historical ELM simulation (Fig. S1).
The AMC at the 75th percentile aligns with the observed
AMC of Irene. Two parameters in ELM ( fover and fgrain) that

https://doi.org/10.5194/nhess-25-3619-2025



D. Feng et al.: Disentangling Uncertainties in Compound Flood Modeling with an Earth System Model 3625

Table 1. Numerical experiments for quantifying model coupling uncertainty.

Experiment # Configuration Flooding type

1 ELM — MOSART riverine

2 ELM <« MOSART riverine

3 ELM — MOSART <> MPAS-O riverine and coastal

determine the runoff generation are considered, where foyer
determines the saturation fraction, i.e., how much surface
runoff is generated from precipitation, and fgrain controls the
subsurface runoff generation (see Appendix A for a detailed
definition). Runoff is highly sensitive to both foyer and farain,
whose values usually have to be determined through sensi-
tivity analysis. In the Mid-Atlantic region, as suggested by
Xu et al. (2022a), we selected fover values at 0.1, 0.5, 1,
2.5, and 5 and fygrain values at 2, 2.25, 2.5, 3, and 5. The
varying peak discharge observed in the main channel of the
Delaware River and the extent of riverine flooding indicate
a broad range of possible scenarios captured in simulations
that use the perturbed parameters of atmospheric conditions,
AMC, and the parameters fover and fyrain (Figs. S2 and S4-
S6). Using the selected 5 ensemble members, 5 AMC sce-
narios, and 5 values each for fover and fgrain, we performed
a total of 625 ensemble simulations.

2.4.2 Quantifying hydrological driver importance

To quantify the relative importance of each hydrological
driver of CF, we employed a two-stage artificial neural net-
work (ANN) approach (Fig. 3), trained and tested using data
from all 625 ensemble simulations. Compared to traditional
regression models, ANN is particularly advantageous for
capturing the complex, nonlinear relationships that exist be-
tween the diverse hydrological drivers and the resulting im-
pacts on river systems (Goodfellow et al., 2016; LeCun et
al., 2015; Tsang et al., 2017).

The first ANN model emulates the relationships between
the hydrological drivers of Qgur, Qsub, Qinfl, and Qsoil and
perturbation parameters. Here, the input features are precipi-
tation, AMC, fover, and farain, and the outputs are the afore-
mentioned hydrological drivers. Then, these outputs become
the input features for the second ANN, which emulates the
relationships between river discharge and inundation area
and these input features. To perform a detailed analysis, we
first assessed the event-accumulated impacts of these drivers
by aggregating data over the entire TC event. We also exam-
ined fine temporal impacts using the second ANN on a daily
basis. This allows us to understand not only the overall effect
of each driver but also their day-to-day variations throughout
the event. The relative importance of the input features on the
output features is quantified using permutation importance.
For more details about the ANN model setup and permuta-
tion importance calculation, please refer to Appendix B.
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3 Results
3.1 Model coupling uncertainty

In Experiment 3, the E3SM coastal configuration employs
the coupled MOSART and MPAS-O models to simulate
compound riverine and coastal inundation (Fig. 4). The re-
sults indicate that MOSART can predict riverine flooding
along the lower Delaware River and its upstream tributaries.
However, the model tends to overestimate the maximum ex-
tent of flooding along the Delaware River mainstem and
some tributaries (Fig. 4a). Occasionally, some observed in-
undated cells in the upstream are captured by the model.
Such bias is likely caused by the coarse spatial resolution
of the river mesh, inaccurate river network delineation, and
missing processes such as damming and flood defense con-
structions. Despite refinement, the mesh and river network
still do not achieve the detail provided by regional high-
resolution models (Dullo et al., 2021). More importantly, al-
though ELM-MOSART simulates extensive riverine inun-
dation along the Delaware River mainstem and tributaries
through precipitation-induced runoff (Fig. 4a), it does not
capture inundation in low-lying shoreline areas near the
coastline. This is because tide and storm surge that ele-
vated local water levels sufficiently to exceed the inunda-
tion threshold in coastal cells are not included in this con-
figuration. MOSART’s macroscale inundation scheme does
not simulate lateral water propagation across grid cells,
and coastal inundation requires dynamic oceanic forcing.
By integrating MPAS-O (Fig. 4b), which includes two-
dimensional wetting and drying, the model captures these
near-coastline inundations more accurately.

Comparison of flood metrics also confirms the importance
of incorporating both riverine and coastal dynamics through
a river—ocean coupled configuration (Fig. 5). Compared to
Experiment 1 (Table 1), which does not activate MPAS-O,
the river—ocean coupled configuration in Experiment 3 re-
markably improves HR and SI 2-fold with more than doubled
the predicted flooded area (FA) and reduces FR by ~0.1.
The change in flood metrics implies that a significant por-
tion (> 70%) of the compound flooded area during Irene
is accounted for by coastal flooding, which can be other-
wise neglected if the ocean model is not coupled. However,
the integration of MPAS-O does not reduce the MOSART-
overpredicted flooded regions significantly, as suggested by
the change in FR. The overestimation in FR is likely due to

Nat. Hazards Earth Syst. Sci., 25, 3619-3639, 2025



3626

D. Feng et al.: Disentangling Uncertainties in Compound Flood Modeling with an Earth System Model

Figure 3. The densely connected ANNs for quantifying the relative importance of hydrological drivers to river discharge Q and inundation
area Apjver- Only 4 neurons per hidden layer are shown for illustrative purposes. AMC refers to the antecedent soil moisture condition.
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Figure 4. (a) MOSART-simulated riverine inundation (red) against satellite-measured inundation (magenta box). The dashed black box
highlights the lower Delaware River reach. (b) E3SM-simulated riverine (red) and coastal (blue) total inundation against satellite data
(magenta box). The dashed black box represents the coastline of DBE where extensive coastal inundation occurred. In both panels, dark and
light colors represent the minimum and maximum inundated extent from the ensemble simulations, respectively. The gray lines are the major

river channels.

the bias in the MODIS satellite data, the macroscale inun-
dation scheme in MOSART, and the MOSART mesh reso-
Iution. The flood extent dataset (Tellman et al., 2021) could
underestimate the actual flooding area due to the uncertainty
in the cloud cover removing technique (Zhang and Yu, 2024).
Its fidelity further decreases in the upstream direction due to
the existence of vegetation cover (Sexton et al., 2013). In ad-
dition, the macroscale inundation scheme may not capture
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the subgrid connectivity given the grid resolution of 5km
(Xu et al., 2022b). However, these findings highlight the syn-
ergistic nature of river and ocean modeling in improving CF
simulations in E3SM.

The comparison of Experiments 1-3 (Table 1) demon-
strates the distinct role of land-river—ocean coupling in in-
fluencing CF (Fig. 6). Specifically, the implementation of
two-way land-river coupling leads to a noticeable decrease
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Figure 5. Flood metrics of the hit rate (HR), false rate (FR), success index (SI), and flooded area (FA) used to compare riverine flooding in Ex-
periments 1-3 and the combined riverine and coastal flooding in Experiment 3. Experiments 1 and 2 include land and river components, while
Experiment 3 runs all land, river, and ocean components (Table 1). MOSART only considers riverine inundation, while MOSART + MPAS-O
accounts for both riverine and coastal inundation. Whiskers extend to 1.5 times the interquartile range from the quartile boundaries.

in peak discharge along the Delaware River mainstem by 10—
50m3s~!, which slightly increases towards the river outlet
(Fig. 6a). Consequently, the simulated flooded area across
the watershed is reduced in Experiment 2 compared to Ex-
periment 1 (Fig. 6b). These reductions, despite being spo-
radic in upstream regions, are predominantly observed in the
lower Delaware River reach and near the coastline (Fig. 6b).
This expected change is attributed to the two-way interac-
tion of land and river hydrology implemented in Experiment
2, in which floodplain inundated water from MOSART is
transferred to ELM, thereby reducing water storage within
the channel and flood extent (Luo et al., 2017). Conversely,
the influence of two-way river—ocean coupling (Experiment
3) appears to be mainly confined to the river reaches close
to the outlet (Fig. 6¢), where it significantly increases local
streamflow (Fig. 6a). This is a result of more accurately rep-
resenting the water and momentum fluxes between the river
and ocean as well as coastal backwater effects. The elevated
water levels due to tide and storm surge force the upstream
propagation of ocean water into the river channel, resulting
in a local increase in peak river discharge and riverine inun-
dation near the outlet, where the highest coastal water lev-
els during Irene lead to elevated maximum discharge values
along the lower Delaware River.

The impact of the new two-way coupling schemes on ac-
curately capturing the flood extent (Fig. 5) is less signifi-
cant compared to their effect on modulating the discharge
near the river outlet (Fig. 6a), but it is still insightful. Com-
paring riverine flooding in Experiments 1 and 3, two-way
river—ocean coupling improves the flood metrics by 0.01—
0.02 and increases FA by ~ 2.5 x 107 m?, as a result of a
more accurate representation of backwater effects near the
river outlet (Fig. 6¢). Conversely, the two-way land-river
coupling shows a slight reduction in flood metrics and FA,
as also indicated in the spatial map (Fig. 6b). The discrepan-
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cies observed do not necessarily imply that the inclusion of
land-river interactions compromises the results. Rather, they
may result from the inherent uncertainties in both data and
MOSART simulations, which tend to overestimate riverine
flooding. The contrasting behaviors between the two cou-
pling schemes primarily stem from their focus on different
spatial and temporal scales. While it is crucial for capturing
hydrological processes at larger spatiotemporal scales, the
two-way land-river coupling, building upon the macroscale
inundation scheme, potentially makes the coupling less re-
liable for event-scale riverine flooding. The two-way river—
ocean coupling is designed for accurately representing local-
ized interactions between river discharge and tidal or storm
surge dynamics that occur at diurnal or semi-diurnal scales.
These findings highlight the complex interplay between var-
ious coupling approaches and the importance of tailored ap-
proaches in flood modeling to address specific hydrodynamic
challenges effectively.

3.2 Cascading meteorological uncertainty

The SEM analysis depicts the possible pathways for the cas-
cading propagation of meteorological and other uncertainties
of CF simulations within E3SM (Fig. 7). Specifically, pre-
cipitation impacts runoff and infiltration nearly equally but it
does not significantly influence soil water storage. The min-
imal variation in soil water during a TC event is likely be-
cause the soil reaches its saturation capacity, especially when
rainfall intensity exceeds the soil’s infiltration rate. Runoff,
which directly contributes to river discharge, positively af-
fects flood simulation in terms of Q and Ajyer in MOSART.
Conversely, the impact of infiltration and soil water storage
on flooding is negative, as these processes reduce the surface
runoff into river channels. Moreover, wind speed combined
with air pressure affects sea level variations. The elevated
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Figure 6. Comparison of flood impacts of model coupling. (a) Peak discharge along the Delaware River mainstem simulated by one-way
and two-way land-river and river—ocean coupled simulations in Experiments 1, 2, and 3 (Table 1), respectively. Spatial maps of change in
inundation of (b) two-way land-river coupled simulations and (c) two-way river—ocean coupled simulations relative to the one-way coupled
simulation in Fig. 4a. Blue indicates a reduced flooded area within the corresponding cell, while red implies an increase in flooded area.

sea level leads to an increase in the coastal inundation area.
Additionally, there is a notable interaction between Q and
SSH. Increased river discharge tends to elevate local SSH,
while high SSH can impede river discharge (Dykstra and Dz-
wonkowski, 2020). This mutual interaction, frequently ob-
served in CF events, underscores the complexity of the inter-
active processes influencing both riverine and coastal flood-
ing dynamics, which need to be jointly considered in the two-
way river—ocean coupled E3SM.

The cascading of meteorological uncertainty within the
E3SM framework is assessed using CV and NMAD (see
Egs. 4 and 5) (Fig. 8). Both metrics suggest an amplifica-
tion of meteorological uncertainty from atmospheric simu-
lations throughout the multi-component system. In the con-
text of riverine flooding, the variability among the ensemble
for hydrological drivers such as surface runoff (Qgyr), sub-
surface runoff (Qgyup), and infiltration (Qjnq) is found to be
comparable to that observed in precipitation. However, this
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variability escalates in riverine flood parameters, i.e., Q and
Aviver, Where the CV and NMAD values are approximately 2-
fold those in precipitation. For coastal flooding, uncertainty
increases from Uying to SSH, which directly impacts coastal
inundation levels (Aocean). Much smaller uncertainty is pre-
sented in Qgoil and Pyjr. This analysis highlights the cascad-
ing nature of uncertainties from atmospheric inputs through
meteorological and hydrological processes to final flood out-
comes.

The analysis of the uncertainty path and propagation im-
plies the critical role of hydrological drivers. By quantifying
their relative contributions, we can better understand their
roles in shaping the variability in riverine flooding outcomes,
thereby refining the predictability of ESMs.
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Figure 8. CV (light bars) and NMAD (dark bars with black mar-
gins) computed from the simulation ensembles for the variables se-
lected in Sect. 2.3, including precipitation (precip), surface runoff
(Qsur), subsurface runoft (Qgyp), infiltration (Qjng) and soil wa-
ter storage (Qyoil), river discharge (Q), riverine inundation area
(Ariver), coastal inundation area (Agcean ), sea surface height (SSH),
air pressure (Pyj;), and wind speed (Uyinq)- Red and blue bars indi-
cate riverine and coastal flood drivers, respectively.

3.3 Relative importance of hydrological drivers

The extended ensemble simulations provide a wide range
of scenarios, encompassing both lower and higher magni-
tudes of river discharge and riverine inundation compared
to those observed during Hurricane Irene (Figs. S6 and S7).
The ANNS, trained from the ensemble output, achieve high
skill scores. The r2 and normalized root mean squared error
(NRMSE) values for the first ANN are 0.96 and 0.04, respec-
tively, and are 0.97 and 0.03 for the second ANN.

Regarding the cumulative impacts over the entire Irene
lifetime, the permutation importance derived from the first
ANN highlights the crucial impact of AMC, fdrain, and fover
on Qgr, Osub, Qinfl, and Qsoil, respectively, whereas pre-
cipitation shows more evenly distributed impacts on all the
drivers (Fig. 9a). It should be noted that the relatively low
permutation importance values for precipitation do not sug-
gest it is less important compared to the other factors. Rather,
this is because in our ensemble, AMC, fyrain, and foyer €n-
compass a broader range of scenarios, whereas precipitation
is from the Irene ensemble of simulations that only repre-
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Figure 9. (a) Permutation importance of perturbation parameters
(precipitation, AMC (antecedent soil moisture condition), fgrain.
and fover) for the hydrological drivers of surface runoff (Qsur),
subsurface runoff (Qgyup), infiltration (Qjng), and soil water stor-
age (Qgoil)- The corresponding boxplot of each driver is provided
in rows 14 of Fig. S8. (b) The permutation importance of hydro-
logical drivers for river discharge (Q) and flooded area (Ayiyer). The
coastal inundation area (Aocean) is not considered for this analysis
as MPAS-O is excluded from the expanded ensemble simulations.
The scatterplots of Q and Ayjyer against the drivers are provided in
the fifth and sixth rows, respectively, of Fig. S6.

sent event-specific outcomes. The results of fyrin and fover
align well with their definitions in ELM (Appendix A), as
farain and fover dominate the change in Qg and Qgyy, re-
spectively. Precipitation affects Qgur, Qgsub, and Qing nearly
equally, which corresponds to their similar response pre-
sented in Fig. 7.

The second ANN analyzes the impact of hydrological
drivers on riverine flooding, i.e., river discharge (Q) and
flooded area (Ariver) (Fig. 9b). Our analysis demonstrates
that Qg and Qgup have similar influences on Q, whereas
Qinfi shows a limited effect. In terms of Ayjver, Qsur acts as
the dominant factor, whereas Qg and Qjng are less impor-
tant but cannot be ignored. Qg has a minimal impact on
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both variables. The discrepancy between Q and Ayjyer in their
responses to these hydrological drivers can be attributed to
the nature of the hydrology: river discharge is directly af-
fected by surface runoff and subsurface runoff, which are
immediate responses to precipitation. In contrast, inundation
across the river basin is more complex, as infiltration exerts
a more localized effect and surface runoff may cause rapid
flooding in response to intense rainfall. This differential im-
pact implies the need for monitoring day-to-day variations
in these drivers throughout the event to understand their dy-
namic role.

The time evolution of the permutation importance in the
second ANN, trained on daily data during Hurricane Irene,
illustrates the dynamic roles of hydrological drivers in re-
sponse to the event and their contributions to riverine flood-
ing. For river discharge, the influence of Qg and Qg varies
notably before and during the peak flow (Fig. 10). Specifi-
cally, peak discharge was observed on 30 August at the river
outlet (see Fig. 15 in Feng et al., 2024), a period when Qgyr
was predominant. In contrast, Qgp, Which typically con-
tributes to baseflow, exerted more influence before the peak.
Following the peak, the contributions of Qgyr, Osub, and Qing
leveled out as significant infiltration into the soil increased
soil moisture, revealing a more significant effect of Qo than
that seen in its event cumulative impact (Fig. 9). The role of
soil emerges as vital, acting as a buffer that modulates flood-
ing during the heavy precipitation induced by the TC event.
As the event progressed post-peak, there was a noticeable
shift with a decreasing impact from Qg along with a bell-
shaped variation in Qing and Qi1 In terms of Ayjyer, the dy-
namics slightly differ. Qg began dominating on 28 August,
2 d earlier compared to Q, indicating the routing of discharge
from the basin upstream to the outlet. These results reveal the
importance of accurate runoff separation in the ESM frame-
work for accurately modeling the time-varying nature of hy-
drological drivers.

4 Discussions
4.1 Uncertainties of CF simulations in E3SM

Integrating different coupling schemes into E3SM has a large
impact on the simulated flooding. The exclusion of ocean
coupling resulted in underestimations of the flood extent
caused by tide and storm surges, critical for coastal flood
assessments. Likewise, we showed that neglecting two-way
land-river—ocean interactions distorted the modeled hydro-
logical and hydrodynamic responses to the TC event, as the
interactive mechanisms between terrestrial and aquatic sys-
tems were overlooked. Therefore, integrating comprehen-
sive coupling mechanisms is essential for improving the pre-
dictability of ESMs, particularly in coastal regions vulnera-
ble to complex, multivariate CF events. Additionally, we di-
rectly compared the uncertainty introduced by model cou-

Nat. Hazards Earth Syst. Sci., 25, 3619-3639, 2025

D. Feng et al.: Disentangling Uncertainties in Compound Flood Modeling with an Earth System Model

pling with that from atmospheric forcing (Table S1 in the
Supplement). The atmospheric uncertainty, quantified as the
spread of flood metrics across ensemble members in Experi-
ment 3, is comparable to the uncertainty introduced by two-
way land-river and river—ocean coupling when only riverine
inundation is considered (Exp 3—Exp 1 and Exp 3-Exp 1).
However, when coastal inundation is included, the coupling-
induced uncertainty becomes substantially larger across all
metrics. The discharge also shows more variability in the
river-ocean coupling experiment (Exp 3) than in the atmo-
spheric ensemble, indicating the significant influence of the
two-way river—ocean coupling configuration on flow dynam-
ics. These results highlight the need to consider both mete-
orological variability and structural model uncertainty when
evaluating flood risk in the coupled ESM framework.

The complexities and inherent variabilities of hydrological
drivers significantly influence flood exposure through their
interactions with meteorological conditions. Particularly, the
soil’s ability to buffer flood water crucially impacts the onset
and development of floods (Fig. 10) (Bloschl, 2022). Predict-
ing these effects remains challenging, primarily due to the
spatial variability of soil characteristics and the spatiotem-
poral unpredictability of precipitation, such as shifting storm
tracks and fluctuating intensity. This uncertainty is further
compounded by key hydrological drivers in the land surface
model. These parameters affect both the intensity and the ex-
tent of runoff-driven inundation as well as the soil’s response
to precipitation (Fig. 9). To address these challenges, CF
modeling requires detailed land surface data and advanced
modeling techniques, such as the incorporation of lateral
flow (Qiu et al., 2024) and enhanced land—ocean and land—
atmosphere coupling (Lin et al., 2023; Xu et al., 2024), to
accurately simulate the interplay between atmospheric, land,
and river processes.

As discussed above, unlike single-driver flooding that can
be simulated in isolated system components, the simula-
tion of CF needs multi-component models, such as E3SM,
which are capable of representing the compounding nature
among drivers. However, this also introduces layers of ad-
ditional uncertainties, particularly in the integration and in-
teraction of model components (Jafarzadegan et al., 2023).
Moreover, while regional models often focus on uncertain-
ties arising from prescribed input forcings (Abbaszadeh et
al., 2022; Muiioz et al., 2024), the uncertainties in ESMs can
propagate bidirectionally through the coupled framework fa-
cilitated by two-way coupling schemes, which highlights the
contrast in how uncertainties are generated and managed be-
tween regional models and ESMs. Quantifying these uncer-
tainties within an integrated framework is crucial for advanc-
ing our understanding of CF but remains a formidable chal-
lenge. It necessitates a comprehensive examination of atmo-
spheric, hydrological, oceanic, and coupling uncertainties,
a task that extends well beyond the capabilities of single-
component models.
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Figure 10. Time evolution of permutation importance (scaled between 0 and 1) of the four hydrological drivers for (a) river discharge (Q)
and (b) flooded area (Ajyer). The corresponding skill scores (r% and NRMSE) of the ANNGs trained using daily data are provided in Fig. S9.

The Irene-induced peak river discharge is on 30 August 2011.

4.2 Definition of “compound” flooding

While previous CF studies predominantly focus on the con-
tributions of high discharge, direct runoff, and precipitation
to riverine flooding, our analysis reveals the underappreci-
ated roles of other hydrological factors — particularly infiltra-
tion and AMC — in the context of CF. These factors signifi-
cantly influence the flood dynamics in response to TC events.
Specifically, we demonstrate that the concurrent occurrence
of wet AMC with other CF drivers is not typically accounted
for, implying a critical gap in the current CF definition. To
capture a broad spectrum of plausible riverine flooding out-
comes under varying simulated Irene tracks and AMC condi-
tions, we extracted simulations from the expanded ensemble
run by maintaining the default values for fyrin and fover, re-
sulting in 25 diverse scenarios. These scenarios suggest that
a TC preceded by a wet AMC could drastically escalate flood
extent. Notably, in all AMC scenarios, we observed a general
increase in Q and Aqjyer corresponding to increasing precipi-
tation in DRB (Fig. 11a and b).

The variability within these simulations shows that the
highest discharge was approximately 47 % greater than the
lowest discharge and 32 % higher than during Irene itself
(Fig. 11a). Moreover, in the worst-case inundation scenario,
flooded areas could increase to more than twice (~ 2.4) the
size of the flooded areas in the best scenario and the ac-
tual Irene event (Fig. 11b). Interestingly, the modeled inun-
dation area for Irene closely aligns with the best-case sce-
nario (Fig. 11b and c), despite the fact that Irene occurred un-
der a relatively wet AMC (i.e., 75th-percentile AMC). This
reflects an asymmetric hydrological response: while drier
AMC scenarios show only modest reductions in flood ex-
tent, the scenario with saturated soils (AMC100) leads to a
disproportionately large increase in peak discharge and in-
undation. This is likely because, despite the wet soils prior
to Irene, there remained sufficient infiltration capacity at the
storm’s onset. In contrast, further increases in AMC rapidly
exceed that capacity, exacerbating surface runoff and flood
hazards. This nonlinear amplification highlights the critical
role of AMC in modulating compound flood severity. More
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alarmingly, the expansion of maximum inundation extent
from Irene predominantly affects low-lying areas (Fig. 11c),
increasing the extent of flooding, raising potential risks to
coastal residents, and highlighting the challenges in model-
ing complex river—ocean interactions, especially considering
the effect of sea level rise. These findings suggest a broader
definition of CF is needed. Similarly to rain-on-snow flood-
ing that may be classified as one type of CF (Zarzycki et
al., 2024), a “compounding” event should also consider the
co-occurrence of TCs and hydrological extremes, such as
AMC, as high AMC can significantly amplify the TC flood
impacts.

4.3 Application of advanced ESMs in multivariate
flood simulations

The application of E3SM in multivariate flood simulations
brings a unique set of capabilities, especially when com-
pared to fine-scale regional models. E3SM, with its ability
to simulate interactions across various Earth system compo-
nents — atmosphere, land, river and ocean — offers a robust
framework for understanding cross-scale environmental dy-
namics. Even with regional refinement, E3SM may still not
be able to provide the street-level details of flood inunda-
tion because of missing processes (e.g., pluvial inundation)
and computational constraints. Although such capability is
often crucial for urban planning and local flood risk manage-
ment, large-scale E3SM has distinct advantages for broader
application scopes. Given the global domain and compo-
nent complexity, the relatively efficient runtime makes the
framework suitable for disentangling interconnected drivers
of complex physical processes and their cascading effects
through ensemble-based analyses. This efficiency is crucial
for running multiple-scenario ensembles, which is essential
for understanding the impacts of variability from physical
drivers and climate change over extended periods, making
it possible to simulate interactions like the newly developed
two-way coupling between land, river, and ocean. Although
in Sect. 3.1 our analysis indicates that the land-river two-way
coupling has relatively low impacts in short-term modeling
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consistent with Fig. 4.

of scenarios, its significance could increase in long-term cli-
mate simulations where gradual environmental changes play
a more prominent role. Furthermore, E3SM provides the po-
tential for climate change simulations, where the interactions
of multiple planetary systems need to be considered over
global scales and decadal to centennial timescales.

4.4 Limitations and future work

Despite these strengths, there are inherent challenges and po-
tential sources of uncertainty in using E3SM for flood sim-
ulations. These uncertainties can stem from the models’ res-
olution, numerical methods, the accuracy of input data, and
the parameterization of complex hydrological and meteoro-
logical processes.

One limitation of this study is the exclusion of the ocean
model in the expanded ensemble simulations, primarily due
to the high computational costs associated with running the
global MPAS-O. As a result, the influence of hydrologi-
cal processes on compound riverine—coastal flooding could
not be evaluated using the proposed ANN approach. Future
work may focus on enhancing the computational efficiency
and feasibility of MPAS-O, for instance, by implement ad-
vanced schemes such as local time stepping (Capodaglio and
Petersen, 2022; Lilly et al., 2023) and/or developing a re-
gional ocean model within the E3SM framework. Currently,
MPAS-O is geared towards global simulations, but adapting
it for regional use with the merging of high-resolution lo-
cal bathymetry data could allow for more accurate and lo-
cally relevant flood simulations, integrating two-way land—
ocean coupling to account for ocean water intrusion (Xu et
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al., 2024) and its effect on soil moisture along coastlines.
This is particularly relevant given our findings on the sig-
nificant role of soil moisture in the context of TC-induced
flooding. As a key driver of coastal flooding, sea level rise
(SLR) (Kulp and Strauss, 2019) can also interact with future
AMC scenarios (Deb et al., 2023). This interaction may fur-
ther amplify the flood hazards, which should be considered
for more accurate CF risk assessment.

Another avenue for future research involves conducting
long-term climate change simulations to assess the impact
of climatic drivers on CF dynamics. The existing long-term
atmospheric forcing dataset does not adequately capture ex-
treme TC events (Feng et al., 2024). Alternatively, employing
a storyline approach (Pettett and Zarzycki, 2023) for event-
specific studies could offer a more nuanced and scenario-
based method to explore these extreme events and their in-
teractions with other environmental drivers. This approach
would not only enhance our understanding of climatic im-
pacts on flooding but also improve the strategic planning and
management of flood risks in vulnerable regions.

Our study demonstrates that parameters in runoff gener-
ation (i.e., fdrain and fover) significantly influence river dis-
charge and inundation (Figs. S4 and S5). When these param-
eters are considered alongside uncertainties in AMC and pre-
cipitation, the variability in flood outcomes expands consid-
erably (Figs. S6 and S7). This broader range of variability ex-
ceeds that shown in Fig. 11, indicating complex interactions
between soil properties and hydrological drivers. Given the
critical global variability of soil properties, as indicated by
the spatial distribution of fgryin and fover in Xu et al. (2022a),
we anticipate a greater variability in CF impacts that are de-
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pendent on soil conditions and land cover (Tran et al., 2024),
in addition to topography (Feng et al., 2023b). Furthermore,
impervious surfaces, which are prevalent in coastal urban ar-
eas, may alter local runoff generation parameters (Zhang et
al., 2018). This suggests that these parameters might require
high-resolution representation in ELM to accurately reflect
their spatial heterogeneity and to better represent urban ar-
eas (Li et al., 2024). Future work should focus on refining
the spatial resolution in models to better capture the hetero-
geneity of soil and urban properties. This improvement could
lead to more accurate simulations of how different land sur-
face conditions affect flood dynamics, particularly in diverse
geographic settings.

5 Conclusions

This study leverages the advanced capabilities of E3SM to
improve our understanding of compound river and coastal
flooding, highlighting the dynamic interaction between hy-
drological, riverine, and coastal processes. Our research
demonstrates that an integrated atmosphere, land, river, and
ocean system improves the representation of multivariate
flooding processes relative to partially coupled configura-
tions while enabling the analysis of cascading uncertainties
through the multi-component Earth system modeling frame-
work. The findings emphasize the significant influence of hy-
drological drivers, which can dramatically intensify the im-
pacts of TC-driven flooding. This study not only showcases
the robustness of E3SM in bridging gaps in current modeling
approaches but also proposes a broader definition of CF that
incorporates concurrent hydrological extremes. The implica-
tions of our research are profound, advocating for the inclu-
sion of advanced, integrated modeling frameworks in future
climate impact assessments to better predict and mitigate the
risks of severe flooding events.

Appendix A: Runoff generation parameters in ELM

This section provides the definitions for the runoff generation
parameters fover and farain in ELM. The fraction of precipita-
tion reaching the ground (Q)iq) that generates surface runoff
(Qgur) 1s determined by the saturation fraction (fga) of the
grid cell:

Osur = fsathiq s (A1)
fsat = fmax eXP(—O-Sfoveer) s (A2)

where fimax is the potential or maximum saturation fraction
of a grid cell, zy is the water table depth, and fyyer is a decay
factor for surface runoff (Niu et al., 2005). The subsurface
runoff is parameterized as an exponential function of zy:

Osub = Ojce qub, max €XP(— fdrainZv) , (A3)

where Ojc. is the ice impedance factor, Qgb, max 1S the max-
imum drainage rate, and fgr,iy is a decay factor.
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Appendix B: ANN and permutation importance

In our setup, each ANN model included a hidden layer com-
prising 64 neurons, optimized using an adaptive optimization
algorithm, the Adam optimizer (Kingma and Ba, 2014). We
selected mean square error (MSE) as the loss function to ef-
fectively measure the accuracy of predictions during training,
which was conducted on the deep learning platform Tensor-
Flow (Abadi et al., 2016). The model completed 600 epochs
with a batch size of 32 to ensure thorough learning and con-
vergence. Before training, the data were randomly split into
training and testing datasets, with 80 % used for training and
20 % for testing, and each variable is normalized with respect
to its maxima. The ANN performance was evaluated on the
testing dataset using the coefficient of determination (%) and
normalized root mean squared error (NRMSE).

Despite the high accuracy achieved by ANN models, it
can be challenging to pinpoint the specific influence of in-
dividual input variables on output variables (Pires dos Santos
et al., 2019). Herein, we employed permutation importance
to measure the relative significance of input features within
complex ANN models. Permutation importance is a tech-
nique used to evaluate the importance of features in a pre-
dictive model (Fisher et al., 2019). It assesses the impact of
each feature on the model’s performance by measuring how
much the model’s performance decreases when the values of
that feature are randomly permuted while leaving other fea-
tures unchanged (§trumbe1j and Kononenko, 2014; Shriku-
mar et al., 2017). This method allows quantifying how vari-
ations in a single input feature can affect a particular output
or overall predictive accuracy. In this study, we computed
permutation importance using SHAP (Shapley Additive Ex-
planations; Lundberg and Lee, 2017) on the test dataset.

Code and data availability. The E3SM source code
developed in this study 1is available at Zenodo at
https://doi.org/10.5281/zenodo.10927690  (Feng, 2024). The

HexWatershed simulation results are archived at Zenodo at
https://doi.org/10.5281/zenodo.14664927 (Liao, 2025). All simula-
tion outputs and processing scripts will be shared upon reasonable
request.
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