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Abstract. Soil salinity is a grave environmental threat to
agricultural development and food security in large parts of
the world, especially in the situation of global warming and
sea level rise. Reliable information on the adaptive capac-
ity of farms plays a key role in reducing the socioeconomic
effects of soil salinization and helps policymakers and farm-
ers propose more appropriate measures to combat the phe-
nomenon. The research aims to design a theoretical frame-
work to assess soil salinity in the Red River Delta (Viet-
nam) based on machine learning, optimization algorithms
(namely, Xgboost (XGB), XGB-Pelican Optimization Al-
gorithm (POA), XGB-Siberian Tiger Optimization (STO),
XGB-Serval Optimization Algorithm (SOA), XGB-Particle
Swarm Optimization (PSO), and XGB-Grasshopper Opti-
mization Algorithm (GOA)), remote sensing, and interviews
with local people. We evaluated the geographical distribu-
tion of soil salinity by applying machine learning to Sen-
tinel 1 and 2A. The adaptive capacity of farmers was eval-
uated through interviews with 87 households. The statis-
tical indices, namely the mean absolute error (MAE), the
root mean square error (RMSE), and the correlation coeffi-
cient (R?), were used to assess the machine learning models.
The outcome of this study demonstrated that all optimiza-
tion algorithms were successful in improving the accuracy of
the XGB model. The XGB-POA had the most performance,

with an R? value of 0.968, followed by XGB-STO (R* =
0.967), XGB-SOA (R? = 0.966), XGB-PSO (R? = 0.964),
and XGB-GOA (R? = 0.964), respectively. The soil salinity
map produced by the proposed models also indicated that
the coastal and riverside regions were the most affected by
soil salinity. The results also showed human and financial
resources to be the two most important factors influencing
the adaptive capacity of farmers. This study provides a key
theoretical framework that enhances previous previous and
can assist policymarkers and farmers in managing land re-
source, such as accurately identifying areas affected by soil
salinity for agricultural development in the context of climate
change. In addition, this research highlights the importance
of integrating machine learning, remote sensing, and socio-
economic surveys in soil salinity management, which can
support farmers for sustainable agricultural development.

1 Introduction

Soil salinity is among the greatest threats to land manage-
ment, posing significant problems to agricultural progress
and global food security (Jia et al., 2024; He et al., 2024;
Xiao et al., 2024). According to FAO, soil salinity affects
about 424 million hectares of land surface (with a depth of
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0-30 cm) and more than 833 million hectares of subsoil (30—
100 cm). This area is increasing by about 2 million hectares
each year and influences more than 100 countries worldwide,
causing damage between 12 and USD 27.3 billion (Jia et al.,
2024; Aksoy et al., 2024).

The soil salinity problem will occur at the local, regional,
and global levels (Liu et al., 2024; Bandak et al., 2024). In
Vietnam, many littoral regions are affected by soil salinity
problems. According to the 2021 Ministry of Agriculture and
Environmental Report on the Current Situation and Planning
of Agricultural Development, in 2020, about 200 000 ha of
cropland in Vietnam were already affected by soil salinity.
This problem is increasingly serious in Mekong Delta and
Red River Delta — home to over 40 million people and play-
ing a key role in Vietnam’s agricultural and aquaculture sec-
tors — where they account for 71 % of paddy cultivation, 86 %
of aquatic farming, and 65 % of fruit production. Because
these low-lying coastal areas (Hung and Larson, 2014) are
experiencing subsidence (Le Dang et al., 2014), and declin-
ing river water levels,, they have become highly susceptible
to the effects of climate variability and sea-level rise (Das-
gupta et al., 2009). Therefore, monitoring soil salinity is es-
sential to inform agricultural management strategies to en-
sure food security at local and regional levels.

In order to address the problem, it is important to have the
most precise and current data on soil salinity. Traditionally,
direct field measurements of soil salinity yielded the most
accurate data (Rhoades and Ingvalson, 1971; Eldeiry et al.,
2008). This method collects point samples in the areas of in-
terest one by one, which is time-consuming and requires sig-
nificant manual work. Although this method can accurately
identify soil salinity, it requires many field missions to col-
lect the data over time, which can be time-consuming and
resource-intensive. To reduce these limitations and obtain
continuous spatial data (such as raster data) suitable for GIS
analysis and environmental monitoring, several studies have
used freely available remote sensing data, such as Landsat
and Sentinel images. These data provide spatial (10m) and
temporal (3 to 5d) resolution and capture multiple spectral
bands (Asfaw et al., 2018; Cullu, 2003). Several studies have
demonstrated the effectiveness of remote sensing to monitor
soil salinity accurately and rapidly. By constructing correla-
tions between remote sensing-derived indices and soil salin-
ity points in the field, such as NDVI, VSSI, and NDSI, we
can achieve this. Although remote sensing can monitor soil
salinity using different spectral responses, slightly or moder-
ately saline soils cannot be distinguished easily because soil
minerals and their components modify the spectral capacity
of the soil surface.

Recently, with improvements in computing power, ma-
chine learning, and deep learning, there has beensubstan-
tial growth in techniques to construct soil salinity maps with
higher accuracy. Algorithms such as random forest (Fathizad
et al., 2020), XGBoost (Jia et al., 2024), support vector ma-
chines (Jiang et al., 2019), CatBoost (Gong et al., 2023;
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Wang et al., 2022), and AdaBoost (Wang et al., 2022) are the
most popular algorithms to construct soil salinity maps by in-
tegrating satellite images and in situ measurements. Some re-
search has used deep learning models to construct soil salin-
ity maps, such as deep neural networks, recurrent neural net-
works, and Deep Boltzmann machines. Kaplan et al. (2023)
used four machine learning algorithms, namely M5P, RF,
Linear, and IBK, integrated with Sentinel 2A data and 393
soil samples collected in situ to construct a soil salinity map
for the United Arab Emirates. The study’s results indicated
that all models’ performed well in assessing soil salinity, with
the IBK model demonstrating the highest effectiveness. Ak-
soy et al. (2024) used XGBoost and random forest with 26
environmental covariates from Landsat 8 OLI to evaluate soil
salinity in Iran’s Lake Urmia. The study’s outcome showed
that machine learning integrated with Landsat 8 OLI data
successfully monitored soil salinity, with XGB yielding more
accurate results than random forest. Jia et al. (2024) applied
nine models, namely PLSR, Lasso, CART, RF, ERT, GBDT,
LightGBM, XGBoost, and AdaBoost, integrated with Sen-
tinel 2A imagery, to evaluate soil salinity in the Ningxia Yel-
low River Diversion Irrigation Area. The results showed that
the AdaBoost model performed better than the others.

Previous studies show that although machine learning
methods have been utilized to assess soil salinity in many
regions of the world, their application for this purpose is still
limited in the Mekong and Red River Deltas (Vermeulen and
Van Niekerk, 2017; Shi et al., 2021). Currently, there are only
four studies that have assessed soil salinity in the Mekong
Delta (Hoaetal.,2019; Nguyen et al., 2021, 2023, 2018), and
no work has been done in this field for the Red River Delta.
In addition, most previous studies have developed state-of-
the-art methods, such as integrating machine learning and re-
mote sensing, to identify the geographical distribution of soil
salinity in different regions of the world (Hardie and Doyle,
2012; Wang et al., 2007; Su et al., 2020). While several stud-
ies have highlighted the importance of assessing the adapta-
tion capacity of the community to strengthen their resilience
to soil salinity and other types of natural hazards, however,
very few studies integrate this aspect into the identification
of spatial soil salinity (Hoang et al., 2023) reported that as-
sessing the ability of farms to adapt to soil salinization is the
key to reducing vulnerability and contributes significantly to
the development of sustainable livelihoods.

The adaptive capacity is defined as the capability of the
community to cope, adjust, and adapt to the impacts of grow-
ing soil salinity. It measures the ability to predict, respond,
and recover from the phenomenon. It is assessed on different
scales, using different approaches, according to the region
in question (Mazumder and Kabir, 2022; Thiam et al., 2024).
Furthermore, understanding the adaptive capacity of commu-
nities plays an important role in reducing the negative effects
of salinity intrusion in coastal regions in general and the Red
River Delta in particular. By assessing adaptation at multi-
ple scales with site-specific methods, researchers and local
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governments can identify interventions (such as crop variety
changes, crop calendars, irrigation systems) that are effec-
tive. The IPCC in 2014 indicated that farm adaptive capacity
depends on five main factors: natural capital, human capi-
tal, material resources, financial resources, and social capital.
Therefore, integrating the adaptive capacity of populations
with the soil salinity map improves the accuracy of predic-
tions and proposes adaptation strategies that strengthen the
overall resilience of communities.

The research aims to improve a theoretical framework to
assess soil salinity and farmers’ adaptive capacity based on
machine learning, optimization algorithms (namely XGB,
XGB- POA, XGB- STO, XGB- SOA, XGB- PSO, and XGB-
GOA), remote sensing, and interviews with local people.
Several studies have examined farmer’s adaptive capacity to
environmental stressors in different regions (Bhuyan et al.,
2024; Thiam et al., 2024). However, no studies comprehen-
sively analyze farmers’ adaptive ability to combat soil salin-
ity in a given region based on machine learning, remote sens-
ing, and interviews with local people. In addition, several
studies combine machine learning with Sentinel 1 or Sentinel
2 to assess soil salinity (Wang et al., 2021; Xiao et al., 2023);
however, there are rarely studies that combine machine learn-
ing with Sentinel 1 and Sentinel 2 to monitor soil salinity in
the Red River Delta. By the combination of Sentinel 1 and
Sentinel 2, advanced machine learning, and the information
from farmers themselves, this study filled a critical gap and
provided a novel, comprehensive framework for monitoring
and responding to soil salinity in the Red River Delta (Ma et
al., 2021).

In general, salinity intrusion harms agricultural develop-
ment and people’s livelihoods. Therefore, it is necessary to
develop a theoretical framework to address the soil salinity
problem in terms of natural and social factors. However, pre-
vious studies have mainly assessed the spatial distribution of
salinity or the community’s adaptive capacity, and hardly any
studies have assessed both the spatial distribution of salinity
and the community’s adaptive capacity. Thus, the global con-
tribution of this study is to fill the knowledge gap about the
spatial distribution of soil salinity and the adaptive capacity
of communities in the Red River Delta in general and Thai
Binh Province in particular by relying on modern methods to
improve this important and understudied understanding. The
results of this study can play an important role in mitigating
the impact of salinity intrusion on agricultural development
and can help policymakers and planners develop effective
strategies to mitigate this impact, especially in the context
of climate change.

2 Study Area
The Red River Basin covers a total area of 169 000 km? and

spans China (48 %), Laos (0.7 %), and Vietnam (51.3 %).
The river system has a total length of 1150 km, with around

https://doi.org/10.5194/nhess-25-3505-2025

3507

500km in the territory of Vietnam before discharging into
the Gulf of Tonkin. The topography is mainly mountainous
terrain that comprises about 70 % of the total area at eleva-
tions above 500 m. In the lowlands, elevations range from
approximately 0.4 to 9 m, characterized by a tropical climate
with summer monsoons from the south and winter monsoons
from the northeast (Vinh et al., 2014), the basin experiences
average annual precipitation ranging from 800 to 3000 mm.
The rainy season occurs from May to October and accounts
for 70 %—90 % of annual rainfall (Quang et al., 2024). Daily
rainfall varies from 300400 mm during this period. The av-
erage temperature ranges from 22 to 27 °C, with winter tem-
peratures potentially below 10 °C and summer temperatures
above up to 40 °C.

The basin flows into the Gulf of Tonkin through nine river
mouths, of which the Tra Ly, Van Uc, and Ba Lat are the
main channels for water conveyance. These channels trans-
port a substantial sediment load of approximately 120 x 10°
tons annually to the Red River Delta region (Vinh et al.,
2014). The littoral region has a semi-diurnal tidal regime,
with tidal ranges ranging from 2 to 4 m. Saline intrusion sig-
nificantly influences the littoral region during the dry season
with average and maximum wave heights of about 0.7-1.3
and 3.5-4.5 m, respectively. However, during major storms,
wave heights can reach 5 m (Nhuan et al., 2007).

The Red River Delta is influenced by several natural haz-
ards, such as flooding, soil salinity, and sea level rise (Castel-
letti et al., 2012). Several studies have highlighted that rising
sea levels are having an increasingly severe impact on in-
land regions, leading to soil salinity (Nguyen et al., 2023).
Recently, the Red River Delta in general and the Thai Thuy
district in particular have been affected by soil salinity, caus-
ing significant damage to agricultural development and neg-
atively impacting residents’ livelihoods (Fig. 1).

3 Methodology

The first strand of the methodology was the identification of
the soil salinity mapping. We divided this process into four
main steps (Fig. 2):

Preparation of soil salinity samples and factors

The data for constructing the soil salinity map were divided
into two main types: EC and conditioning factors.

EC Measurements

According to the FAO report, if the sea level rises by 50 cm,
about 11.8 % of coastal land is at risk of being flooded by
salt water; this figure increases to about 31.4 % if the sea
level rises by 100 cm in Thai Binh province. Recently, salt-
water intrusion has clearly affected agricultural production in
Thai Binh province and Thai Thuy district. Typically, in the
2015-2016 winter-spring crop, the salinity in the main rivers
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Figure 1. Geographical location of study area: The red boundary on the map represents the Thai Thuy district, located in the Thai Binh
province in the Red River Delta of Vietnam. The green points are the soil salinity samples collected in April 2024. The land use in the
Thai Thuy district is divided into eight types: aquaculture, barren land, cropland, forest, grass, mangrove, urban, and water body. While the
aquaculture area is located in the coastal zone, cropland takes up a large part of the study area, and Urban is located in the center and along

the road.

exceeded the threshold of 1 %o, causing significant damage
to crops. In 2020, the salinity in the main rivers, 28 km from
the sea, exceeded the threshold of 3.75 %o, far exceeding the
allowable threshold of 2.75 %o. This phenomenon greatly af-
fects agricultural production in the area, underlining the ur-
gent need for systematic soil salinity assessment.

To address this issue, we collected soil salinity samples us-
ing soil drills, applying both zigzag and grid sampling tech-
niques, which are frequently employed in small-scale stud-
ies (Jia et al., 2024; Elshewy et al., 2024). The sampling
depth depends on the soil salinity assessment for each spe-
cific crop. This study monitors soil salinity with the objective
of agricultural development; therefore, soil samples were ob-
tained from a depth of 0 to 30 cm. The sampling process oc-
curred in the dry season, between March and April 2024. In
addition, when sampling in the field, it is necessary to con-
sider the homogeneity of the soil. We collected 62 samples
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to cover the entire field. We collected samples along the road
to identify different types of soil, and the farmers labeled the
samples accordingly. The samples were locked in bags un-
til analysis in the laboratory. We noted the positions of the
samples, including longitude and latitude, during the sam-
pling process. When the samples were sent to labs, they were
stored in enameled jars, and impurities like stones, wood, and
branches were removed. These soil samples were then finely
ground. The electrical conductivity (EC) was then calculated
from a 1:5 soil/deionised water suspension. A soil/water
suspension was created by adding 7 g of soil to 35 mL of
distilled water and then mixed with a mechanical stirrer for
60 min to dissolve the salt. The EC value was measured using
a conductivity probe. Finally, the samples were split into two
parts: the first part (70 %) was used to build the proposed
models, while the other part (30 %) was applied to confirm
the model.
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Figure 2. Methodology used for the farmer’s adaptive capacity and soil salinity in this study: The methodology used in this study is to design
a theoretical framework to assess soil salinity and farmers’ adaptive capacity based on machine learning, optimization algorithms, remote
sensing, and interviews with local people. We divided this process into four main steps: (i) data preparation; (ii) machine learning model
construction; (iii) machine learning model evaluation; and (iv) analysis of spatial distribution and identifying the farmers’ adaptive capacity.

Remote Sensing Data

Due to the effects of the earth’s cycle, the salt accumulated
in the soil is closely linked to climatic conditions, hydrol-
ogy, soil characteristics, and surface vegetation density, for
example, topographic characteristics (Wang et al., 2024; Xie
et al., 2025). We calculated these factors using optical Sen-
tinel 2A images and microwave Sentinel 1 images to deter-
mine the soil salinity value. The Sentinel-2A images were
calculated by running Sen2Cor for atmospheric correction
to ensure the transition between apparent atmospheric re-
flectance and surface reflectance, and these images were ob-
tained using Google Earth Engine. To reduce the influence of
clouds, Sentinel 2A images for March—April 2024 were se-
lected with a cloud cover rate of less than 10 %. To enhance
the quality of these images, the median value of each pixel
was calculated at a resolution of 10 m. As for the Sentinel 1
images, they were acquired in dual cross-polarization mode
and broadband interferometric mode. The median value of
the Sentinel 1 image obtained on 31 March 2024, was com-
puted to acquire microwave remote sensing data at a scale of
10 m. As well as 12 bands of the Sentinel 2A image (from
band 1 to band 12) and 3 indices of the Sentinel 1 image
(VV, VH, and VVVH). In addition, 20 spectral indices ex-
tracted from Sentinel 2A image were selected to build the
soil salinity model, namely Brightness index (BI), Canopy
Response Salinity Index (CRSI), Enhanced Vegetation In-
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dex (EVI), Intensity index 1 (Intl), Indensity index 2 (Int2),
Normalized Difference Salinity Index (NDSI), Normalized
Difference Vegetation Index (NDVI), Ratio Vegetation Index
(RVI), Salinity index (S1), Salinity index (S2), Salinity index
(S3), Salinity index (S5), Salinity index (S6), Soil Adjusted
Vegetation Index (SAVI), Salinity Index 1 (SI), Salinity in-
dex 2 (SIl), Salinity index 3 (SI2), Salinity index 4 (SI3)
and Salinity index 5 (SI4). These factors were divided into
three main groups: vegetation indices (NDVI, CRSI, RVI,
SAVI, and EVI), water indices (flow direction and distance
to river), salinity indices (SI, SI1, SI2, SI3, SI4, S1, S2, S3,
S5, S6, and NDSI), topography indices (elevation and slope),
and chlorophyll spectral indices (BI, Intl, Int2). These in-
dices have been used frequently in previous studies (Nguyen
et al., 2021; Wang et al., 2021; Hoa et al., 2019).

The indices due to the vegetation reflect the health and
growth of vegetation, and the present study indirectly reflects
the level of soil salinity in any region. The increase in soil
salinity has a negative effect on the development of vegeta-
tion due to the difference in the absorption of water and nutri-
ents; therefore, it leads to a decrease in the values of NDVI,
RVI, SAVI, and EVI and an increase in the value of CRSI
(Jia et al., 2024; Wang et al., 2024). Water indices play an
important role because regions near rivers or along the flow
path are more affected by the salinity risk. River flow is of-
ten affected by tides or seawater intrusion; therefore, when
the distance to the river decreases, the salinity risk increases
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due to the infiltration of salty river water into the soil. Fur-
thermore, the flow direction influences the propagation and
infiltration of water in the soil. Salty water can penetrate fur-
ther inland if the flow is from the sea to the river, especially
in the dry season (Nguyen et al., 2021).

Topography indices are key in constructing soil salinity
models, as salty water penetrates low-lying regions more eas-
ily. In the Red River Delta, the low-lying regions are located
along the coastline, and as such, these regions are more af-
fected by the risk of soil salinity. Salinity indices highlight
the value of spectral reflectance in regions affected by saltwa-
ter intrusion. The higher the salinity, the higher the spectral
reflectance value (Du et al., 2024).

Construction of hybrid machine learning models

We built six machine-learning models to identify the spatial
distribution of soil salinity. This involved two main steps:
constructing an individual XGB model and then creating hy-
brid models by integrating each of five optimization algo-
rithms with the XGB model. We developed the XGB model
using Python and the Sklearn library.

The machine learning model-building process was divided
into two main steps: the first was the XGB model building,
and the second was the hybrid model building (the integra-
tion of XGB with optimization algorithms). The accuracy of
the machine learning model depends on the parameter ad-
justments of the XGB model. In this study, the XGB model
parameters were selected using the trial-and-error method.
Finally, the XGB parameters were n_estimators = 100,
max_depth = 4, subsample = 0.5, and colsample_bytree =
0.5. While the hybrid model was built by integrating the
XGB model and optimization algorithms, namely GOA,
POA, SOA, STO, and PSO. To integrate the XGB model
with optimization algorithms, we first need to construct an
objective function F(0) that returns the error value of XGB
on the validation set when using the parameter sets 8. That
is, each parameter set has a different error value. Next, deter-
mine the search space of the hyperparameters (n_estimators,
max_depth, subsample, colsample_bytree) as discrete value
intervals. Then, the optimization algorithms will initialize
the population of individuals with the size and parameters
characteristic of each optimization algorithm. This study was
tested with 500 iterations: at each iteration, each individ-
ual will generate a combination of 6i, and the optimiza-
tion algorithms will update the position or velocity of the
individuals according to their own rules. This process is re-
peated until a stopping threshold is set. Finally, the results
are the optimal parameters. The parameters of the model
are as follows: problem_size = 3, batch_size = 25, epoch
= 500, pop_size = 50, “fit_func”: fun_avr2, “Ib”: [0] prob-
lem_size, “ub”: [1] problem_size, c_min = 0.00004, c_max
=2.0 for XGB-GOA; problem_size = 3, batch_size = 25,
epoch = 500, pop_size = 50, “fit_func”: fun_avr2, “Ib”: [0]
problem_size, “ub”: [1] problem_size,cl = 2.05,c2 = 2.05,
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w_min = 0.4 for XGB-PSO ; problem_size =3, batch_size
=25, epoch =500, pop_size =50, “fit_func”: fun_avr2,
“Ib”: [0] problem_size, “ub”: [1] problem_size for XGB-
POA; problem_size =3, batch_size =25, epoch = 500,
pop_size = 50, “fit_func”: fun_avr2, “Ib”: [0] problem_size,
“ub”: [1] problem_size for XGB-SOA; problem_size = 3,
batch_size = 25, epoch =500, pop_size = 50, “fit_func”:
fun_avr2, “Ib”: [0] problem_size, “ub”: [1] problem_size for
XGB-STO.

Evaluation of model accuracy

The statistical indices, the root mean square error (RMSE),
the mean absolute error (MAE), and the correlation coeffi-
cient () were used to assess the accuracy of the proposed
models.

Analysis of spatial distribution and identifying the
farmers adaptive capacity

We validated the models and then used them to assess soil
salinity in the study area at a pixel scale with a resolution of
10 x 10 m. Approximately 30 million pixels were assessed,
and a soil salinity map was constructed using the Point to
Raster tool in ArcGIS 10.8.

We used the second strand of our methodology, interviews
with populations, to evaluate the adaptive capacity of farms
in the study area. We selected An Tan commune in the Thai
Thuy district to participate in structured interviews. A total
of 87 households were interviewed. These households were
randomly selected from An Tan commune in the Thai Thuy
district to participate in structured interviews. The commune
is located in the coastal region, which has the lowest altitude
and often affected by soil salinity. Residents mainly worked
in rice and fish farming. We analyzed all 87 responses to as-
sess farmers’ ability to adapt to soil salinity.

The structured interviews focused on five main elements:
natural resources, human resources, physical resources, fi-
nancial resources, and social resources. There was a particu-
lar focus on soil salinity in 2023, allows to evaluate the stress
of environment on the livelihood of population.

3.1 XGBoost (XGB)

XGB is a popular gradient-boosted tree algorithm that can
solve classification and regression problems. The main idea
of learning with XGBoost is to train several models sequen-
tially and combine them successively by correcting errors
iteration after iteration to obtain the most potent ensemble
model possible (Zhang et al., 2022). Therefore, the predic-
tion result consists of a set of chained decision trees. This
method increases the performance and stability of the model
while minimizing its variance (Zhang et al., 2022). The XGB
model functions in three main steps: (i) it constructs an indi-
vidual model (tree) by taking predictions on the training data,
(ii) it computes the mistakes of these predictions for the real
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values, and (iii) it constructs another tree to predict and cor-
rect these mistakes. The process is repeated, and each new
tree is built to correct the mistakes of the previous one. This
phase is called “boosting”. We then sum up the predictions
of all trees to determine the final predictions (Mukhamediev
et al., 2023).

To optimize the accuracy of the XGB model, three main
parameters need to be adjusted: learning rate (reducing the
value of this parameter can avoid the overfitting problem),
alpha, and lambda (increasing the value of these parameters
makes the model more conservative), and column sample by
tree (adjusting this parameter has the objective of obtaining
the subsample of columns) (Tan et al., 2023).

3.2 Pelican Optimization Algorithm (POA)

Agents searching for prey in nature have a mechanism sim-
ilar to that of agents searching for optimal solutions. There-
fore, based on this perspective, the search agents that com-
prise a population seek to achieve the optimal solution more
quickly. Each agent is an optimal solution whose position is
determined in the search space. From a mathematical per-
spective, agents are vectors, and the population of agents
forms matrices (Dehghani and Trojovsky, 2022). Among the
values used to calculate the aim function, the top value of the
agents is determined as the top solution of the agents.

One such optimization algorithm is POA proposed by Tro-
jovsky and Dehghani (2022). This algorithm is designed
based on Pelicans’ foraging and communication processes.
This is a large bird with a long beak and a large pouch in
the throat to hold prey during hunting. Hundreds of individ-
uals may flock together. They can weigh up to 15 kg, grow to
a height of 1.8 m, and have a wingspan of up to 3 m. These
characteristics greatly assist them in finding food, such as
fish, frogs, and turtles.

POA is based on the simulation of the behavior and plan
of pelicans when attacking prey. Pelican hunting strategies
are divided into two stages. First, the bird moves towards
its prey, then it spreads its wings and glides along the wa-
ter surface to attack. In the first stage, the pelicans determine
the situation of the prey and move toward the identified prey
area. Identifying prey areas represents the determination of
the search space in the POA model. The positions of the prey
are randomly produced in the search space, which increases
the exploration power of POA in the process of searching and
solving optimization problems. After locating the prey area
in the second stage, pelicans spread their wings and move on
the water surface to attack the prey and store it in their throat
pouch. This strategy allows them to capture more prey. Mod-
elling this behavior of pelicans makes the POA model easier
to converge and improves local search ability (Trojovsky and
Dehghani, 2022; Alamir et al., 2023).
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3.3 Serval Optimization Algorithm (SOA)

SOA is one of the population-based optimization algorithms,
and it exploit the searching power of agents in a population.
This property makes this algorithm powerful in solving op-
timization problems (Dehghani and Trojovsky, 2022). Each
iteration of SOA continuously determines and updates the
agents’ situations. The updating process simulates the behav-
ior of serval cats in the wild, divided into two stages: (i) ex-
ploration of the search space and (ii) local exploitation in the
search space (Sindi et al., 2024).

Wild cats are some of the most efficient predators, using
hearing to identify and attack prey. In the first stage of SOA,
the situation of the servals is repeatedly up-to-date after each
move: the continuous updating of positions leads to detailed
coverage of the search space. The this stage aims is to raise
the power to search and explore in the search space. The sit-
uation of the best member in the SOA is considered the sit-
uation of the prey and, therefore, the optimal solution (Sindi
et al., 2024; Dehghani and Trojovsky, 2022).

When attacking prey, wild cats jump during the chase to
prevent the prey from escaping. These strategies also serve
to update the position of the SOA population. The simula-
tion of the chase process can cause small changes in agents’
positions in the SOA. However, this phase aims to increase
the search space mining capability of SOA, which helps to
improve the local search capability in the search space (De-
hghani and Trojovsky, 2022).

3.4 Siberian Tiger Optimization (STO)

The STO algorithm is a new biologically inspired hyper-
heuristic algorithm modeled after Siberian tigers’” hunting be-
havior (Trojovsky et al., 2022). STO replicates the Siberian
tiger tracking and capture strategy, using a population-based
approach to explore the search space efficiently and quickly
(Trojovsky et al., 2022).

STO works by simulating the way Siberian tigers move
and communicate with each other while hunting their prey.
Each agent in the STO algorithm represents a Siberian tiger,
exploring a different region in the search space. The tigers
communicate and share information about their locations
with each other to find the optimal location. The location
update process of Siberian tigers in STO is carried out in
two main phases: the hunting and bear-fighting phases (Tro-
jovsky et al., 2022).

In the hunting phase, since the Siberian tiger is a powerful
predator, it hunts by attacking different prey, so the agents in
the STO are up-to-date based on the simulation of this hunt-
ing strategy. After choosing the prey, the Siberian tiger will
chase, attack, and kill its prey in this phase. The population
continuously updates the members’ positions based on the
selection and attack of the prey. This phase causes sudden
changes in the members’ positions and increases the search
ability in the search space (Al-Sarray et al., 2024).
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During hunting, the Siberian tiger has to fight with brown
and black bears. Therefore, in the second phase, the mem-
bers of the STO stay update on the strategies used by the
Siberian tiger when bear-fighting. When fighting with bears,
the Siberian tiger ambushes and then assaults the bear until it
kills it (Al-Sarray et al., 2024; Trojovsky et al., 2022).

One of the key features of STO is its ability to balance
exploration and exploitation. In put it another way, the design
of the STO algorithm involves extensive exploration of the
search space and refinement of promising solutions in the
most promising areas. Thus, STO avoids local optimization
problems and increases the likelihood of global optimization
(Trojovsky et al., 2022).

3.5 Particle Swarm Optimization (PSO)

PSO was proposed by Kennedy and Eberhart (1995). It is
founded on the principles of self-organization that allow one
or more groups of living organisms to move together in a
complex way (Fu et al., 2018). PSO simulates the move-
ment process of some animals, such as flocks of birds. In
this model, birds move randomly by following three rules:
(i) they track the same path as their friends, (ii) they are en-
ticed to the average situation of the group, and (iii) they main-
tain a certain space between each other to avoid collisions
(Ruidas et al., 2022).

PSO explores the search space through the birds’ position
and flight paths. The position of each bird in the search space
is considered a potential solution. More precisely, the posi-
tion and speed of the birds are represented by vectors with
D dimensions, and the initial speed is determined randomly.
In the PSO algorithm, the position and velocity of each bird
are updated continuously after each iteration until an optimal
solution is reached. The optimization function assesses the
position and velocity quality (Bui et al., 2016). In this study,
PSO was used to optimize the XGB model.

3.6 Grasshopper Optimization Algorithm (GOA)

GOA was first proposed by Mirjalili et al. (2018). This al-
gorithm is based on the swarm behavior of locusts during
foraging to solve optimization problems. Grasshoppers move
quickly to explore spaces, and then they move locally to ex-
ploit resources in the foraging space. GOA models the behav-
ior of a virtual swarm of grasshoppers, where each position
represents an optimization solution to the problem (Moayedi
et al., 2021; Nguyen, 2022). Movement is influenced by sev-
eral factors: social interaction, gravity, and wind advection.
Social interaction plays an important role in finding the op-
timal position because grasshoppers interact with each other
to exchange information about precise positions. This social
communication allows grasshoppers to find the right solu-
tions. Then, gravity allows grasshoppers to explore the for-
aging spaces in a balanced manner, hence avoiding the local
optimization problem (Ingle and Jatoth, 2024). Finally, wind
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Figure 3. Variables important for soil salinity model using RF.

advection represents the external effects that can influence
the movement of grasshoppers, leading them to some areas
of the search space. In the optimization process, an equilib-
rium between exploration and exploimportants is important
to accurately approach the true global optimum (Moayedi et
al., 2020).

4 Results
4.1 Soil Salinity Predictors

The choice of suitable factors plays a key role when using
machine learning to determine the geographical distribution
of soil salinity in any region. Conditioning factors represent
the causes of soil salinity, so improper selection of these fac-
tors can result in inaccurate prediction. Data redundancy may
complicate the model and lead to poor performance.

In this study, we used RF to measure the appropriate fac-
tors. It assigns a value to each factor based on its relationship
with the soil salinity samples and the conditioning factors.
The most important factor is the one with the greatest im-
portance in determining soil salinity zones. In addition, after
using RF to determine the importance of factors, we used
trial and error to continue eliminating factors that affected
the precision of the model.
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Table 1. Model performance and comparison.

Models Training dataset ‘ Validation dataset

RMSE MAE  R? | RMSE MAE  R?

XGB-POA 028  0.18 0.99 031 0242 0.968
XGB-STO 03 022 0987 032  0.244 0.967
XGB-SOA 0.31 0.23 0.98 0.33 025 0.966
XGB-GOA 033 025 0.97 034 026 0.964
XGB-PSO 0335 026 097 0.341 027  0.964
XGB 035 032 091 0.37 0.34  0.901

The outcome showed that six factors (DEM, RVI, B2, S6,
S2, and S1) had an RF value of zero, so these factors did not
affect the determination of the spatial distribution of saline
areas. In addition, two factors (NDVI and flow accumulation)
were eliminated using the trial-and-error method. The other
30 factors were used to build the model. VVVH (0.39), VV
(0.3), distance from the river (0.28), CRSI (0.24), and EVI
(0.21) had a strong influence on the soil salinity in the study
area. S3 (0.17), BI (0.17), B12 (0.15), SI12 (0.14), B7 (0.11),
VH (0.1), and Int2 (0.1) have moderate relationships with the
soil salinity. B11 (0.08), S5 (0.06), slope (0.06), SI (0.06),
SAVI (0.06), NDSI (0.06), S14 0.05), B5 (0.05), Int1 (0.05),
B9 (0.05), B4 (0.05), SI (0.04), SI1 (0.04), B8 (0.04), B3
(0.02), B1 (0.02), and B6 (0.02) had only a weak relationship
on soil salinity (Fig. 3).

4.2 Model Accuracy Validation

R? was used to assess the performance of the machine learn-
ing models. The outcome of this study demonstrated that
all optimization algorithms enhanced the performance of
the XGB model. The XGB-POA model was the greatest,
with an R? value of 0.968, followed by XGB-STO (R? =
0.967), XGB-SOA (R? = 0.966), XGB-PSO (R? = 0.964),
and XGB-GOA (R? = 0.964; Fig. 4).

The RMSE and MAE were also used to evaluate the accu-
racy of the machine learning models. The XGB-POA model
performed better on training and validation data (RMSE =
0.28, MAE = 0.18 for learning data and RMSE = 0.31 and
MAE =0.242 for verification data). The XGB-STO was
ranked second with an RMSE value of 0.3 and MAE of 0.22
for learning data, and an RMSE value of 0.32 and MAE
of 0.244 for verification data. The XGB-SOA model was
ranked third, with RMSE = 0.31 and MAE = 0.23 for learn-
ing data and RMSE = 0.33 and MAE = 0.25 for verifica-
tion data. XGB-GOA model came fourth, with RMSE = 0.33
and MAE = 0.25 for learning data and RMSE = 0.34 and
MAE = 0.26 for verification data. The XGB-PSO model per-
formed less well than the other models, with RMSE = 0.335
and MAE = 0.26 for learning data and RMSE = 0.341 and
MAE = 0.27 for verification data (Table 1).
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4.3 Spatial distribution of soil salinity in the Thai Thuy
district of the Red River Delta

Following validation, we constructed a geographical distri-
bution map of soil salinity using the proposed models. We
carried out the process by assigning conditioning factors
to the 30 million pixels across the entire study area. De-
pending on each model, the EC value varies from 0.29 to
7.7mScm~!. On the map, the color varies from green to red,
representing different EC values. The areas with green col-
ors are located far from the continent (EC = 0.29), while the
areas with red colors are located on the coast, with EC val-
ues superior to 7.7mS cm™!. This graph shows that these ar-
eas are directly affected by saltwater intrusion from the sea
(Fig. 5).

According to the FAQO, salinity can be divided into 5 levels:
non-saline, slightly saline, moderately saline, heavily saline,
and very heavily saline. In which the EC value is below
2mS cm™!, the soil is considered not saline, and the plants
grow completely normally. The EC value ranges from 2-
4mS cm™!; the soil is slightly saline and has very little effect
on the plants. Specifically, flower crops may grow slowly,
while rice and fruit trees may have reduced height. The
EC value ranges from 4-8 mS cm™!; the soil is moderately
saline and reduces crop yields. Specifically, rice can have a
10 %-20 % reduction in yield. The EC value ranges from 8—
16 mS cm™!; the soil is heavily saline and affects the growth
of plants. The soil becomes extremely saline and uncultivated
if the EC value surpasses the threshold of 16 mS cm~!. This
study utilizes the XGB-POA model, which boasts the high-
est accuracy, to analyze the areas affected by saline intrusion.
Specifically, in the study area, about 65km? of land area is
not affected by saline intrusion, 165 km? is slightly affected,
and 1.8 km? is greatly affected by saline intrusion. Compared
to the land cover/land use map, it can be seen that the land
area greatly affected by saline intrusion is mainly aquacul-
ture; therefore, this area will not be significantly affected in
terms of productivity. Meanwhile, 165 km2 of land affected
by saline intrusion is rice land, which can slow down rice
growth and reduce productivity.

In the study area of Thai Thuy District, Thai Binh
Province, about 70 %75 % of the agricultural land is irri-
gated by a canal system that draws water from the Red River
and the Day River. Thanks to the water source from the Red
River and the Day River, agricultural production areas are
regularly washed away with salt, so the EC value in these
areas is often below 4 mS cm~!. In coastal areas, salinity in-
trusion at river mouths forces people to use shallow ground-
water for irrigation, which leads to salt accumulation and
prompts a shift from rice cultivation to aquaculture.

4.4 Farmers’ Adaptive Capacity Assessment

Soil salinity is a key challenge for deltas worldwide, partic-
ularly in deltas where population density is high and socio-
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Figure 4. RZ value for the testing dataset.

economic conditions are poor. The Red River Delta is the
most densely populated area in Vietnam and one of the most
densely populated deltas in Southeast Asia; therefore it is
crucial to consider the impact of soil salinity in this delta
on the farmer’s life and their adaptive capacity. Spatial distri-
bution maps of soil salinity show that this phenomenon oc-
curs in many areas of the Thai Thuy district, especially in
coastal areas. This phenomenon certainly has a significant
impact on people’s living conditions and production areas,
posing challenges to their livelihoods. In this section, we ad-
dress the adaptive capacity of farmers in An Tan commune,
a coastal area, through five elements: (i) natural resources
including land use, awareness of saline intrusion, perceived
impacts on agricultural activities, and adaptation measures
taken, (ii) human resources such as household demographics,
education, and farming experience, (iii) physical resources,
including the availability of farming equipment and infras-
tructure, (iv) financial resources focusing on household in-
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come, income structure, credit access, and changes over time,
and (v) social resources addressing support from govern-
ment and social networks, community cooperation, and par-
ticipation in collective adaptation activities. We interviewed
87 households in the An Tan commune to analyze the com-
munity’s ability to adapt to saline intrusion.

4.4.1 Natural Resources

Due to the process of salinization, we are facing a ma-
jor threat to agriculture and sustaining arable land. Excess
salinity adversely influences soil structure and fertility, plant
growth, crop yield, and microorganisms. Soil salinity is fre-
quently associated with water salinity. Groundwater in lit-
toral regions of the Red River Delta is characterized by high
salinity. The scarcity of freshwater poses significant chal-
lenges for crop irrigation. Irrigating with saline water exac-
erbates soil salinity. In addition, soil salinity also creates a
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Figure 5. Soil salinity mapping in the Thai Thuy district.
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scarcity of grazing land and fodder cropland of coastal ar-
eas. Coastal livestock is harshly suffering from food inacces-
sibility and poultry farming in the coastal districts. All the
mentioned factors impose considerable risks to the coastal
inhabitant’s livelihood and food security, who rely mainly on
agricultural activities such as growing rice and crops such
as onions, garlic, watermelon, and tobacco, according to our
interviews.

Indeed, the results showed that 59 % of interviewed house-
holds said that salinization had a medium to high impact on
agricultural production in the area in recent years, especially
during the 2023 saline intrusion. Meanwhile, 38 % of house-
holds stated that saline intrusion has little or very little im-
pact on agricultural production, mainly households in areas
far from the coast and so less affected. Households in the
study area have implemented various measures to mitigate
the increasingly serious saline intrusion, such as washing the
salt from the fields after each crop (as instructed by local
authorities) and adjusting their cropping systems by adopt-
ing salt-tolerant crop varieties or transitioning to aquaculture
practices. 66 % of interviewed households said they had to
change the crop structure to suit the saline intrusion or switch
to non-agricultural occupations to earn more income. Of the
87 households interviewed, 28 % had their main income from
non-agricultural activities. A large number of people switch-
ing to non-agricultural activities can meet their livelihood
needs, but in the long-term, farmers abandoning agricultural
activities to seek jobs in factories or migrate to cities also
poses many negative environmental and social consequences,
such as the decline of agrobiodiversity or labor shortages in
agriculture, etc.

4.4.2 Human Resources

In agricultural production and the adaptability of the com-
munity to salinity intrusion, demographics are considered
one of the most important factors contributing to the cre-
ation of labour resources, directly affecting crop productiv-
ity. The results of interviews with 87 households showed that
each household has an average of 3.5 members, comprising
2.5 workers and 1 dependent member. Using available fam-
ily resources reduces labor costs, thereby increasing produc-
tion profits. However, the quality of human resources poses a
concern when adapting to saline intrusion. One of the criteria
for evaluation is education level. Most workers in households
had a junior high school degree (66 %), 5 % of interviewees
had a high school degree, and less than 3 % had a university
degree. According to previous studies, education is an impor-
tant factor in determining workers’ income. In the context of
climate change and sea level rise, agriculture is negatively
affected by these phenomena: low levels of education mean
a lesser ability to absorb new knowledge and methods in or-
ganizing production to reduce the negative impacts of saline
intrusion. Although 83 % of the interviewed households had
more than 20 years of experience in agricultural production,
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their knowledge of saline intrusion and climate change was
still limited. Specifically, people lack the adequate knowl-
edge and skills to adapt to changes in environmental condi-
tions, leading to difficulties in choosing appropriate liveli-
hood models.

Furthermore, saline intrusion has led to several health in-
security. Coastal residents in saline areas are at risk of con-
suming high salt above the recommended levels. It is eval-
uated that over 7 million coastal populations in Bangladesh,
India, and Vietnam suffer from hypertension and cardiovas-
cular diseases as a result of long-term ingestion of saline
groundwater. This has profound consequences for the devel-
opment and quality of human resources in these areas.

4.4.3 Physical Resources

Material resources include essential items that serve people’s
daily life and livelihoods. The majority of the households in-
terviewed were engaged in agriculture, so the means of pro-
duction were mainly related to agricultural activities. Of the
87 households interviewed, 90 % were equipped with agri-
cultural production equipment such as pumps, sprayers, and
tractors, while 100 % had access to tractors and harvesters for
farming. The interviewed households used equipment to ex-
ploit water sources for agricultural production; however, be-
cause the town of An Tan is located in a coastal area, ground-
water and surface water are often affected by saline intrusion.
Thus, they still faced challenges related to water resources,
especially in the context of saline intrusion

Moreover, in response to saline intrusion, accessing fresh-
water for daily use and irrigation often leads to the sponta-
neous extraction of groundwater through tubewells, a com-
mon practice in coastal areas of Vietnam and Southeast Asia.
However, excessive groundwater extraction and improper ir-
rigation practices also pose many potential risks of increasing
water resource depletion and accelerating salinization pro-
cesses. This will likely undermine the long-term adaptive ca-
pacity of coastal communities.

4.4.4 Financial Resources

The interviews with 87 households demonstrated that 9 % of
the households interviewed were poor and near-poor. It can
be seen that economic status greatly affects people’s abil-
ity to adapt and recover from soil salinity. Poor and near-
poor households frequently have more difficulty evaluating
solutions to mitigate the impact of soil salinity on agricul-
tural production. The primary source of income for a large
part of the population mainly comes from agricultural activi-
ties: 72 % of the households interviewed confirmed that their
main livelihood was agriculture. However, their agricultural
income is frequently unstable. This stresses the vulnerability
of people’s livelihoods due to the strong effects of soil salin-
ity on agricultural activities. Meanwhile, 56 % had a stable
source of income from factory work. This emphasizes the
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need to diversify income sources for inhabitants in soil salin-
ity areas. In addition, although the income from agricultural
production was enough to cover farmers’ daily life, most of
the households interviewed could not save. Therefore, with
increasing saline intrusion in the context of climate change,
it is very difficult for these households to have an effective
response or adaptation solutions. Borrowing capital to over-
come the negative impacts of saline intrusion is one of the
adaptation strategies reported by the interviewed households.
36 % of households borrowed capital from relatives, 11 %
borrowed from credit funds or banks, 14 % from local organ-
isations, and 33 % from distribution agents. Meanwhile, 8 %
of the interviewed households could not borrow any capital
to overcome the consequences of saline intrusion.

Diversifying external sources of capital can help house-
holds overcome the consequences of saline intrusion and
support agricultural production more generally. However,
there are still several people who cannot access capital
sources, and training to the adaptability and resilience of the
people. This increases the impact of soil salinity on the com-
munity in the study area. Furthermore, a capital utilization
strategy must be carefully considered to ensure efficient use
of resources to improve livelihoods and enhance adaptability
to saline intrusion.

4.4.5 Social Resources

Social resources play a key role in mitigating the impacts
of soil salinity on the adaptability and resilience of the peo-
ple. In the study area, households received support from var-
ious sources, such as local communities, volunteer organi-
zations, non-governmental organizations, and mutual assis-
tance among households. This support includes exemption
from land use tax, support for production equipment, crops,
and food supply for people. Regarding people’s awareness
of climate change and its impact on salinity intrusion, about
82 % of households said they learned about this issue through
local authorities and media propaganda Furthermore, 100 %
of the households surveyed reported that local authorities
also had organised training sessions and drills to respond to
saline intrusion and sea level rise. However, as mentioned
above, the knowledge and skills of inhabitants are still lim-
ited. This raises questions about the effectiveness of train-
ing sessions. In addition, these training activities occur in-
frequently. For example, during the soil salinity, people did
not receive timely support and assistance from these organi-
sations. This led to a reduction in the community’s ability to
adapt soil salinity.

5 Discussion

Soil salinity is a global environmental threat, a key cause of
food insecurity worldwide (Song et al., 2024). Therefore, it
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is essential to monitor it with high precision, as is identifying
the adaptive capacity of those in vulnerable regions.

In Vietnam, two large deltas ensure food security not only,
but also in other countries. Although several previous studies
have been conducted to assess soil salinity in Vietnam, most
have focused on assessing soil salinity and farmers’ adaptive
capacity in the Mekong Delta (Nguyen et al., 2024; Hoang
and Hai, 2024). Research on the Red River Delta is scarce.
The Red River Delta is one of the key agricultural regions in
Southeast Asia. Therefore, assessing soil salinity and farms’
adaptive capacity in this area is necessary. In this study, re-
mote sensing, machine learning, and community interviews
were used to evaluate soil salinity and the adaptive capacity
of farms in the delta.

Remote sensing plays a key role in analyzing soil salin-
ity because the salt in the soil has a significant effect on the
spectral reflectance of the soil. Soils with different salinity
levels will have different spectral characteristics; for exam-
ple, areas covered with white salt often have higher spectral
reflectance levels and salinity (Hoa et al., 2019; Wu et al.,
2018; Xiao et al., 2023). This is the basis for using remote
sensors to monitor saltwater intrusion. However, one of the
challenges in using Sentinel 2 satellite images in soil salinity
monitoring is that sometimes, the spectral reflectance level
is not consistent with soil salinity. Many studies have inte-
grated vegetation indices in soil salinity monitoring to mini-
mize this limitation because different areas will have differ-
ent soil salinity. It should also be noted that the difference
depends on the vegetation type in each area. Therefore, this
study has integrated Sentinel 1 images in soil salinity moni-
toring. Sentinel 1 images use radar signals to monitor mois-
ture and dielectric properties providing accurate information
on soil salinity. This is particularly important in coastal ar-
eas, where surface moisture is high, reducing the accuracy of
optical imagery. This approach identifies areas severely af-
fected by salinity intrusion while supporting the assessment
of the adaptive capacity of communities in the area (Hoa et
al., 2019). However, with the increase in the volume, type,
and speed of remote sensing data collection, bottlenecks in
the data analysis process may occur (due to the inadequacy of
the structure of current models for processing large datasets).

XGB is one of the most powerful algorithms for identify-
ing the spatial distribution of natural hazards, such as floods,
landslides, and soil salinity. Its advantages include the ability
to avoid the overfitting problem and fast convergence. Ad-
ditionally, XGB effectively handles missing values (Mo et
al., 2019; Liu et al., 2022). However, both the configuration
and interpretation of XGB are more complex, and the pa-
rameters of this model are also complex to tune. Incorrect
parameter selection can reduce performance (Ramraj et al.,
2016). Therefore, it is necessary to use optimization algo-
rithms to select the parameters of this model. In this study,
five optimization algorithms, namely POA, STO, SOA, PSO,
and GOA, were utilized to optimize the parameters of XGB.
The XGB-POA model outperformed the other models as it
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is easy to carry out, has few parameters to adjust, has faster
convergence capability, and can avoid local minima — which
enables it to find the best global solution (Premkumar and
Santhosh, 2024). Previous studies have indicated that POA
also can solve complex problems with a large number of vari-
ables and non-linear properties (Li et al., 2023; Alamir et al.,
2023). XGB-STO model ranked second. The STO algorithm
maintains a good equilibrium with exploration and exploita-
tion processes. This allows it to avoid local minima prob-
lems, which improves model performance (Trojovsky et al.,
2022; Al-Sarray et al., 2024). The XGB-SOA model came
third in terms of accuracy. SOA can solve complex prob-
lems with a large number of variables or continuous, discrete,
or multi-objective problems, so it is a versatile tool for sev-
eral different applications. In addition, inspired by the ser-
val’s precise jumps and fast movements, SOA can converge
quickly with high accuracy (Dehghani and Trojovsky, 2022;
Sindi et al., 2024). The XGB-PSO model was ranked fourth.
In addition to ease of use, PSO has the advantage of equi-
librium of the exploration and exploitation processes. This
can avoid the local optimization problem (Rini et al., 2011;
Juneja and Nagar, 2016). The XGB-GOA model was less ac-
curate than other models because it tends to concentrate ex-
ploration at the beginning of the process to avoid the local
optimization problem. This may lead to slow convergence
(Mirjalili et al., 2018; Zhao et al., 2019). When comparing
the models proposed in this study on the ability to predict
natural hazards such as soil salinity, each model has different
characteristics that influence the real-time prediction ability.
Three models (XGB-POA, XGB-STO, and XGB-SOA) can
converge quickly because of the faster learning speed. There-
fore, these models best suit adaptation for real-time appli-
cations because fast updates are necessary to support those
tasked with developing mitigation strategies.

The results of this study not only confirmed the effec-
tiveness of XGBoost models in soil salinity prediction but
also showed the potential for improving accuracy by com-
bining them with optimization algorithms. Compared with
previous studies, the models in this study outperform tra-
ditional models. Wang and Sun (2024) used three machine
learning models, namely random forest (RF), support vec-
tor machine (SVM), and artificial neural network (ANN),
to predict the soil salinity in Huludao City, China. The re-
sults indicated that the RF model performed better with an
R? value of 0.84. The model accuracy in Wang and Sun’s
2024 study was lower than the models in our study. Aksoy et
al. (2024) applied two models, namely XGB and RF to pre-
dict the soil salinity in western and southeastern Lake Urmia
Playas (LUP) in the Northwest of Iran. The results showed
that the XGB model was more efficient with the R? value
of 0.83. It was less accurate than in our study. Elshewy et
al. (2024) evaluated the soil salinity in Sharkia Governorate,
Egypt, using four machine learning models, namely support
vector machines (SVM), regression trees, Gaussian linear re-
gression, and tree-based ensemble. The results indicated that
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the SVM model performed better with an R? value of 0.86.
Comparison with previous studies showed the potential of
the machine learning model in this study to predict soil salin-
ity.

Saline intrusion in the Red River Delta and the study area
reflects the interaction between natural factors and human
activities. One cause of the increasingly serious saline in-
trusion in the study area is the reduced flow in the delta
caused by the construction of dams and reservoirs upstream
in China. This reduction reduces the ability of the river sys-
tem to repel salt water, creating conditions for seawater to
penetrate deep into the inland. Hien et al. (2023) have em-
phasized that by 2050, saltwater intrusion is likely to extend
about 20 km inland from the river mouth, related to sea level
rise and reduced discharge from the upper river. Nguyen et
al. (2017) reported that the increasing trend of saline intru-
sion is the result of sea level rise, combined with the decline
of the Red River water level, especially in the dry season.
Specifically, the sea level increased by 0.19 m in the period
1901-2010, with an average rate of 3.2m from 1993-2010.
In addition, the phenomenon of saline intrusion is increas-
ingly severe due to subsidence related to groundwater ex-
ploitation. In many areas of the Red River Delta in general
and the study area in particular, uncontrolled groundwater
exploitation for agricultural production and aquaculture con-
tributes to subsidence, increasing the impact of tides. Nguyen
and Takewaka (2020) have emphasized that the subsidence
phenomenon in the delta can reach —12.3mmyr~!, which
is one of the causes that aggravate the problem of saltwater
intrusion, especially in the context of rising sea levels.

The results of this study explored the adaptive capacity of
farms in the Thai Thuy district of Thai Binh province. River-
ine farmers in areas affected by saltwater intrusion are pre-
pared. They rely on their local communities and expect sup-
port from local authorities and voluntary organisations. Our
results are similar to those of previous studies investigating
the adaptive capacity of residential communities to natural
hazards, including saltwater intrusion. The key to adaptation
is education, knowledge, and resources to cope with saltwa-
ter intrusion. These resources can be natural, physical, finan-
cial, social, and human resources.

The community’s adaptive capacity in the study area faces
many challenges, especially in the context of global warming
and growing saltwater intrusion. Although most households
surveyed have more than 20 years of experience in agricul-
tural production and benefit from available labor resources,
their adaptive capacity to saltwater intrusion remains limited.
This is in part because these households lack the knowledge
to change their livelihood patterns in addressing varying en-
vironmental situations. In addition, the main sources of agri-
cultural income are often unstable, and the ability to accu-
mulate finances is low, leading to difficulties in adapting to
and recovering from saltwater intrusion. People’s adaptation
strategies, such as uncontrolled groundwater extraction and
conversion to non-agricultural activities, also present long-
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term environmental and social risks. Furthermore, policies
and support programs for residents, such as training sessions
and lending programs provided by stakeholders, also raise
concerns regarding their effectiveness and inclusiveness. Al-
though people in the study area have access to capital from
many different sources, some households still cannot access
these sources of capital to overcome the consequences of
saltwater intrusion. All of these factors impact agriculture
and human life, leading to increased household vulnerabil-
ity. To enhance people’s adaptive capacity, it is important
to emphasize the role and effectiveness of policies of local
governments, policymakers and stakeholders in supporting
people to understand better and respond to saline intrusion.
Information and knowledge sharing can be done through di-
rect outreach to people to raise awareness of saline intrusion
among communities. Lending policies of local governments
and stakeholders need to cover all households while improv-
ing the efficiency of capital use. Effective management of
natural and physical resources and enhancing social capital
through the development of cooperative community models
are important factors contributing to people’s adaptive ca-
pacity to saline intrusion. This study has successfully built
a theoretical framework using machine learning with opti-
mization algorithms, remote sensing, and farmer interviews
to determine the spatial distribution of soil salinity and farm-
ers’ adaptation capacity. However, to apply this theoretical
framework in different regions, it is necessary to use factors
specifically pertinent to each region. Machine learning mod-
els must be provided with the local characteristics of the re-
gion in question. However, data collection in any region is
difficult, often due to restrictive data-sharing policies or lim-
ited financing resources to maintain and distribute the data.
From field surveys, it can be seen that in the Red River
Delta, adaptation options to soil salinity mainly rely on up-
grading the sea dike system, river dikes, and saline pre-
vention sluice systems. In addition, other adaptation options
mainly include increasing the resilience of the current agri-
cultural system, such as changing the crop calendar, chang-
ing crop varieties, using fertilizers, and planting mangroves.
Many households have transitioned from rice cultivation to
aquaculture in coastal areas, where soil salinity has a signifi-
cant impact. In addition, some fish farming households have
also switched to shrimp farming or fish farming due to in-
creased saline intrusion. Some households do not have the
capital to convert their agricultural systems, and while agri-
cultural productivity decreases due to saline intrusion, they
consider finding non-agricultural jobs or migrating to the city
to find jobs with more stable incomes. Households located
further inland, less affected by saline intrusion, still maintain
traditional agriculture. Some households practice intercrop-
ping by growing rice alongside vegetables to increase their
income. Thus, it can be seen that the adaptability of house-
holds in the Red River Delta is not only based on strength-
ening the system of sea dikes, river dikes, and salinity pre-
vention sluices, but also on transforming the traditional agri-
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cultural system to minimize the impact of salinity intrusion.
However, capital barriers force many households to abandon
agriculture, seriously affecting the food security situation in
the region.

A significant problem when using machine learning is that
of extrapolation. Each model built is adapted only to one set
of data. Therefore, evaluating the soil salinity in other re-
gions is challenging. General, there is only one model that
fits each training dataset. In theory, this would not be a prob-
lem if enough training data were collected and all extreme
events were included. However, in practice, it is very diffi-
cult to collect data for all these events, especially in the con-
text of climate change and sea level rise To solve this prob-
lem, several studies have pointed out that integrating machine
learning with conventional models for example, remote sens-
ing or hydrodynamic models can be effective, as such tradi-
tional models can provide the training data to use as the in-
put file of the machine learning model. Another solution is
to combine machine learning with optimization algorithms,
as in this study, to enhance the prediction capability of the
machine learning model (Tran and Kim, 2022).

This study emphasizes the significance of combining ma-
chine learning methods to analyze the spatial distribution of
salinity intrusion with the community’s adaptive capacity to
soil salinity. The salinity intrusion map from the machine
learning model shows a clear difference in the level of salin-
ity intrusion between coastal, riverside, and inland areas.s.
Coastal and estuarine areas often have high levels of salinity
intrusion, with EC values exceeding 7mS cm™!. These are
also areas where communities must apply appropriate adap-
tation strategies, including crop restructuring, selecting more
salinity-tolerant plant varieties, combining agriculture and
fisheries, or livelihood conversion. In contrast, inland areas,
where the level of salinity intrusion is lower, have less vari-
ation in agricultural production models, and communities in
these areas still mainly maintain traditional agricultural prac-
tices. The findings may indicate that the coping strategies and
adaptive capacity of the communities depend on the level of
salinity intrusion in the areas. In addition, it can be seen that
in areas with high salinity intrusion, people have difficulty in
accessing fresh water for agricultural production; therefore,
the communities in this area tend to depend more on non-
agricultural sources of income. Previous studies (Nguyen et
al., 2019; Yuen et al., 2021) have demonstrated this trend.

The results of the study emphasize that the integration of
advanced machine learning models and sociological surveys
not only improves the comprehensive research ability from
natural factors to socio-economic factors but can also sup-
port policymakers and planners to develop appropriate adap-
tation solutions. Identifying areas affected by saline intrusion
by using machine learning models and qualitative analysis
of the adaptive capacity of the community is a solid scien-
tific basis for developing policies to minimize the impact of
saline intrusion, especially in the context of climate change,
to ensure agricultural development and food security.
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This study was successful in building machine learning
models integrated with optimization algorithms to identify
the spatial of soil salinity, as well as evaluating farmers’
adaptive capacity in the study area. However, in terms of
data, this study collected 62 soil salinity samples to build the
machine learning model; therefore, the soil salinity map con-
structed by the proposed models cannot present the trend and
drive of soil salinity in time series. Furthermore, soil salinity
is significantly affected by climate change and rising sea lev-
els, so it is necessary to assess the effects of this change on
soil salinity in the future.

As hydrological conditions change, those living in deltas
are confronting increased risk. The Red River Delta is one
of the largest deltas in the world and, thanks to its fertile
floodplains, is home to about 21 million inhabitants. In re-
cent years, in the context of global warming and rising sea
levels, these deltas are confronting growing flooding and soil
salinity problems, which affect food security in the region
and the country. Policies must be implemented to improve
the agricultural system and the adaptive capacity of farmers.
A proactive approach is required, envisaging multiple sce-
narios to provide appropriate support for agriculture. These
scenarios may include activities and programs adaptive to the
different influences of global warming on soil salinity.

6 Conclusions

Soil salinity is a key environmental threat, which will have
a growing effect on the development of agriculture and food
security globally. A lack of assessment of local adaptive ca-
pacities exacerbates the problem. Therefore, this research’s
objective was toconstruct a theoretical framework to assess
soil salinity and farmers’ adaptive capacity based on machine
learning, optimization algorithms, remote sensing, and inter-
views with local people. The results in this study represent
a novel contribution to the literature for researchers world-
wide and can support policy-makers and farmers to establish
suitable strategies to limit damage related to soil salinity. The
outcome of this research is as follows.

— This study justified the effectiveness of machine learn-
ing and remote sensing in soil salinity monitoring in the
Red River Delta. The results of this study can be opened
to realize in different regions.

— Five optimization algorithms, namely POA, STO, SOA,
PSO, and GOA, were successful in optimizing the ac-
curacy of the XGB model. All these algorithms were
successful in improving the accuracy of XGB. Of these,
the XGB-POA model showed the greatest performance,
with an R? value of 0.968. This was followed by XGB-
STO (R?=0.967), XGB-SOA (R?=0.966), XGB-
PSO (R? = 0.964), and XGB-GOA (R? = 0.964).

— The models in this research were utilized to construct
soil salinity maps. The maps demonstrated that littoral
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areas and those along the rivers were the most influ-
enced by the soil salinity problem because these regions
are influenced by seawater. In addition, when the river
levels are lower during the dry season, it creates the con-
ditions for seawater to penetrate the land.

— Five factors were analyzed to consider farmers’ adap-
tive capacity: natural capital, human capital, material re-
sources, financial resources, and social capital. The re-
sults show that people have awareness and actions in
improving their adaptive capacity to increasingly severe
saline intrusion; however, there are still many limita-
tions related to lack of awareness and finance. As a rec-
ommendation, the participation of multiple stakehold-
ers is required, with a particular emphasis on the role of
policies in sustainably and effectively enhancing peo-
ple’s adaptive capacity.

The outcome of this research provides key knowledge on the
spatial distribution of soil salinity and farmers’ adaptive ca-
pacity to growing salinization, to support local authorities
or farmers in proposing appropriate measures to reduce soil
salinity damage. This can complement a theoretical frame-
work in the existing literature on soil salinity management
and adaptive capacity.
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