Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Anatomy of a Flash Flood in a Hyperarid Environment: From Atmospheric Masses to Sediment Dispersal in the Sea
Akos Kalman
CORRESPONDING AUTHOR
Department of Marine Geosciences, Leon Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel
Israel Oceanographic and Limnological Research, P.O. 8030, Haifa 31080, Israel
University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600, Rickenbacker Causeway, Key Biscayne, 33149, FL, USA
Timor Katz
Israel Oceanographic and Limnological Research, P.O. 8030, Haifa 31080, Israel
Miklos Vincze
HUN-REN Institute of Earth Physics and Space Science, Sopron, 9400, Hungary
Jake Longenecker
University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600, Rickenbacker Causeway, Key Biscayne, 33149, FL, USA
Alysse Mathalon
Oceanography Department, Dalhousie University, 1355 Oxford Street, P.O. 15000, Halifax, Nova Scotia B3H4R2, Canada
Paul Hill
Oceanography Department, Dalhousie University, 1355 Oxford Street, P.O. 15000, Halifax, Nova Scotia B3H4R2, Canada
Beverly Goodman-Tchernov
Department of Marine Geosciences, Leon Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel
Related authors
No articles found.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Imre M. Jánosi, Holger Kantz, Jason A. C. Gallas, and Miklós Vincze
Ocean Sci., 18, 1361–1375, https://doi.org/10.5194/os-18-1361-2022, https://doi.org/10.5194/os-18-1361-2022, 2022
Short summary
Short summary
Surface flow fields of the global oceans are dominated by so-called mesoscale (50–300 km) eddies. They usually drift westward at a few kilometers per day, transporting mass, temperature, chlorophyll, and debris. There are several methods to identify and track eddies based on satellite measurements, some of them very computationally demanding. Here we extend a recently proposed simple procedure to the global scale, which gives quick coarse-grained statistics on mesoscale vortex properties.
Costanza Rodda, Uwe Harlander, and Miklos Vincze
Weather Clim. Dynam., 3, 937–950, https://doi.org/10.5194/wcd-3-937-2022, https://doi.org/10.5194/wcd-3-937-2022, 2022
Short summary
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Karim Medjdoub, Imre M. Jánosi, and Miklós Vincze
Ocean Sci., 17, 997–1009, https://doi.org/10.5194/os-17-997-2021, https://doi.org/10.5194/os-17-997-2021, 2021
Short summary
Short summary
In our laboratory experiments we addressed the question of how surface standing waves in a closed stratified basin are damped by the interaction of the flow in the bulk with a sill-like bottom obstacle reaching up to a density interface between the more saline deep layer and the freshwater layer at the top. We quantify the decay rates of the surface waves and explore what types of internal waves can be excited in this process along the internal density interface.
Cited articles
Allison, M. A., Demas, C. R., Ebersole, B. A., Kleiss, B. A., Little, C. D., Meselhe, E. A., Powell, N. J., Pratt, T. C., and Vosburg, B. M.: A water and sediment budget for the lower Mississippi–Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana, J. Hydrol., 432–433, 84–97, https://doi.org/10.1016/j.jhydrol.2012.02.020, 2012.
Alpert, P., Osetinsky, I., Ziv, B., and Shafir, H.: Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change, Int. J. Climatol., 24, 1001–1011, https://doi.org/10.1002/joc.1036, 2004a.
Alpert, P., Osetinsky, I., Ziv, B. and Shafir, H.: A new seasons definition based on classified daily synoptic systems: an example for the eastern Mediterranean, Int. J. Climatol., 24, 1013–1021, https://doi.org/10.1002/joc.1037, 2004b.
Arieli, T.: Aqaba and Eilat: Twenty-five years of “good neighborly relations” in a post-conflict environment, in: Twin Cities across Five Continents, Routledge, 133–146, ISBN 9781003102526, 2021.
Ashbel, D.: Great floods in Sinai Peninsula, Palestine, Syria and the Syrian Desert, and the influence of the red sea on their formation, Q. J. R. Meteorol. Soc., 64, 635–639, https://doi.org/10.1002/qj.49706427716, 1938.
Asiri, M. A., Almazroui, M., and Awad, A. M.: Synoptic features associated with the winter variability of the subtropical jet stream over Africa and the Middle East, Meteorol. Atmos. Phys., 132, 819–831, 2020.
Awad, A. M. and Almazroui, M.: Climatology of the winter Red Sea trough, Atmospheric Research, 182, 20–29, https://doi.org/10.1016/j.atmosres.2016.07.019, 2016.
Azaryahu, M.: The beach at the end of the world: Eilat in Israeli popular culture, Soc. Cult. Geogr., 6, 117–133, https://doi.org/10.1080/1464936052000335008, 2005.
Bajjali, W.: ArcGIS for environmental and water issues, Springer, https://doi.org/10.1007/978-3-319-61158-7, 2017.
Barragán, J. M. and de Andrés, M.: Analysis and trends of the world's coastal cities and agglomerations, Ocean Coast. Manag., 114, 11–20, https://doi.org/10.1016/j.ocecoaman.2015.06.004, 2015.
Blum, M. D. and Törnqvist, T. E.: Fluvial responses to climate and sea-level change: a review and look forward, Sedimentology, 47, 2–48, https://doi.org/10.1046/j.1365-3091.2000.00008.x, 2000.
Branstator, G.: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation, J. Clim., 15, 1893–1910, 2002.
Chen, C., Chen, Q., Qin, B., Zhao, S., and Duan, Z.: Comparison of different methods for spatial downscaling of GPM IMERG V06B satellite precipitation product over a typical arid to semi-arid area, Front. Earth Sci., 8, 536337, https://doi.org/10.3389/feart.2020.536337, 2020.
Chen, Y., Paytan, A., Chase, Z., Measures, C., Beck, A. J., Sañudo-Wilhelmy, S. A., and Post, A. F.: Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea, J. Geophys. Res. Atmos., 113, 1–13, https://doi.org/10.1029/2007JD009110, 2008.
Chie, Y. B.: Dimensionally Homogeneous Manning's Formula, J. Hydraul. Eng., 118, 1326–1332, https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1326), 1992.
Clapp, E. M., Bierman, P. R., Schick, A. P., Lekach, J., Enzel, Y., and Caffee, M.: Sediment yield exceeds sediment production in arid region drainage basins, Geology, 28, 995–998, https://doi.org/10.1130/0091-7613(2000)28<995:SYESPI>2.0.CO;2, 2000.
Cohen, H. and Laronne, J. B.: High rates of sediment transport by flashfloods in the Southern Judean Desert, Israel, Hydrol. Process., 19, 1687–1702, https://doi.org/10.1002/hyp.5630, 2005.
Cools, J., Vanderkimpen, P., El Afandi, G., Abdelkhalek, A., Fockedey, S., El Sammany, M., Abdallah, G., El Bihery, M., Bauwens, W., and Huygens, M.: An early warning system for flash floods in hyper-arid Egypt, Nat. Hazards Earth Syst. Sci., 12, 443–457, https://doi.org/10.5194/nhess-12-443-2012, 2012.
Dayan, U., Ziv, B., Margalit, A., Morin, E. Y., and Sharon, D.: A severe autumn storm over the middle-east: synoptic and mesoscale convection analysis, Theor. Appl. Climatol., 122, 103–122, https://doi.org/10.1007/s007040170038, 2001.
Dayan, U., Ziv, B., Shoob, T., and Enzel, Y.: Suspended dust over southeastern Mediterranean and its relation to atmospheric circulations, Int. J. Climatol., 28, 915–924, https://doi.org/10.1002/joc.1587, 2008.
Dayan, U., Lensky, I. M., Ziv, B., and Khain, P.: Atmospheric conditions leading to an exceptional fatal flash flood in the Negev Desert, Israel, Nat. Hazards Earth Syst. Sci., 21, 1583–1597, https://doi.org/10.5194/nhess-21-1583-2021, 2021.
De Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., and Lelieveld, J.: Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough, J. Geophys. Res. Atmos., 118, 7087–7108, https://doi.org/10.1002/jgrd.50569, 2013.
de Vries, A. J., Ouwersloot, H. G., Feldstein, S. B., Riemer, M., El Kenawy, A. M., McCabe, M. F., and Lelieveld, J.: Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East Based On Potential Vorticity and Moisture Transport, J. Geophys. Res. Atmos., 123, 861–881, https://doi.org/10.1002/2017JD027587, 2018.
Draper, D. W., Newell, D. A., Wentz, F. J., Krimchansky, S., and Skofronick-Jackson, G. M.: The global precipitation measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 3452–3462, 2015.
Dunkerley, D. and Brown, K.: Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream, Hydrol. Process., 13, 1577–1588, 1999.
El-Fandy, M. G.: The effect of the sudan monsoon low on the development of thundery conditions in Egpyt, Palestine and Syria, Quarterly Journal of the Royal Meteorological Society, 74, 31–38, 1948.
El-Fandy, M. G.: Effects of Topography and Other Factors on the Movement of Lows in the Middle East and Sudan, Bull. Am. Meteorol. Soc., 31, 375–381, https://doi.org/10.1175/1520-0477-31.10.375, 1950.
Farhan, Y. and Anaba, O.: Flash Flood Risk Estimation of Wadi Yutum (Southern Jordan) Watershed Using GIS Based Morphometric Analysis and Remote Sensing Techniques, Open J. Mod. Hydrol., 6, 79–100, https://doi.org/10.4236/ojmh.2016.62008, 2016.
Farhan, Y. and Anbar, A.: Fragile Landscape: Impact and Consequences of May 2014 Flash-flood Disaster in the Aqaba Area, Southern Jordan, Res. J. Environ. Earth Sci., 6, 451–465, https://doi.org/10.19026/rjees.6.5257, 2014.
Gee, G. W. and Hillel, D.: Groundwater recharge in arid regions: Review and critique of estimation methods, Hydrol. Process., 2, 255–266, https://doi.org/10.1002/hyp.3360020306, 1988.
Greenbaum, N., Enzel, Y., and Schick, A. P.: Magnitude and frequency of paleofloods and historical floods in the Arava basin, Negev Desert, Israel, Isr. J. Earth Sci., 50, 159–186, https://doi.org/10.1092/N5VU-FU5F-QNWC-UDCK, 2001.
Haggag, M. and El-Badry, H.: Mesoscale Numerical Study of Quasi-Stationary Convective System over Jeddah in November 2009, Atmos. Clim. Sci., 3, 73–86, https://doi.org/10.4236/acs.2013.31010, 2013.
Hereford, R., Webb, R. H., and Longpré, C. I.: Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893–2001, J. Arid Environ., 67, 13–34, https://doi.org/10.1016/j.jaridenv.2006.09.019, 2006.
Hickey, B. M., Kudela, R. M., Nash, J. D., Bruland, K. W., Peterson, W. T., MacCready, P., Lessard, E. J., Jay, D. A., Banas, N. S., Baptista, A. M., Dever, E. P., Kosro, P. M., Kilcher, L. K., Horner-Devine, A. R., Zaron, E. D., McCabe, R. M., Peterson, J. O., Orton, P. M., Pan, J., and Lohan, M. C.: River Influences on Shelf Ecosystems: Introduction and synthesis, J. Geophys. Res. Ocean., 115, https://doi.org/10.1029/2009JC005452, 2010.
Hochman, A., Alpert, P., Kunin, P., Rostkier-Edelstein, D., Harpaz, T., Saaroni, H., and Messori, G.: The dynamics of cyclones in the twentyfirst century: the Eastern Mediterranean as an example, Clim. Dyn., 54, 561–574, https://doi.org/10.1007/s00382-019-05017-3, 2020.
Hochman, A., Rostkier-Edelstein, D., Kunin, P., and Pinto, J. G.: Changes in the characteristics of “wet” and “dry” Red Sea Trough over the Eastern Mediterranean in CMIP5 climate projections, Theor. Appl. Climatol., 143, 781–794, https://doi.org/10.1007/s00704-020-03449-0, 2021.
Hochman, A., Plotnik, T., Marra, F., Shehter, E.-R., Raveh-Rubin, S., and Magaritz-Ronen, L.: The sources of extreme precipitation predictability; the case of the “Wet” Red Sea Trough, Weather and Climate Extremes, 40, 100564, https://doi.org/10.1016/j.wace.2023.100564, 2023.
Holdren, J. P. and Ehrlich, P. R.: Human population and the global environment, Am. Sci., 62, 282–292, 1974.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., and Tan, J.: Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG), Satell. Precip. Meas., 1, 343–353, 2020.
Kahana, R., Ziv, B., Enzel, Y., and Dayan, U.: Synoptic climatology of major floods in the Negev Desert, Israel, Int. J. Climatol., 22, 867–882, https://doi.org/10.1002/joc.766, 2002.
Kalman, A., Katz, T., Hill, P., and Goodman-Tchernov, B.: Droughts in the desert: Medieval Warm Period associated with coarse sediment layers in the Gulf of Aqaba-Eilat, Red Sea, Sedimentology, 67, 3152–3166, https://doi.org/10.1111/sed.12737, 2020.
Kalman, A., Goodman-Tchernov, B., Hill, P., Everhardt IV, C., Mathalon, A., and Katz, T.: Anthropogenic changes in waterways produce “drought-like” layers in shelf sediments, Elem. Sci. Anthr., 10, 39, https://doi.org/10.1525/elementa.2021.00039, 2022.
Katz, T., Ginat, H., Eyal, G., Steiner, Z., Braun, Y., Shalev, S., and Goodman-Tchernov, B. N.: Desert flash floods form hyperpycnal flows in the coral-rich Gulf of Aqaba, Red Sea, Earth Planet. Sci. Lett., 417, 87–98, https://doi.org/10.1016/j.epsl.2015.02.025, 2015.
Kouroutzoglou, J., Flocas, H. A., Hatzaki, M., Keay, K., Simmonds, I., and Mavroudis, A.: On the dynamics of a case study of explosive cyclogenesis in the Mediterranean, Meteorol. Atmos. Phys., 127, 49–73, 2015.
Krichak, S. O. and Alpert, P.: Role of large scale moist dynamics in November 1–5, 1994, hazardous Mediterranean weather, J. Geophys. Res. Atmos., 103, 19453–19468, https://doi.org/10.1029/98JD01710, 1998.
Krichak, S. O., Breitgand, J. S., and Feldstein, S. B.: A conceptual model for the identification of active Red Sea trough synoptic events over the southeastern Mediterranean, J. Appl. Meteorol. Climatol., 51, 962–971, 2012.
Lekach, J. and Schick, P.: Suspended sediment in desert floods in small catchments, Isr. J. Earth-Sciences, 31, 144–156, 1982.
Loya, Y.: The coral reefs of Eilat – past, present and future: three decades of coral community structure studies, in: Coral health and disease, Springer, 1–34, https://doi.org/10.1007/978-3-662-06414-6_1, 2004.
Masaki, T., Kubota, T., Oki, R., Kojima, M., Furukawa, K., Miura, T., Kai, H., Iguchi, T., Hanado, H., and Yoshida, N.: Development of level 1 algorithm of dual frequency precipitation radar (DPR) for the global precipitation measurement (GPM), in: 2014 IEEE Geoscience and Remote Sensing Symposium, 4962–4965, https://doi.org/10.1109/IGARSS.2014.6947609, 2014.
Mathalon, A., Goodman-Tchernov, B., Hill, P., Kálmán, Á., and Katz, T.: Factors influencing flashflood deposit preservation in shallow marine sediments of a hyperarid environment, Mar. Geol., 411, 22–35, https://doi.org/10.1016/j.margeo.2019.01.010, 2019.
Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H., Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., and Macdonald, E.: Causes, impacts and patterns of disastrous river floods, Nat. Rev. Earth Environ., 2, 592–609, https://doi.org/10.1038/s43017-021-00195-3, 2021.
Milliman, J. D. and Farnsworth, K. L.: River discharge to the coastal ocean: a global synthesis, Cambridge University Press, ISBN 978-0-521-87987-3, 2013.
Mohammed, S. A., Hamouda, M. A., Mahmoud, M. T., and Mohamed, M. M.: Performance of GPM-IMERG precipitation products under diverse topographical features and multiple-intensity rainfall in an arid region, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2019-547, 2020.
Mulder, T., Syvitski, J. P. M., Migeon, S., Faugères, J. C., and Savoye, B.: Marine hyperpycnal flows: Initiation, behaviorand related deposits. A review, Mar. Pet. Geol., 20, 861–882, https://doi.org/10.1016/j.marpetgeo.2003.01.003, 2003.
Mullenbach, B. L. and Nittrouer, C. A.: Rapid deposition of fluvial sediment in the Eel Canyon, northern California, Cont. Shelf Res., 20, 2191–2212, https://doi.org/10.1016/S0278-4343(00)00067-4, 2000.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future coastal population growth and exposure to sea-level rise and coastal flooding – A global assessment, PLoS One, 10, https://doi.org/10.1371/journal.pone.0118571, 2015.
Nguyen, P., Shearer, E., Tran, H., Ombadi, M., Hayatbini, N., Palacios, T., Huynh, P., Braithwaite, D., Updegraff, G., Hsu, K., and Kuligowski, B.: The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data, Sci. Data, 6, 180296, https://doi.org/10.1038/sdata.2018.296, 2019.
Parsons, J. D., Bush, J. W. M., and Syvitski, J. P. M.: Hyperpycnal plume formation from riverine outflows with small sediment concentrations, Sedimentology, 48, 465–478, 2001.
Pradhan, R. K., Markonis, Y., Godoy, M. R. V., Villalba-Pradas, A., Andreadis, K. M., Nikolopoulos, E. I., Papalexiou, S. M., Rahim, A., Tapiador, F. J., and Hanel, M.: Review of GPM IMERG performance: A global perspective, Remote Sens. Environ., 268, 112754, https://doi.org/10.1016/j.rse.2021.112754, 2022.
Reid, I. and Frostick, L. E.: Flow dynamics and suspended sediment properties in arid zone flash floods, Hydrol. Process., 1, 239–253, https://doi.org/10.1002/hyp.3360010303, 1987.
Saaroni, H., Harpaz, T., Alpert, P., and Ziv, B.: Automatic identification and classification of the northern part of the Red Sea trough and its application for climatological analysis, Int. J. Climatol., 40, 3607–3622, https://doi.org/10.1002/joc.6416, 2020.
Saligheh, M.: The Effect of Merging Subtropical Jet Stream and Polar Fronts Jet Stream on Heavy Rainfall in Southwest Asia, https://doi.org/10.21203/rs.3.rs-839144/v1, 2021.
Schick, A. P. and Lekach, J.: An evaulation of two ten-year sediment budgets, Nahal Yael, Israel, Phys. Geogr., 14, 225–238, https://doi.org/10.1080/02723646.1993.10642477, 1993.
Shalash, S.: Effects of sedimentation on the storage capacity of the High Aswan Dam reservoir, Hydrobiologia, 91–92, 623–639, https://doi.org/10.1007/BF00000061, 1982.
Sharon, D.: The spottiness of rainfall in a desert area, J. Hydrol., 17, 161–175, https://doi.org/10.1016/0022-1694(72)90002-9, 1972.
Shentsis, I., Meirovich, L., Ben-Zvi, A., and Rosenthal, E.: Assessment of transmission losses and groundwater recharge from runoff events in watercourses of the Neqarot watershed, Israel, Isr. J. Earth Sci., 50, 201–215, https://doi.org/10.1092/J79L-39QP-NC9G-WFTF, 2001.
Small, C. and Nicholls, R.: A Global Analysis of Human Settlement in Coastal Zones, J. Coast. Res., 19, 584–599, ISSN 07490208, 2003.
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green, P.: Impact of humans on the flux of terrestrial sediment to the global coastal ocean, Science , 308, 376–380, https://doi.org/10.1126/science.1109454, 2005.
Tapiador, F. J., Navarro, A., García-Ortega, E., Merino, A., Sánchez, J. L., Marcos, C., and Kummerow, C.: The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain, J. Hydrometeorol., 21, 161–182, 2020.
Tsvieli, Y. and Zangvil, A.: Synoptic climatological analysis of “wet” and “dry” Red Sea Troughs over Israel, Int. J. Climatol., 25, 1997–2015, https://doi.org/10.1002/joc.1232, 2005.
Walters, M. O.: Transmission losses in arid region, J. Hydraul. Eng., 116, 129–138, 1990.
Xilotl Soberon, J. R., Rofé, Y.: Modeling the bi-national city process of Eilat–Aqaba, a bi-national city in a cold peace setting, GeoJournal, 82, 1263–1274, https://doi.org/10.1007/s10708-016-9748-5, 2017.
Yang, H. F., Yang, S. L., Xu, K. H., Milliman, J. D., Wang, H., Yang, Z., Chen, Z., and Zhang, C. Y.: Human impacts on sediment in the Yangtze River: A review and new perspectives, Glob. Planet. Change, 162, 8–17, https://doi.org/10.1016/j.gloplacha.2018.01.001, 2018.
Youssef, A. M., Sefry, S. A., Pradhan, B., and Alfadail, E. A.: Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS, Geomatics, Nat. Hazards Risk, 7, 1018–1042, https://doi.org/10.1080/19475705.2015.1012750, 2016.
Zirks, E., Krom, M., Schmiedl, G., Katz, T., Xiong, Y., Alcott, L. J., Poulton, S. W., and Goodman-Tchernov, B.: Redox evolution and the development of oxygen minimum zones in the Eastern Mediterranean Levantine basin during the early Holocene, Geochim. Cosmochim. Acta, 297, 82–100, https://doi.org/10.1016/j.gca.2021.01.009, 2021.
Ziv, B., Dayan, U., and Sharon, D.: A mid-winter, tropical extreme flood-producing storm in southern Israel: Synoptic scale analysis, Meteorol. Atmos. Phys., 88, 53–63, https://doi.org/10.1007/s00703-003-0054-7, 2005.
Ziv, B., Harpaz, T., Saaroni, H., and Blender, R.: A new methodology for identifying daughter cyclogenesis: Application for the Mediterranean Basin, Int. J. Climatol., 35, 3847–3861, https://doi.org/10.1002/joc.4250, 2015.
Ziv, B., Shimer, R., Harpaz, T., Drori, R., Alpert, P., Raveh-Rubin, S., and Saaroni, H.: Identification and classification of the wet Red Sea Trough over Israel, Int. J. Climatol., 42, 10062–10082, https://doi.org/10.1002/joc.7884, 2022.
Short summary
Flash floods significantly impact terrestrial and marine systems, yet research tracing their entire path from atmospheric origins to sediment deposition is limited. Our study bridges this gap by analyzing satellite data, meteorological reports, and in-situ floodwater and sediment measurements. Findings reveal links between atmospheric disturbances, flood dynamics, and sediment transport, enhancing understanding of how extreme weather affects hyperarid coastal urbanized areas and marine systems.
Flash floods significantly impact terrestrial and marine systems, yet research tracing their...
Altmetrics
Final-revised paper
Preprint