Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3505-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3505-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predicting Soil Salinity in the Red River Delta (Vietnam) Using Machine Learning and Assessing Farmers' Adaptive Capacity
Huu Duy Nguyen
CORRESPONDING AUTHOR
Faculty of Geography, VNU University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan district, Hanoi City, Vietnam
Dinh Kha Dang
Faculty of Hydrology, Meteorology, and Oceanography, VNU University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan district, Hanoi, Vietnam
Thi Anh Tam Lai
Faculty of Geography, VNU University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan district, Hanoi City, Vietnam
Duc Dung Tran
National Institute of Education, Nanyang Technological University, Singapore, Singapore
Center of Water Management and Climate Change, Institute for Environment and Resources, Vietnam National University, Ho Chi Minh City, Vietnam
Himan Shahabi
Departments of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Sanandaj City, Kurdistan Province, Iran
Quang-Thanh Bui
Faculty of Geography, VNU University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan district, Hanoi City, Vietnam
Cited articles
Aksoy, S., Sertel, E., Roscher, R., Tanik, A., and Hamzehpour, N.: Assessment of soil salinity using explainable machine learning methods and Landsat 8 images, Int. J. Appl. Earth Obs. Geoinf., 130, 103879, https://doi.org/10.1016/j.jag.2024.103879, 2024.
Al-Sarray, N. H. S., Rahebi, J., and Demirhan, A.: Detection of DDoS attacks in SDN with Siberian Tiger Optimization algorithm and deep learning, Research Square, https://doi.org/10.21203/rs.3.rs-4105679/v1, 2024.
Alamir, N., Kamel, S., Megahed, T. F., Hori, M., and Abdelkader, S. M.: Developing hybrid demand response technique for energy management in microgrid based on pelican optimization algorithm, Electr. Power Syst. Res., 214, 108905, https://doi.org/10.1016/j.epsr.2022.108905, 2023.
Asfaw, E., Suryabhagavan, K., and Argaw, M.: Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia, J. Saudi Soc. Agric. Sci., 17, 250–258, https://doi.org/10.1016/j.jssas.2016.05.003, 2018.
Bandak, S., Movahedi-Naeini, S. A., Mehri, S., and Lotfata, A.: A longitudinal analysis of soil salinity changes using remotely sensed imageries, Sci. Rep., 14, 10383, https://doi.org/10.1038/s41598-024-60033-6, 2024.
Bhuyan, M. I., Supit, I., Kumar, U., Mia, S., and Ludwig, F.: The significance of farmers' climate change and salinity perceptions for on-farm adaptation strategies in the south-central coast of Bangladesh, J. Agric. Food Res., 16, 101097, https://doi.org/10.1016/j.jafr.2024.101097, 2024.
Bui, D. T., Pradhan, B., Nampak, H., Bui, Q.-T., Tran, Q.-A., and Nguyen, Q.-P.: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS, J. Hydrol., 540, 317–330, https://doi.org/10.1016/j.jhydrol.2016.06.027, 2016.
Castelletti, A., Pianosi, F., Quach, X., and Soncini-Sessa, R.: Assessing water reservoirs management and development in Northern Vietnam, Hydrol. Earth Syst. Sci., 16, 189–199, https://doi.org/10.5194/hess-16-189-2012, 2012.
Cullu, M. A.: Estimation of the effect of soil salinity on crop yield using remote sensing and geographic information system, Turkish, J. Agric. For., 27, 23–28, 2003.
Dasgupta, S., Laplante, B., Murray, S., and Wheeler, D.: Climate change and the future impacts of storm-surge disasters in developing countries, Center for Global Development Working Paper, https://doi.org/10.2139/ssrn.1479650, 2009.
Dehghani, M. and Trojovský, P.: Serval optimization algorithm: a new bio-inspired approach for solving optimization problems, Biomimetics, 7, 204, https://doi.org/10.3390/biomimetics7040204, 2022.
Du, L., Tian, S., Zhao, N., Zhang, B., Mu, X., Tang, L., Zheng, X., and Li, Y.: Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China, J. Arid Land, 1–18, https://doi.org/10.1007/s40333-024-0060-9, 2024.
Eldeiry, A. A., Garcia, L. A., and Reich, R. M.: Soil salinity sampling strategy using spatial modeling techniques, remote sensing, and field data, J. Irrig. Drain. Eng., 134, 768–777, 2008.
Elshewy, M. A., Mohamed, M. H., and Refaat, M.: Developing a soil salinity model from landsat 8 satellite bands based on advanced machine learning algorithms, J. Indian Soc. Remote Sens., 52, 617–632, https://doi.org/10.1007/s12524-024-01841-1, 2024.
Fathizad, H., Ardakani, M. A. H., Sodaiezadeh, H., Kerry, R., and Taghizadeh-Mehrjardi, R.: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran, Geoderma, 365, 114233, https://doi.org/10.1016/j.geoderma.2020.114233, 2020.
Fu, C., Gan, S., Yuan, X., Xiong, H., and Tian, A.: Determination of soil salt content using a probability neural network model based on particle swarm optimization in areas affected and non-affected by human activities, Remote Sens. 10, 1387, https://doi.org/10.3390/rs10091387, 2018.
Gong, Z., He, H., Fan, D., Sheng, J., and Zhang, X.: Inversion of sea surface salinity in Bay of Bengal based on Catboost algorithm, Second International Conference on Geographic Information and Remote Sensing Technology (GIRST 2023), 297–304, 2023.
Hardie, M. and Doyle, R.: Measuring soil salinity, Plant salt tolerance: methods and protocols, edited by: Shabala, S., and Cuin, T. A., Humana Totowa, NJ, 415–425, https://doi.org/10.1007/978-1-61779-986-0, 2012.
He, Y., Yin, H., Chen, Y., Xiang, R., Zhang, Z., and Chen, H.: Soil Salinity Estimation based on Sentinel-1/2 Texture Features and Machine Learning, IEEE Sensors Journal, 24, 15302–15310, https://doi.org/10.1109/JSEN.2024.3377682, 2024.
Hien, N. T., Yen, N. H., Balistrocchi, M., Peli, M., Cat, V. M., and Ranzi, R.: Salinity dynamics under different water management plans coupled with sea level rise scenarios in the Red River Delta, Vietnam, J. Hydro.-Environ. Res. 51, 67–81, https://doi.org/10.1016/j.jher.2023.10.003, 2023.
Hoa, P. V., Giang, N. V., Binh, N. A., Hai, L. V. H., Pham, T.-D., Hasanlou, M., and Tien Bui, D.: Soil salinity mapping using SAR sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam), Remote Sens. 11, 128, https://doi.org/10.3390/rs11020128, 2019.
Hoang, L. P., Pot, M., Tran, D. D., Ho, L. H., and Park, E.: Adaptive capacity of high- and low dyke farmers to hydrological changes in the Vietnamese Mekong delta, Environ. Res. 224, 115423, https://doi.org/10.1016/j.envres.2023.115423, 2023.
Hoang, N. K. and Hai, D. T.: Assessing surface water salinity intrusion in the Mekong River Delta: a case study in Rach Gia, Vietnam, GeoJournal, 89, 171, https://doi.org/10.1007/s10708-024-11192-6, 2024.
Hung, N. M. and Larson, M.: Coastline and river mouth evolution in the central part of the Red River Delta, in: Coastal disasters and climate change in Vietnam, Coastal Disasters Clim. Change Vietn., 43–79, https://doi.org/10.1016/B978-0-12-800007-6.00003-4, 2014.
Ingle, K. K. and Jatoth, R. K.: Non-linear Channel Equalization using Modified Grasshopper Optimization Algorithm, Appl. Soft Comput., 153, 110091, https://doi.org/10.1016/j.asoc.2023.110091, 2024.
Jia, P., Zhang, J., Liang, Y., Zhang, S., Jia, K., and Zhao, X.: The inversion of arid-coastal cultivated soil salinity using explainable machine learning and Sentinel-2, Ecol. Indic., 166, 112364, https://doi.org/10.1016/j.ecolind.2024.112364, 2024.
Jiang, H., Rusuli, Y., Amuti, T., and He, Q.: Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network, Int. J. Remote Sens., 40, 284–306, https://doi.org/10.1080/01431161.2018.1513180, 2019.
Juneja, M. and Nagar, S.: Particle swarm optimization algorithm and its parameters: A review, 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), 1–5, https://doi.org/10.1109/ICCCCM.2016.7918233, 2016.
Kaplan, G., Gašparović, M., Alqasemi, A. S., Aldhaheri, A., Abuelgasim, A., and Ibrahim, M.: Soil salinity prediction using Machine Learning and Sentinel – 2 Remote Sensing Data in Hyper – Arid areas, Phys. Chem. Earth, 130, 103400, https://doi.org/10.1016/j.pce.2023.103400, 2023.
Kennedy, J. and Eberhart, R.: Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks, 1942–1948, 1995.
Le Dang, H., Li, E., Nuberg, I., and Bruwer, J.: Understanding farmers' adaptation intention to climate change: A structural equation modelling study in the Mekong Delta, Vietnam, Environ. Sci. Policy, 41, 11–22, https://doi.org/10.1016/j.envsci.2014.04.002, 2014.
Li, S., Zhang, T., and Yu, J.: Photovoltaic array dynamic reconfiguration based on an improved pelican optimization algorithm, Electronics, 12, 3317, https://doi.org/10.3390/electronics12153317, 2023.
Liu, W., Chen, Z., and Hu, Y.: XGBoost algorithm-based prediction of safety assessment for pipelines, Int. J. Press. Vessels Pip., 197, 104655, https://doi.org/10.1016/j.ijpvp.2022.104655, 2022.
Liu, Y., Han, X., Zhu, Y., Li, H., Qian, Y., Wang, K., and Ye, M.: Spatial mapping and driving factor Identification for salt-affected soils at continental scale using Machine learning methods, J. Hydrol., 639, 131589, https://doi.org/10.1016/j.jhydrol.2024.131589, 2024.
Ma, G., Ding, J., Han, L., Zhang, Z., and Ran, S.: Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms, Reg. Sustain., 2, 177–188, https://doi.org/10.1016/j.regsus.2021.06.001, 2021.
Mazumder, M. S. U. and Kabir, M. H.: Farmers' adaptations strategies towards soil salinity effects in agriculture: the interior coast of Bangladesh, Clim. Policy, 22, 464–479, https://doi.org/10.1080/14693062.2021.2024126, 2022.
Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., and Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems, Appl. Intell., 48, 805–820, https://doi.org/10.1007/s10489-017-1019-8, 2018.
Mo, H., Sun, H., Liu, J., and Wei, S.: Developing window behavior models for residential buildings using XGBoost algorithm, Energy Build., 205, 109564, https://doi.org/10.1016/j.enbuild.2019.109564, 2019.
Moayedi, H., Gör, M., Lyu, Z., and Bui, D. T.: Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficient, Measurement, 152, 107389, https://doi.org/10.1016/j.measurement.2019.107389, 2020.
Moayedi, H., Nguyen, H., and Kok Foong, L.: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network, Eng. Comput., 37, 1265–1275, https://doi.org/10.1007/s00366-019-00882-2, 2021.
Mukhamediev, R. I., Merembayev, T., Kuchin, Y., Malakhov, D., Zaitseva, E., Levashenko, V., Popova, Y., Symagulov, A., Sagatdinova, G., and Amirgaliyev, Y.: Soil Salinity Estimation for South Kazakhstan Based on SAR Sentinel-1 and Landsat-8, 9 OLI Data with Machine Learning Models, Remote Sens., 15, 4269, https://doi.org/10.3390/rs15174269, 2023.
Nguyen, H. D.: Hybrid models based on deep learning neural network and optimization algorithms for the spatial prediction of tropical forest fire susceptibility in Nghe An province, Vietnam, Geocarto Int., 37, 11281–11305, https://doi.org/10.1080/10106049.2022.2048904, 2022.
Nguyen, H. D., Van, C. P., Nguyen, T. G., Dang, D. K., Pham, T. T. N., Nguyen, Q.-H., and Bui, Q.-T.: Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam's Mekong River Delta, Environ. Sci. Pollut. Res., 30, 74340–74357, https://doi.org/10.1007/s11356-023-27516-x, 2023.
Nguyen, M. T., Renaud, F. G., and Sebesvari, Z.: Drivers of change and adaptation pathways of agricultural systems facing increased salinity intrusion in coastal areas of the Mekong and Red River deltas in Vietnam, Environ. Sci. Policy, 92, 331–348, https://doi.org/10.1016/j.envsci.2018.10.016, 2019.
Nguyen, P. T., Koedsin, W., McNeil, D., and Van, T. P.: Remote sensing techniques to predict salinity intrusion: application for a data-poor area of the coastal Mekong Delta, Vietnam, Int. J. Remote Sens., 39, 6676–6691, https://doi.org/10.1080/01431161.2018.1466071, 2018.
Nguyen, Q. H. and Takewaka, S.: Land subsidence and its effects on coastal erosion in the Nam Dinh Coast (Vietnam), Cont. Shelf Res., 207, 104227, https://doi.org/10.1016/j.csr.2020.104227, 2020.
Nguyen, T. G., Tran, N. A., Vu, P. L., Nguyen, Q.-H., Nguyen, H. D., and Bui, Q.-T.: Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: A case study in Vietnam's Mekong Delta, Geoderma Reg., 27, e00424, https://doi.org/10.1016/j.geodrs.2021.e00424, 2021.
Nguyen, V. H., Germer, J., and Asch, F.: Evaluating topsoil salinity via geophysical methods in rice production systems in the Vietnam Mekong Delta, J. Agron. Crop Sci., 210, e12676, https://doi.org/10.1111/jac.12676, 2024.
Nguyen, Y. T. B., Kamoshita, A., Dinh, V. T. H., Matsuda, H., and Kurokura, H.: Salinity intrusion and rice production in Red River Delta under changing climate conditions, Paddy Water Environ., 15, 37–48, https://doi.org/10.1007/s10333-016-0526-2, 2017.
Nhuan, M. T., Van Ngoi, C., Nghi, T., Tien, D. M., van Weering, T. C., and van den Bergh, G.: Sediment distribution and transport at the nearshore zone of the Red River delta, Northern Vietnam, J. Asian Earth Sci., 29, 558–565, https://doi.org/10.1016/j.jseaes.2006.03.007, 2007.
Premkumar, N. and Santhosh, R.: Pelican optimization algorithm with blockchain for secure load balancing in fog computing, Multimed. Tools Appl., 83, 53417–53439, https://doi.org/10.1007/s11042-023-17632-8, 2024.
Quang, N. H., Viet, T. Q., Thang, H. N., and Hieu, N. T. D.: Long-term water level dynamics in the Red River basin in response to anthropogenic activities and climate change, Sci. Total Environ, 912, 168985, https://doi.org/10.1016/j.scitotenv.2023.168985, 2024.
Ramraj, S., Uzir, N., Sunil, R., and Banerjee, S.: Experimenting XGBoost algorithm for prediction and classification of different datasets, Int. J. Control Theory Appl., 9, 651–662, 2016.
Rhoades, J. and Ingvalson, R.: Determining salinity in field soils with soil resistance measurements, Soil Sci. Soc. Am. J., 35, 54–60, https://doi.org/10.2136/sssaj1971.03615995003500010020x, 1971.
Rini, D. P., Shamsuddin, S. M., and Yuhaniz, S. S.: Particle swarm optimization: technique, system and challenges, Int. J. Comput. Appl., 14, 19–26, 2011.
Ruidas, D., Chakrabortty, R., Islam, A. R. M. T., Saha, A., and Pal, S. C.: A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India, Environ. Earth Sci, 81, 145, https://doi.org/10.1007/s12665-022-10269-0, 2022.
Shi, H., Hellwich, O., Luo, G., Chen, C., He, H., Ochege, F. U., Van de Voorde, T., Kurban, A., and De Maeyer, P.: A global meta-analysis of soil salinity prediction integrating satellite remote sensing, soil sampling, and machine learning, IEEE Trans. Geosci. Remote Sens., 60, 1–15, https://doi.org/10.1109/TGRS.2021.3109819, 2021.
Sindi, A. O. N., Si, P., and Li, Q.: Secure Task Offloading and Resource Allocation Strategies in Mobile Applications Using Probit Mish-Gated Recurrent Unit and an Enhanced-Searching-Based Serval Optimization Algorithm, Electronics, 13, 2462, https://doi.org/10.3390/electronics13132462, 2024.
Song, Y., Gao, M., and Wang, J.: Inversion of salinization in multilayer soils and prediction of water demand for salt regulation in coastal region, Agric. Water Manag., 301, 108970, https://doi.org/10.1016/j.agwat.2024.108970, 2024.
Su, Y., Li, T., Cheng, S., and Wang, X.: Spatial distribution exploration and driving factor identification for soil salinisation based on geodetector models in coastal area, Ecol. Eng, 156, 105961, https://doi.org/10.1016/j.ecoleng.2020.105961, 2020.
Tan, J., Ding, J., Han, L., Ge, X., Wang, X., Wang, J., Wang, R., Qin, S., Zhang, Z., and Li, Y.: Exploring planetScope satellite capabilities for soil salinity estimation and mapping in arid regions oases, Remote Sens. 15, 1066, https://doi.org/10.3390/rs15041066, 2023.
Thiam, H. I., Owusu, V., Villamor, G. B., Schuler, J., and Hathie, I.: Farmers' intention to adapt to soil salinity expansion in Fimela, Sine-Saloum area in Senegal: A structural equation modelling approach, Land Use Policy, 137, 106990, https://doi.org/10.1016/j.landusepol.2023.106990, 2024.
Tran, V. N. and Kim, J.: Robust and efficient uncertainty quantification for extreme events that deviate significantly from the training dataset using polynomial chaos-kriging, J. Hydrol., 609, 127716, https://doi.org/10.1016/j.jhydrol.2022.127716, 2022.
Trojovský, P. and Dehghani, M.: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications, Sensors, 22, 855, https://doi.org/10.3390/s22030855, 2022.
Trojovský, P., Dehghani, M., and Hanuš, P.: Siberian tiger optimization: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems, Ieee Access, 10, 132396–132431, https://doi.org/10.1109/ACCESS.2022.3229964, 2022.
Vermeulen, D. and Van Niekerk, A.: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates, Geoderma, 299, 1–12, https://doi.org/10.1016/j.geoderma.2017.03.013, 2017.
Vinh, V. D., Ouillon, S., Thanh, T. D., and Chu, L.: Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta, Hydrol. Earth Syst. Sci., 18, 3987–4005, https://doi.org/10.5194/hess-18-3987-2014, 2014.
Wang, H., Hsieh, Y. P., Harwell, M. A., and Huang, W.: Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions, Ecol. Model., 201, 429–439, https://doi.org/10.1016/j.ecolmodel.2006.10.013, 2007.
Wang, H., Zhang, L., Zhao, J., Hu, X., and Ma, X.: Application of hyperspectral technology combined with bat algorithm-AdaBoost model in field soil nutrient prediction, Ieee Access, 10, 100286–100299, https://doi.org/10.1109/ACCESS.2022.3207778, 2022.
Wang, J., Peng, J., Li, H., Yin, C., Liu, W., Wang, T., and Zhang, H.: Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas, China, Remote Sens, 13, 305, https://doi.org/10.3390/rs13020305, 2021.
Wang, J., Wang, X., Zhang, J., Shang, X., Chen, Y., Feng, Y., and Tian, B.: Soil Salinity Inversion in Yellow River Delta by Regularized Extreme Learning Machine Based on ICOA, Remote Sens, 16, 1565, https://doi.org/10.3390/rs16091565, 2024.
Wang, W. and Sun, J.: Estimation of soil salinity using satellite-based variables and machine learning methods, Earth Sci. Inform., 17, 5049–5061, https://doi.org/10.1007/s12145-024-01467-4, 2024.
Wu, W., Zucca, C., Muhaimeed, A. S., Al-Shafie, W. M., Fadhil Al-Quraishi, A. M., Nangia, V., Zhu, M., and Liu, G.: Soil salinity prediction and mapping by machine learning regression in C entral M esopotamia, I raq, Land Degrad. Dev., 29, 4005–4014, https://doi.org/10.1002/ldr.3148, 2018.
Xiao, C., Ji, Q., Chen, J., Zhang, F., Li, Y., Fan, J., Hou, X., Yan, F., and Wang, H.: Prediction of soil salinity parameters using machine learning models in an arid region of northwest China, Comput. Electron. Agric., 204, 107512, https://doi.org/10.1016/j.compag.2022.107512, 2023.
Xiao, S., Nurmemet, I., and Zhao, J.: Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China, Plant and Soil, 498, 451–469, https://doi.org/10.1007/s11104-023-06446-0, 2024.
Xie, J., Shi, C., Liu, Y., Wang, Q., Zhong, Z., Wang, X., and He, S.: Feature Variable Selection Methods for Inversion of Soil Salinity at the Irrigation District Scale Based on Machine Learning, Available at SSRN 4865442, 2025.
Yuen, K. W., Hanh, T. T., Quynh, V. D., Switzer, A. D., Teng, P., and Lee, J. S. H.: Interacting effects of land-use change and natural hazards on rice agriculture in the Mekong and Red River deltas in Vietnam, Nat. Hazards Earth Syst. Sci., 21, 1473–1493, https://doi.org/10.5194/nhess-21-1473-2021, 2021.
Zhang, W., Zhang, W., Liu, Y., Zhang, J., Yang, L., Wang, Z., Mao, Z., Qi, S., Zhang, C., and Yin, Z.: The role of soil salinization in shaping the spatio-temporal patterns of soil organic carbon stock, Remote Sens., 14, 3204, https://doi.org/10.3390/rs14133204, 2022.
Zhao, R., Ni, H., Feng, H., Song, Y., and Zhu, X.: An improved grasshopper optimization algorithm for task scheduling problems, Int. J. Innov. Comput., Inf. Control, 15, 1967–1987, https://doi.org/10.24507/ijicic.15.05.1967, 2019.
Short summary
Although several previous studies have been conducted to assess soil salinity in Vietnam, most have focused on assessing soil salinity and farmers' adaptive capacity in the Mekong Delta. Few studies have been conducted in the Red River Delta. The Red River Delta is one of the key agricultural regions in Southeast Asia. Therefore, assessing soil salinity and farms' adaptive capacity in this area is necessary.
Although several previous studies have been conducted to assess soil salinity in Vietnam, most...
Altmetrics
Final-revised paper
Preprint