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Abstract. Flash floods in rivers near hyper-arid coastlines
impact both land and marine environments, from recharging
groundwater and supporting desert ecosystems to affecting
marine water quality, organisms, and substrates. Few stud-
ies, however, have followed these events from atmospheric
origins to marine effects. This study tracked a desert flash
flood in October 2016 in Eilat, capturing stages from atmo-
spheric conditions to sediment distribution at sea. Observa-
tions included satellite data, meteorological reports, flood-
water discharge, and sediment levels from the Kinnet Canal
outlet, alongside offshore turbidity and salinity data. Our
findings indicate that a weakened polar vortex amplified a
Rossby wave, triggering convective instability over the East-
ern Mediterranean and northern Red Sea. In Eilat (mean an-
nual rainfall =27 mm, SD =21 mm), 128 % of the average
fell within hours, with the flood reaching the sea approxi-
mately 50h later and lasting 27 h. Around 25000t of sed-
iment were discharged, causing offshore salinity drops (up
to 1.75 %o below the seawater background) and fluctuations
of suspended sediment concentrations due to varying flow
rates. In turn, particle dispersal in the sea switched several
times between hypopycnal (surface) and hyperpycnal (bot-
tom) flows. These findings link the different stages of the
flood and their cascading effects from air masses to sedimen-
tary processes in the sea.

Highlights.

— A hyperarid desert flash flood is described and documented in
situ from its meteorological development to arriving into the
offshore

— Flood triggered by weak polar vortex, amplified Rossby wave,
causing intense rainfall in Eilat

— Flood discharged 25000t of sediment within freshwater out-
flow, altering salinity and sediment concentrations in the sea

— Sediment dispersal outflow alternated between hypopycnal and

hyperpycnal flows due to shifting flood dynamics and related
sediment concentrations

1 Introduction
1.1 Background

A large portion of continental shelf sediments in the shallow
offshore originate from terrestrial sources delivered through
rivers (Syvitski et al., 2005). In higher precipitation regions
it arrives primarily through large perennial rivers, while in
drier climates, such as deserts, fluvial sediments are often
delivered via ephemeral rivers during sporadic precipitation
events that may produce flash floods (Cohen and Laronne,
2005).
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Flash flood events are crucial for both sustaining desert
terrestrial ecosystems (Gee and Hillel, 1988; Hereford et al.,
2006) and enriching marine systems with essential nutrients
and sediments, thereby altering the physical, chemical, and
biological dynamics of coastal shelf ecosystems (Hickey et
al., 2010). Rainfall in desert regions is typically short-lived,
sometimes robust, spatiotemporally sporadic, and capable of
evolving into flashfloods (Sharon, 1972). From a human per-
spective, these floods may cause property damage, loss of
life, and disruptions to transportation and other infrastructure
(Haggag and El-Badry, 2013). For instance, between 1900
and 2016, 39 severe floods in the Middle East — spanning
Egypt, Israel, Jordan and Saudi Arabia — caused over 1500
fatalities and directly impacted around 300000 people (de
Vries et al., 2018).

Historically, cities along hyperarid coastlines were rare,
but this has changed dramatically in recent decades (Neu-
mann et al., 2015). Technological advancements, including
desalination plants, air-conditioned buildings, and refriger-
ated freight containers, have facilitated the growth of cities
worldwide in these less habitable locations (Barragan and
de Andrés, 2015; Holdren and Ehrlich, 1974; Small and
Nicholls, 2003). However, despite these advances, flood risk
due to their relative rarity and unpredictability, remains an
issue.

Flood forecasts generally rely on predictions of heavy pre-
cipitation, yet in hyperarid areas, rainfall is highly variable.
This variability complicates the ability to predict whether the
accumulation of runoff from different adjacent catchments
will lead to coastal flashfloods, thereby posing challenges for
early warnings and preparations in low-lying coastal cities
(Cools et al., 2012). Understanding the specific processes
and conditions that lead to, or do not lead to, flashflood and
related fluvial sediment discharge is essential for improving
forecast accuracy and flood preparedness.

Principally, in arid coastlines, the deposition of fluvial sed-
iment into the sea represents the culmination of a series of
interconnected events. These stages can be summarized as
follows: (1) atmospheric conditions leading to precipitation,
(2) the occurrence of precipitation, (3) the drainage of wa-
ter through the watershed, (4) the formation of flash floods,
(5) the transportation of water and sediments to the coastline,
(6) the discharge of these elements from the coastal outlet
into the sea, and (7) the subsequent dispersal and deposition
within the marine environment (Cohen and Laronne, 2005;
Kalman et al., 2020, 2022; Katz et al., 2015; Mathalon et al.,
2019; Mulder et al., 2003; Reid and Frostick, 1987). While
aspects of these stages have been the subject of research (Al-
lison et al., 2012; Blum and Toérnqvist, 2000; Merz et al.,
2021; Mullenbach and Nittrouer, 2000), comprehensive stud-
ies tracing the entire sequence for a specific event are lack-
ing. Developing a framework that traces the entire sequence
of events during a single flood can serve as a model for under-
standing similar processes in other arid coastal systems, even
when only partial or less detailed data are available. Such
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a methodology could enhance our broader understanding of
sediment dynamics and support environmental management,
ecological conservation, urban planning in coastal deserts,
and natural hazard assessment.

The aims of this study were (1) to capture the full sequence
of a desert flood from meteorological precursors to eventual
sediment discharge from an ephemeral coastal river and its
dispersal in the sea; (2) to assess the dependence or relation-
ship between parts of the sequence and their outcomes, and
(3) to track and identify specific atmospheric antecedent con-
ditions that contributed to the triggering mechanism of the
flash flood.

To achieve these aims, we integrated records from re-
gional meteorological data with in-situ environmental mea-
surements of salinity, turbidity, temperature, and surficial wa-
ter velocity preceding and during a flash flood event that dis-
charged into the northern Red Sea/southern Negev Desert of
Israel.

1.2 Previous Atmospheric and Precipitation studies

For decades, there has long been an interest in the linkages
between meteorological conditions and resulting floods (El-
Fandy, 1948). One of the earliest studies on meteorological
trends and flooding was conducted by Ashbel (1938), who
described several extreme precipitation and flooding events
in Rutbah, Damascus, the Dead Sea and the Sinai Peninsula.
The events occurred with the northward propagation of the
Red Sea Trough, and descending cold air from the north.

At present, based on nearly 70 years of data reanalysis, the
RST is 96 % originated from Sudan (Awad et al., 2016), and
is known to be the most active during the autumn and winter
(Alpert et al., 2004a; Saaroni et al., 2020). Also, it is usually
accompanied by upper-level westerlies or by an anticyclonic
flow (Tsvieli and Zangvil, 2005); but under these conditions
the RST is a dry system with no rain. Southeasterly winds
blow the air over the sandy basins of Saudi Arabia, Iraq, and
Syria, a process that often triggers aeolian transport of sedi-
ment towards the Eastern Mediterranean (Dayan et al., 2008).
However, no single synoptic feature is solely responsible for
the development of heavy rainfall over the Levant.

Kahana et al. (2002) labeled a thunderstorm producing
RST as an “Active RST” (ARST). Krichak and Alpert (1998)
outlined a sequence that leads to the formation of these
storms: moisture transport from equatorial Africa (1), fol-
lowed by convection (2), and intensification of The Subtrop-
ical Jet Stream (3) thus enhancing RST expansion (4) and
related moisture (5) towards the Levant. A detailed anal-
ysis of a severe October 1997 ARST event by Dayan et
al. (2001) confirmed stages (2), (3) and (5). Other studies
(Dayan et al., 2001, 2021; Kahana et al., 2002; De Vries et
al., 2013; Ziv et al., 2005) emphasize the significant role of
mid-latitude upper-level troughs in amplifying instability and
driving rainfall.
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Ziv et al. (2022) identified climatological precursors for
cyclogenesis associated with the RST extending toward the
Levant. Using automated cyclone tracking (Hochman et al.,
2020; Ziv et al., 2015) from 1979 to 2017, they identified
four patterns of upper-level trough approaching the Eastern
Mediterranean: (1) a cyclone crossing the Levant from the
southwest, (2) a trough from the northeast, (3) a trough from
the west, and (4) scenarios without upper-level support. No-
tably, in the second category, intense rainfalls occured, driven
by cold advection resembling a polar intrusion, which greatly
increases static instability over the Levant.

1.3 Runoff and flood development in the hyperarid
GAE

Short-lived, but intense rainfall sometimes occurs over the
terrestrial drainage in the hyperarid landscape surround-
ing the Gulf of Aqaba-Eilat (GAE). Within hours, this wa-
ter runoff may accumulate in the otherwise dry riverbeds
(wadis), and if the water volume that accumulates is large
enough, it can produce a flashflood. Lack of vegetation and
poor soil development with low permeability (Cohen and
Laronne, 2005, and references therein) also contributes to
the prompt development of floods. The time between rain-
fall and initiation of the flooding depends on storm intensity,
duration, catchment size and which part of the catchment re-
ceives the rain. Because of the temporally sporadic nature of
the rain events, sometimes years can pass between consecu-
tive events in the same drainage system. These extended non-
flood periods allow for surface weathering processes to dom-
inate (and dust to settle), leaving ample sediment available
when rains do arrive (Cohen and Laronne, 2005). Therefore,
the emerging floods have high concentrations of suspended
sediment that may even increase towards the terminal basins
owing to transmission loss (Shentsis et al., 2001).

A sequence of instrument gauge stations was first installed
in the southern Arava desert in 1966, set along ephemeral
streams such as Nahal Yael (2km long, 0.6 km? catchment
area) that lead into larger tributaries (Schick and Lekach,
1993). These gauges have provided information regarding
flow and sediment loads, demonstrating that sediment dis-
charge is inconsistent. For example, during 33 years of mon-
itoring, 14 years lacked any flow, and 8 years had flood
events during which the flow terminated prior to the gauge
at the lowest elevation (Clapp et al., 2000). The measured
floods that terminated before reaching the sea delivered large
amounts of sediment to the wadi system (100 t of eroded sed-
iment km ™2 yr‘1 (Schick and Lekach, 1993), 460t of sedi-
ment in a single event (Clapp et al., 2000)). In this local hy-
perarid wadi, total suspended solids (TSS) during flooding
were measured at 44 gL.~!, based on an average from three
flash floods (Lekach and Schick, 1982). This concentration
is very high relative to averages recorded in large perennial
rivers such as the tropical Amazon (0.19 gL~"), Mississippi

https://doi.org/10.5194/nhess-25-3201-2025

3203

0.82¢g L~1) (Milliman and Farnsworth, 2013), or pre-Aswan
Nile River (3.43 gL~!) (Shalash, 1982).

1.4 Recent GAE Flood Research

Eilat, a coastal city established in 1951 with an increas-
ing population of greater than 55000 people (population
50000 reported in by Azaryahu, 2005; and 55 000 reported
in http://www.worldpopulationreview.com, last access: June
2025) is located in the northernmost part of the GAE imme-
diately west of the neighboring city of Aqaba, Jordan which
is home to over 150 000 residents (Arieli, 2021). Both Eilat
and Agaba expand significantly (> 1 million visitors) during
holiday seasons with tourists arriving to enjoy attractions like
the world’s northernmost tropical coral reefs (Loya, 2004;
Xilotl Soberon and Rofe, 2017).

Floods in the GAE can form within hours after rainfall
affects the Kinnet watershed in the northern GAE (Fig. 1).
The Kinnet Canal (Fig. 2) serves as a conduit for the Kinnet
watershed, channeling both water and sediment loads (pre-
dominantly in suspension) toward the lowest elevation point.
When the arriving water volume from the catchment area is
substantial enough, floods can make their way into the sea
(Katz et al., 2015).

Flash floods reaching the sea through the Kinnet Canal
(discharge located on FEilat shoreline) have been documented
since 1994 (Kalman et al., 2020). Between 1994 and 2012,
events were dominated by small to mid-scale floods, inter-
mixed with extended dry periods (Kalman et al., 2020; Katz
et al., 2015). In 2006, Agaba was struck by an exceptionally
large flood, causing extensive damage (Farhan and Anbar,
2014). Historical records also describe significant weather
events, including a “terrific rain and hail storm that literally
washed away half of modern Agaba in 1940, and a storm
on 11 March 1966, classified as a 50-year return period event
(Farhan and Anbar, 2014).

The west (Filat) and the east (Aqaba) sides of the head
of the Gulf have different flood potentials. The Wadi Yutum
catchment on the east is 4867 km?2, nine times larger than
the Arava catchment on the west, and its higher elevation
(~ 1600 m) increases water flow speed and sediment trans-
port. The northern part of Wadi Yutum catchment possesses
several sinks and sabkhas in the north, but rainstorms in the
rocky southern slopes send water towards Aqaba and the
GAE (Farhan and Anaba, 2016). The smaller Arava catch-
ment (458 km? and lower elevation (~ 500 m) still generate
floods during rainstorms in the nearby Eilat Mountains.

In the northern GAE, Katz et al. (2015) documented a hy-
perpycnal plume created by a flashflood’s high-density sedi-
ment load discharging into the sea. Their study characterized
the floodwaters (temperature, salinity, sediment concentra-
tion) along the coastline and within the plume as well as the
sediments deposited on the seafloor. They identified the dis-
tribution and thickness of the flood sediments and estimate
the volume discharged (approximately 20 000 t), concluding
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Figure 1. (a) Regional map showing the location of the head of the GAE. (b) Local map illustrates the mooring’s position along with
ephemeral river systems. The delineation of streams transporting water and sediment to the northern shelf of the GAE is represented by the
brown lines. Although all runoff ultimately converges at a single outlet, the Kinnet Canal, dividing the watershed into subbasins helps to
identify distinct source areas and improves the estimation of flood arrival at the river mouth (Eilat city center). Maps adapted from Kalman et
al. (2020). (¢) Schematic drawing of the mooring station setup (Sea Bird Electric CTD and Campbell Electric 3+ OBS sensors), positioned
250 m offshore the Kinnet outlet at 13 m water depth.

Figure 2. Flash flood entering the northern Red Sea following a heavy precipitation event on 28 October 2016. Photo by Gal Eyal.
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that floods are the most dominant source of GAE seafloor
sedimentation. Subsequent investigations explored biotur-
bation (Mathalon et al., 2019), Late-Holocene climate re-
constructions (Kalman et al., 2020), and anthropogenically-
driven changes in sediment dynamics (Kalman et al., 2022).

2 Data and Methodology

Throughout the study, meteorological data and weather re-
ports surrounding the GAE were closely monitored in order
to be “at ready” in the case of an opportunity to analyze an
arriving flash flood. Given that the likelihood of floods occur-
ring in a given day in the year is less than 0.5 % (Kalman et
al., 2020), it was unknown whether any floods would actually
occur during the designated observational period. Moreover,
because of this low likelihood, it was understood that there
was a high likelihood that the study could entirely miss an
opportunity to make direct measurements, observations, and
collections. To counter this issue, the study combined the use
of a mooring station that collected regular interval measure-
ments in situ, and a multi-person field team, equipped at all
times with a field sampling set ready for arriving for taking
field measurements if a flash flood occurred (Fig. 2). After
(if) a flood occurred, the meteorological conditions preced-
ing the production of the flash flood were analyzed in higher
resolution. The following describes the methodological se-
quence performed from the identification of a potential flood
event to field measurements, offshore deeper measurement
casts, retrieval of mooring array data, and higher resolution
meteorological analysis.

2.1 Meteorological data

The synoptic analysis in this study, used to track precipita-
tion centers, was based on two data sources. One of these on
a regional scale was the Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks
(PERSIANN) dataset (Nguyen et al., 2019), obtained via
CHRS Data portal, with a 0.5° x 0.5° resolution. Addition-
ally, in a local scale, NASA’s Global Precipitation Measure-
ment (GPM) Integrated Multi Satellite Retrievals IMERG)
with a 0.1° x 0.1° resolution, were utilized to compensate
for the lack of dense meteorological network in the trans-
national Kinnet watershed, located at the northernmost tip of
the Gulf of Eilat-Aqaba. Given the region’s hyperarid condi-
tions and limited gauging systems, satellite-derived precipi-
tation data were essential for accurately estimating precipi-
tated water.

The GPM’s IMERG data is pivotal in this research due
to its advanced capabilities in providing high-resolution pre-
cipitation estimates, which are particularly crucial in regions
where conventional meteorological infrastructure is sparse
or non-existent. The GPM constellation and ground vali-
dation suite employ a host of sensors including the active
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Dual-frequency Precipitation Radar enabling precise mea-
surements of rain rates (Masaki et al., 2014) and the passive
GPM Microwave Imager essential for measuring precipita-
tion intensity and distribution (Draper et al., 2015). Follow-
ing data collection, a series of steps, including ground valida-
tion (Tapiador et al., 2020), are undertaken to ensure the ac-
curacy and reliability of the precipitation estimates (Huffman
et al., 2020). The subsequent merging of data from various
sources, complemented by rigorous quality control and val-
idation procedures culminates in the final IMERG datasets
(Huffman et al., 2020).

In the specific case of the Kinnet watershed, the utiliza-
tion of IMERG datasets are necessary, and used alone, be-
cause physical meteorological stations are sparce. The two
stations (Eilat, Israel and Aqaba, Jordan) present in the wa-
tershed are only 10km from one another, and show nearly
identical annual average precipitation values (Jordan Mete-
orological Department, Israel Meteorological Service; Katz
et al., 2015). Therefore, they are not useful for measuring
the overall contribution of rainfall for the entire watershed.
This absence of adequate ground-based meteorological sta-
tions and gauging systems in this hyperarid region makes
satellite-derived data the most reliable source for the accu-
rate assessment of precipitation patterns. The integration of
this high-resolution, satellite-based data with the NCEP/N-
CAR reanalysis imagery offers a comprehensive understand-
ing of the hydrological dynamics within this trans-national
watershed.

2.2 Time series mooring station

An instrumented mooring station was anchored ~ 250 m off-
shore in front of the Kinnet Canal at a depth of 13 m. The
instruments on the mooring array included a Sea Bird Elec-
tronics SBE 19plus v2 CTD (temperature, salinity, depth) po-
sitioned 0.15 m above the seafloor, and three Campbell Elec-
tric OBS 3+ optical backscatter sensors calibrated with pure,
local flood sediments collected from slackwater deposit near
the outlet, and attached to the instrument line at three differ-
ent depths (0.15, 2, 8 m) above the seafloor 250 m offshore.
Calculations for sediment concentration based on turbidity
values from the OBS 3+ sensors was calculated using values
derived from direct calibration of sediments from this site
(see Mathalon et al., 2019, methods and description). The
mooring station instruments collected the properties of the
water column for a period of 9 months between April 2016
and January 2017. In moored mode, data was collected with
a temporal frequency of 300 s with 4 measurements per sam-
ple. During the mooring period, instruments were cleaned
and examined roughly every 10d by scuba divers, data was
retrieved, and the batteries were recharged.
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2.3 Canal measurements

The research team collected a series of measurements and
samples from the Kinnet Canal outlet during active flooding
(e.g. 28 October 2016 event). Flow speed (m s~ 1) was calcu-
lated based on the surface speed obtained from time a drifting
object traveled a predetermined distance (30 m), corrected
(multiplied) by 0.6 to account for riverbed friction due to
roughness and riverbed geometry at the measured sequence
of the flood (Chie, 1992). Water samples were collected ev-
ery ~3h from the centerline of the waterflow to calculate
sediment concentration (gL~!). Similarly, at regular inter-
vals the flood level at the banks was recorded and after the
flood had finished, the cross-section areas of the Canal (m2)
for each 3 h interval were calculated (Fig. S1 in the Supple-
ment).

2.4 Suspended alluvium major element analysis

Major elements (Fe, Al, Mn) were measured from the canal
flood water collections. To do this, approximately 1 g of dried
(60 °C) sediment per sample was ground and homogenized
with a mortar and pestle to a powder and analyzed in a vac-
uum chamber using an ED-XRF (Spectro Scout). The mea-
surements were calibrated with 3-8 certified sediment stan-
dards as described in Zirks et al. (2021).

2.5 Stream order and watershed delineation

Hydrological modeling of the Kinnet watershed was per-
formed (1) to understand the time lag between the cessation
of rain and initiation of flooding at the river outlet; and (2) to
describe hydrological behavior and structure of river system
in case of flood events. Digital elevation models (DEMs)
from the Shuttle Radar Topography Mission (SRTM) were
downloaded (https://earthexplorer.usgs.gov/, last access: Jan-
uary 2023) and processed in a series of steps (fill, flow direc-
tion, flow accumulation, basin, stream order) using the Hy-
drology tool (Bajjali, 2017) in ArcGIS Pro (v3.1). This step
delineates streams that possess significantly higher potential
for flood related hazards.

3 Results

During the study period, a major flash flood event that
reached the sea was observed in the last week of October
2016. The results below are presented as a sequence of the
event that includes (1) the analysis of mesoscale convective
systems during this period, leading to (2) a heavy rainfall
and (3) flash flood development with (4) high quantities of
transported material in the southern Negev Desert that even-
tually (5) discharged from the Kinnet Canal to the tip of the
northern Gulf of Aqaba-FEilat, Red Sea. The meteorological
antecedent conditions leading up to the event were then as-
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sessed to consider possible unique features associated with
flood production on a regional scale.

3.1 Kinnet Catchments

The hydrological analysis of the landscape shows that the
Kinnet watershed is the largest among sub-catchments that
direct water and sediment into the head of the northern GAE.
Modeling performed by incorporating DEM data from satel-
lite imagery delineated two major watershed basins; west
(Arava catchment) and east (Yutum catchment) from the
pull-apart basin (Wadi Arava) in between. The Yutum catch-
ment is larger in size and, based on topography, can be fur-
ther subdivided into four sub-basins, contributing uniquely to
the overall hydrological dynamics of the hyperarid watershed
(Fig. 1).

3.2 Meteorological Antecedent conditions
(20 September-27 October)

The initial northward propagation of the Sudan Monsoon
Low over the Red Sea (also known as the “Red Sea Trough”,
RST) towards the Eastern Mediterranean was first detected
37 d before heavy precipitation event that ultimately led to
a relatively large flash flood in Eilat. Rather than represent-
ing a continuous synoptic feature, this period comprised a
series of RST-related disturbances with a trough axis retain-
ing in the region and intermittently re-intensifying. Partic-
ularly, the RST strengthened on 24 October (3 mbar over
9 mbar), 3 d prior to the massive rainfall (Fig. S2). Congested
clouds developed above Ethiopia beginning on 5 October, but
there was no significant formation of clouds until 24 October
above and in the vicinity of the Red Sea.

On 24 October, various atmospheric conditions prevailed
in the Middle East. At first, velocities of the Polar Front de-
creased significantly. Based on 200 hPa vector wind map of
the day, no sign of a continuous Polar Jet in the region pre-
vailed whatsoever. Satellite imagery shows however a nar-
row, but long — stretching cloud formation around 22-23° N
across the Red Sea and the Arabian Peninsula, in addition
to scattered congested clouds above the Southern Red Sea.
The 200 hPa vector wind composite confirms that the clouds
were formed as a result of enhanced velocities of the STJ
(Fig. S3). On 18 October, STJ velocities varied between 25—
30ms~!, located at the border of Chad-Lybia-Egypt-Sudan
through the Red Sea towards the Middle East. Its shape elon-
gated in east-west direction and its velocity intensified up to
43ms~! by 22 October, became the strongest at the diflu-
ence over the northern tip of the Persian Gulf. Later, the po-
sition of the STJ gradually moved southward and reached its
southernmost position on 27 October above the Red Sea at
15-16° N, before moving back northward after the storm.

At low atmospheric levels, warm advection that had been
formed previously above Sudan and Ethiopia prevailed, re-
sulting in a 6° temperature rise to 33 °C in the center of the
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Red Sea Trough. Simultaneously, a —9 °C and 35 % rela-
tive humidity (5 °C less and 20 % more humid than ambient)
upper-level trough reached the Middle East from northwest-
ern direction.

These differential warming and cooling effects enhanced
static instability with respect to normal conditions. The ma-
jority of the moisture (RH=80%-90%) to the EM was
transported at 700 hPa from tropical Sudan and Ethiopia.
During the transport, relative humidity continuously in-
creased in the Levant with no significant change of the tem-
perature profile, which resulted in lowering of the lifting con-
densation level, embedding to a deep convection above the
entire region. Clouds were forming along the fringing moun-
tains at the southern part of the Red Sea on 25 October, but
no precipitation occurred.

3.3 Mesoscale convection

While the RST was approaching the Middle East from
the south at low (near sea) atmospheric levels, the well-
developed upper-level trough (atmospheric Rossby wave),
pointing southwest, formed over the Eastern Mediterranean.
As a result, a cold convection took place on 25 October that
turned to advection leading to a formation of a cold front over
the EM. The combination of lower-level convergence and
upper-level divergence are fundamentally linked to enhanced
potential for the initiation of intense, but spatially spotty rain-
storms due to the topographic heterogeneity of its mountain-
ous local desert environment (El-Fandy, 1950). At the tip of
the cold front, advection lifted the airmass above the border
of Libya and Egypt and increased the relative humidity from
30 % to 65 % at 850 hPa geopotential height (gph). The wind
vectors at 700 hPa gph showed that in addition to this humid
air was transported towards the Red Sea, the intensified STJ
prevailed and effected NE movement of airmasses located in
lower atmospheric levels (Fig. S4). On 26 October, 12:00 LT,
congested clouds were formed above the mid-Red Sea and
heavy rainfall began ~ 1000 km south from Eilat (Fig. S5).
During the morning of 26 October, a cloud system of ap-
proximately 480km in diameter was formed above Sinai-
southeast Jordan and northwest Saudi Arabia axis. The cloud
system developed at the contact zone of the west side of the
east pointing RST and the east side of the upper-level trough
that occupied the EM at higher atmospheric levels. The rain
cells were formed over the ridges along the leeside of the
Red Sea mountains, moved further to the middle of the sea,
then drifted northward by the RST. Within 18 h at 06:00 UTC
27 October 2016, showers and rainstorms were registered
from the entire Negev desert (Israel Meteorological Service).
The tip of the RST on 27 October reached Cyprus and
Syria, its deepest penetration into the Eastern Mediterranean
portion of the Middle East. Polar Jet velocities at ~31°N
latitudes gradually increased, and on this day showed its
strongest phase (45ms~! in the center) and turned 45°,
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already pointing northeast, reconnecting the opened high-
altitude wind system.

The center of the upper-level trough moved from the Nile
delta to mid-Egypt within 2d (27 October), narrowing the
contact zone of four (upper-level trough, Red Sea Trough,
Polar Jet, and Subtropical Jet) mesoscale systems to approx-
imately 200 km wide channel in the Eastern Mediterranean
(Fig. 3). As a result, precipitation centers reached the north
of the Eastern Mediterranean, but also penetrated further into
continental Syria and Iraq. A section of the cold upper-level
trough disconnected from the main body of the trough on
27 October, creating a giant “cold ball” like feature above
Eilat, which accelerated its mixing with the near sea level
spreaded and warm RST. The northeast-pointing Polar Jet
carried and dissipated the trough away and by the end of the
day on 28 October, the pressure differences between the at-
mospheric layers equalized, resulting in the end of the storm.

3.4 Precipitation and Flashflood entering the sea

A flash flood reached the head of the GAE at ~03:00LT
28 October 2016; after an Active RST accompanied by scat-
tered showers and thunderstorms made contact with a high-
pressure belt over the mid-latitudes and inundated the Mid-
dle East region from Egypt, through Israel, Jordan, as well
as Lebanon and Syria. The RST moved from the mid to
the northern Red Sea within 18 h. During this time, nearly
every segment of the 4867 km? Kinnet watershed received
some amount of precipitation (Fig. 4), which eventually con-
tributed to the formation of a flash flood. The total precipi-
tated rain during this time was calculated at 133 million m?
in the Kinnet catchment, accumulating for ~ 51 h prior to the
flashflood’s arrival into the GAE.

During the precipitation period, rain was temporally and
spatially unevenly distributed. For the first 24 h, scattered and
localized rain events in the catchment area resulted in the
arrival of a total of 17 millionm? water (~ 13 % of the to-
tal). In the following 18 h however, both sides of the Arava
Valley (Eilat and Wadi Yutum catchments) experienced in-
tense storms, adding 109 million m?> water (~ 82 % of the to-
tal). The last 6 h resulted in an accumulation of an additional
7 millionm? rain water (~5% of the total), but similarly
to the initial phase of the event, it was spatially spotty and
mostly precipitated in the eastern side (Yutum-S, Yutum-SE)
of the watershed. It was followed by a 6h no precipitation
period, before precipitating only ~ 52000m? rain (0.04 %)
at both spatially and temporally highly varied stages.

According to conversations with witnesses, some flood
waters arrived at the head of the GAE after the middle of
the night, around 03:00LT on 28 October (see Fig. 5), but
no turbid water, only elevated discharge was described. The
research team performed the first recording and sampling at
9LT and continued to take 8 measurements for 30 h.

The water flow and the sediment concentrations of
the flood increased from 1.33m3s~! and 20.73gL~! at
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Mediterranean contributing to the formation of the historical flashflood.

09:00LT to 47.42m>s~! and 20.91gL~" at 02:30 pm, re-
spectively. By 06:30 LT the flow decreased to 13.53m?s™!
and the sediment concentration increased to 27.55gL~! and
by 02:30LT in the next day the flow was further reduced
to 2.87m>s™! and the sediment concentrations rose to a
33.5 gL’l. In total, 1.04 x 10° m3 water flowed into the sea
through the Kinnet Canal and transported 2.44 x 10* t of sed-
iment over approximately 30h, which the majority of this
quantity was then deposited on the shallow marine shelf. The
sea surface discoloration from transported sediments was
visible for as long as 7d. Estimations extrapolated from the
elemental analysis of the samples taken during the event sug-
gest that 1014 t of Fe, 1413 t of Al, and 20t of Mn entered the
sea.

Indications of the arriving flood waters were also recorded
by the offshore mooring station instruments (Fig. 6). Accord-
ing to the sensors, water temperature did not change, but wa-
ter salinity and turbidity started to fluctuate at 09:50LT on
28 October 2016, 250 m offshore the canal outlet. These two
parameters mirrored one another, as salinity dropped turbid-
ity rose and vice versa. Ten minutes after midnight, turbidity
increased to as high as 2.18 gL ™! sediment concentration,
and salinity near the seafloor dropped to 38.73 PSU, a value
that is 1.80PSU less than the mean salinity (40.53 PSU)
recorded over the 9 months of observations from this site.
During the last stage of the flood, salinity returned to just
below-background values 6 h after its lowest measured value
(~40.4 PSU), while turbidity was still highly variable. Later,
this variance with minimal amplitudes was limited only to the
bottommost conditions and remained diversified hours after
the cessation of the flood.
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4 Discussion

This study followed the sequence of a storm that occurred
on 28 October 2016 in Eilat from its initial phase to and
through a flash flood that started deposited alluvium in the
northern Red Sea a day later. The flood was the 13th flood
recorded since records began in 1994 (Katz et al., 2015;
Kalman et al., 2020). From 1994 to 2012, there was a drought
period wherein flood occurrence was below 1yr~! (0.17),
followed by increased occurrence of 1.7 floods yr—! (2012—
2020). With regard to the hazard level of the 28 October 2016
flood event, no death occurred, nor was property damage re-
ported; and transportation and infrastructure (roads and air-
port) were not affected. The interpretation of reanalysis data
revealed that multiple unstable atmospheric conditions led to
the formation of the storm that within a day exceeded the an-
nual average precipitation in Eilat. It began with the northern
propagation of the RST 3 d prior to actual flash floods form-
ing in the southern Negev. Tropical moisture was transported
towards the Red Sea and enhanced velocities of the Polar Jet
and intensified RST expansion towards the Eastern Mediter-
ranean. At the same time, a well-developed upper-level cold
front approached the Eastern Mediterranean and the com-
bination of lower-level convergence and upper-level diver-
gence initiated an intense rain event associated with thunder-
storms.

4.1 Storm analysis and implications
At sea level, the RST as one of the key elements in the for-
mation of the storms is one of the main synoptic patterns that

influence weather in the Levant region (Alpert et al., 2004b).
The northward propagation of this low-pressure system is not
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a rare case; RST is formed 43.7 % of the days between Oc-
tober and November during the rainy season (Saaroni et al.,
2020). This means that RST is present roughly every second
day during these months, providing the potential for heavy
precipitation to form. Saaroni et al. (2020) developed an al-
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gorithm that identifies the northern part of the RST and clas-
sifies it according to the location of the trough axis with re-
spect to longitude 35°E. This classification is important be-
cause RST expansion and orientation influences the distri-
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bution of a possible storm over the Levant in its “active”
(ARST) phase (Kahana et al., 2002).

Hochman et al. (2021) used CMIP5 climate projections
to categorize winter RSTs and analyzed their characteristics
and impacts on the region. They found that rainfall associ-
ated with wet RST (WRST) is projected to decline by 37 %
by the end of the 21st century due to shifts in atmospheric cir-
culation patterns, increased temperatures, and a reduction in
the frequency and intensity of WRST events. Additionally,
they found that extreme precipitation events related to the
WRST show distinct atmospheric pattern differences when
compared to lighter precipitation events within the same sys-
tem (Hochman et al., 2023).

Ziv et al. (2005) showed a December 1993 ARST example
with flooding wherein a persistent southerly flow from over
the Red Sea prior to the event (in addition to tropical mois-
ture transport) induced air ascendance along the Red Sea,
and carried it to the surrounding regions. During the Octo-
ber 2016 case, however, 2d prior to the flood, at the tip of
the upper-level trough, advection lifted the airmasses above
the border of Libya and Egypt (westward of the study area)
and increased the relative humidity by 35 %, which was then
transported towards the Red Sea. Such elevated air moisture
values fit those used in Krichak et al. (2012)’s algorithm for
identifying ARST events. They concluded that high mois-
ture content in the air influences the intensity of the devel-
oping storm in the Eastern Mediterranean; and conversely,
drier air masses along the Eastern Mediterranean coasts re-
duces the possibility (and intensity) for an ARST event. The
conditions observed during this 2016 event support the pres-
ence of an ARST event. In some rare cases, the lowest flank
of the upper-level trough can disconnect from the meander-
ing mid-latitude upper-level low system; and can form into
an individual cut-off low resulting in a negative upper-level
temperature anomaly. This is extremely favorable for thun-
derstorms in the atmosphere and can lead to and induce fatal
flashfloods on land (Dayan et al., 2021).

At upper atmospheric levels, major mid - and high latitude
cyclonic and anti-cyclonic systems affect the atmospheric
Rossby waves (e.g. extension, direction and persistent time
of upper-level troughs and ridges), and it is the cold upper-
level trough introduced from northern regions that enhanced
convective instability during the October event. A negative
phase of the North Atlantic Oscillation created an ampli-
fied Rossby wave 3d prior to the flood, resulting in two
upper-level troughs extending southward: one in the West-
ern Mediterranean up to latitude 17° and one in the Eastern
Mediterranean up to latitude 15°. Because of a weak polar
vortex, the cold air from the arctic region (from Scandinavia
in the case of the eastern type) could escape, creating a hole
in the Ferrel cell that cut through the Polar Front, and trig-
gered the ARST event (Video S1). Since the polar vortex be-
gan to strengthen again on 25 October, enhanced velocities
of the Polar Front “arrived” to the EM, and in the absence
of the Polar Front, ran into the Subtropical Jet stream. By
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the following day, the enhanced high altitude wind pushed
STJ at least 2° further south, meanwhile Polar Jet winds
bounced back from this mid-latitude waveguide (Branstator,
2002) and further enhanced its velocities in the following
days. Similar conditions were described in southwest Asia
by Saligheh (2021); and concluded that pulling the Polar Jet
southward that merges into the Subtropical Jet stream can
enhance cyclogenesis and lead to hydrodynamic instability.
Asiri et al. (2020) studied specifically the STJ over Africa
and the Middle East and found based on nearly 60 years of
reanalysis data that its north-south shifting is controlled by
the temporal extension of the Azores High and the Siberian
High. When the Azores High is weakened or shrank west-
ward, the STJ shifts southward; and when the Siberian High
is weakened or shrank eastward, the STJ shifts northward.
This is in agreement with the October 2016 event. Prior to the
Eilat flooding, the Azores High weakened and the STJ track
gradually shifted southward and its position only changed di-
rection when the Azores High was beginning to increase.

4.2 From precipitation to flow into the sea

During the October 2016 flooding event, the Kinnet water-
shed received 133 million m? rain although most of the rain
precipitated on the Jordanian mountains in the Wadi Yu-
tum catchment (Fig. 4). Rainfalls in the desert are typically
described as short lived and intense (Sharon, 1972); under
extreme conditions they have been recorded as delivering
~ 110 mm within 3 h (Youssef et al., 2016). This is certainly
true for observations made in singular locations; whereas the
satellite measurements show the overall lingering presence
of the event.

The timing from the onset to final cessation of rainfall (in-
cluding initial 12h minimal precipitation period and a 6h
gap) was 66 h. During that time, floods were produced within
the wadis in the watershed. Rain cells above the Kinnet wa-
tershed initially developed only in its eastern side, then later
on in the entire watershed, and in some cases significantly
larger amounts precipitated in the vicinity of Wadi Arava and
Yutum-CN subbasin (Fig. 1b). This flood was most likely fa-
cilitated by the first rain period that pre-soaked the ground
(13 % of the total precipitation), but it is likely the second
rainy spell that provided the runoff that ultimately ended in
the discharged flood water as the majority of the rain precip-
itated within the following 18 h (82 % of the total precipita-
tion).

After the cessation of the rain, wadis continued to receive
runoff which flowed downslope towards the outlet of the Kin-
net Canal and the sea. This flow reached the sea approxi-
mately 50 h after the rain started, and roughly 3 h after most
of the rainfall ended.

Unfortunately, in the poorly monitored (very low spatial
dispersion of gages and weather stations) catchment area of
the October 2016 event it was not possible to assess the trans-
mission losses of the precipitated water. To overcome this
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issue and give an estimation of water loss from the forma-
tion of the rain until water discharge at the river mouth, we
used GPM-IMERG precipitation data that has been shown
to correlate well with precipitation gauge data both in hu-
mid (Pradhan et al., 2022; Yang et al., 2018) and arid regions
(Chen et al., 2020; Mohammed et al., 2020). It is important to
note that its 0.1° x 0.1° spatial resolution (10 x 10km grid)
does not allow to analyze precipitation accumulated in wadis
and lower ranked streams specifically (which is important
because same rain event can cause flooding in a particular
wadi, while the neighboring wadi remains dry), making the
quantification of the patchy nature of a hyperarid rain event
impossible; its 30 min temporal resolution however enables
to capture the sum of the precipitated water and give us the
confidence to apply its dataset on the nearly 5000 km? Kinnet
watershed. We calculate that approximately 133 million m?
precipitated in the entire watershed of the Kinnet Canal dur-
ing this event and that ~ 1 millionm? (0.75 %) of it ulti-
mately reached the GAE through the Kinnet Canal. This lim-
ited yield reflects the fact that runoff from more distant parts
of the watershed (particularly from the eastern sub-basins)
faces greater losses due to longer travel distances, allow-
ing for increased infiltration and evaporation. The ~ 99 %
difference reflects infiltration relating to a complex matrix
of soil properties and variations in rain intensity, duration,
location and evaporation. In arid regions where sequential
gage measurements were conducted, transmission loss rates
showed considerable variations. For example, 13.2 % in an
Australian desert stream (Dunkerley and Brown, 1999) up
to 98 % in parts of Saudi Arabia (Walters, 1990); and in be-
tween 20 % and 85 %, located in Nahal Zin, Israel’s Negev
Desert (Greenbaum et al., 2001).

GPM data stretches back 21 years and gives us the op-
portunity to investigate which areas in the watershed have
high(er) probabilities for the water to accumulate (Fig. 7).
The 2000-2021 window in Eilat covers 12 years from a pro-
longed drought period (1994-2012) characterized by three
flashfloods only, and a more humid 8-year period (2012-
2020) with the occurrence of 12 flashfloods in total (Kalman
et al., 2020).

Figure 7a shows the sum of precipitated water within the
Kinnet watershed that preceded the formation of the 27 Oc-
tober 2016 flooding event in Eilat. The main accumulation
centers during the event were around the surroundings of
Wadi Arava and within the Yutum-center sub-basin. Because
of the hypersensitivity for extreme weather events of the re-
gion, there is a great variety in the distribution of the rain-
water that describe each precipitation event. Therefore, the
accumulated precipitation case is rather a description of this
particular event than an analog to generalize the distribution
of the precipitation during any flashflood events.

On 1 March 2017, a small flashflood was generated after a
hailstorm directly affected the Eilat mountains. The accumu-
lated water in Eilat gauge station was 14.5 mm (54 % of the
yearly total) that precipitated within 3 h. Streets were flooded
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and closed quickly, but also were reopened within 1h, be-
cause rain water was not sufficient enough to induce water-
flow in Yutum ephemeral riverbeds that, if it had occurred,
would arrive with a lag to the Kinnet outlet and to its sur-
roundings. Because the rain event was local and could trigger
a flashflood, its precipitation (14.5 mm) was used as a thresh-
old value to calculate exceedance probabilities for the Kinnet
watershed (Fig. 7b). The highest probabilities for exceeding
the threshold value can be found around the Wadi Arava,
the southern Jordanian mountains and the northern part of
the Yutum-center subbasin. On the other hand, in the center
of the Yutum-center subbasin, the likelihood of exceeding
the threshold value is near zero. The southern probabilities
may be explained by the orographic effect, which forces the
RST to flow over high topography as well as the northern
probabilities may be explained by the interannual position of
the diffluence of the upper-level trough interacting with the
RST, and resulting in explosive cyclogenesis (Kouroutzoglou
etal., 2015; Ziv et al., 2022).

4.3 Sediment dispersal at sea

Based on the flow and sediment concentrations in the Kin-
net canal we calculated that during the October 2016 flash-
flood, approximately 24 000 t of suspended sediment entered
the sea. This value likely and slightly underestimates the true
total, as measurements were not available during the initial
onset and possibly the waning stage of the flood. Neverthe-
less, the estimate captures the main body of the event and
is representative of the overall magnitude. The amount is
similar to the reported 21 000t of suspended sediment trans-
ported to the GEA from the Kinnet Canal during the February
2013 flash flood event (Katz et al., 2015). In both cases the
amount far exceeded the annual airborne dust introduced into
the northern Gulf of Agaba-Eilat (Chen et al., 2008). From
shallow water sediment cores Katz et al. (2015) roughly esti-
mated average of circa 10 kg sediment per meter square cov-
erage of the alluvium on the seafloor primary deposition zone
after a historical flooding in February 2006, which magnitude
corresponds with 6 kg sediment on average per meter square
coverage produced by the October 2016 event.

When desert floods arrive into the sea, if their sediment
concentrations are high enough, their bulk density becomes
higher than that of the seawater and they are expected to pro-
duce hyperpycnal flows that plunge and progress along the
seafloor as turbidity currents (Katz et al., 2015). This high
sediment load drags fresher water beneath saltier water lay-
ers that would otherwise float above the saltier, denser seawa-
ter. If however, sediment concentrations are not high enough
and the bulk density of the discharged floodwater is lower
than that of the seawater, they form hypopycnal plumes that
disperse at and near the sea surface. Notably, in some cases
hypopycnal flows can generate turbidity currents due to trick-
ling down (fingering) and amassing of suspended sediments
near the seafloor (Parsons et al., 2001).
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(2000-2021).

According to witnesses, the Eilat flood arrived to the sea at
03:00 LT on 28 October, however the mooring data registered
the initiation of salinity decrease and turbidity increase only
at 09:50LT in the morning, ~ 7 h later. If these reports are
correct, then this time lag between visual notice and instru-
mental registration suggests either low sediment concentra-
tions in the discharged water at this initial stage that caused
only a hypopycnal plume or a very slow (~1cms™!), off-
shore progression of the mixed flood water. It was also pos-
sible that the witnesses in the darkness observed higher dis-
charge without significantly elevated sediment concentration,
which water might have originated from a nearby desalina-
tion factory. With no measurements from the station at this
time, this question remains open. Flood related turbidity at
the measuring station lasted from 09:50 LT 28 October until
05:15LT 29 October and the increased turbidity was regis-
tered at approximately the same time in the 0.15 and 8 mab
sensors (Fig. 6). This would suggest that by the time flood-
water reached the station they were already mixed (though
not homogeneously) in the water column. During the ~31h
of the registered event, salinity and sediment concentrations
at the measuring station mirror-imaging one another demon-
strating considerable fluctuations near the seafloor (Fig. 6).
Taking into consideration that there is some lag between
the outlet and the measuring station, these fluctuations were
likely caused by changes in floodwater and sediment dis-
charge from the Kinnet canal. Such fluctuations would result
from changes in the intensity and geographical distribution of
the rainfall at the catchment area, many hours earlier. At its

https://doi.org/10.5194/nhess-25-3201-2025

peak, salinity at the moored station was reduced to 38.75 %o
which is approximately 1.75 %o less than the measured salin-
ity in the 7 months of measurements prior to the event.
This drop is 19 times greater than the standard deviation of
the salinity observed during that period. This drop clearly
demonstrates that the freshwater arriving with the flashflood
was denser due to its high sediment load, and therefore was
forced downward rather than being distributed on the water
surface. The drop coincided with the highest TSS to salinity
ratios suggesting a concurrent increase in sediment concen-
trations in the discharged floodwater (Fig. 8a).

Moreover, during this and three prior, though much
smaller events, sediment concentrations near the seafloor
(0.15 mab) were higher than those measured at 8 mab,
(Fig. 8b). Although floodwater and sediments were found
throughout the water column at the station area early on,
these measurements indicate intermittent occurrences of hy-
perpycnal flows during this time. This assumption is sup-
ported by calculated density of the bottom water, based
only on the temperature and salinity and then after correct-
ing it with the suspended sediment concentrations (assum-
ing mean sediment particles density of 2.65 gcm™>). The re-
sults, shown in Fig. 8c demonstrate that the freshening of
the seawater alone would have greatly reduced the bottom
water density, causing it to float. However, when corrected
with the suspended sediment concentrations, the bulk den-
sity of the near bottom water occasionally exceeds that of
the undiluted seawater, enabling it to plunge and progress
as a hyperpycnal flow. Even more so, when considering the
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ern Gulf of Aqaba-Eilat. The floodwater discharged with low salin-
ities loaded with high concentrations of suspended sediments to the
sea (a), resulted in both hypo- and hyperpycnal plumes (b), and el-
evated bottom water densities (¢) during the evolution of the flood.

gradual decrease in the salinity (and hence density) of the
water column offshore the Kinnet outlet during the flood
which further decreased the incoming floodwater buoyancy.
Notably, in the 5, discrete measurements of sediment con-
centrations that were made in the Kinnet Canal during the
flood, the highest value was 33.5 g L~!. This value is consid-
erably less than the required ~43 gL ™! to cause direct hy-
perpycnal plumes in the head of the GAE (Katz et al., 2015).
We therefore expect that at the beginning of the floods, con-
vective fingering of sediment from above may have caused
smaller hyperpycnal events near the seafloor (Parsons et al.,
2001). Conversely, the major hyperpycnal flow that was reg-
istered at the marine station between 11:00LT 28 October
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and 04:30 LT 29 October was likely caused by direct plung-
ing of dense flood water. This would suggest that sometime
around 02:00 LT between the 3rd and 4th TSS measurements,
sediment concentrations in the Kinnet may have reached the
required minimum threshold (36-43 g L~!) to generate a hy-
perpycnal plume upon entering the GAE. Sediment concen-
tration measurements at the outlet during both the 3rd and
4th collections were around 15-fold higher relative to the
marine station 250 m offshore. These values record the pro-
cess of both dilution with seawater and sediment dispersal as
the suspected plume traveled along the seafloor. It is there-
fore reasonable to assume, given the relatively low sediment
concentration values recorded (2.18 gL~ ') at 250 m offshore
that the proposed hyperpycnal plume dissipated before reas-
ing the station’s sensors. While a hyperpycnal plume may not
have been present at that distance, sediment dispersal contin-
ued in the form of near-bottom transport, possibly enhanced
by added sediment entrained in the turbulent flow. Salinity
returned to near background levels by 05:45 LT 29 October,
and remained at ~40.3 PSU, ~ 0.2 PSU less than average un-
til the retrieval of the mooring 9 d after the flood event.

4.4 Storms, Rain, Flashfloods, and Planning

In this study, we show how climate and sediments are re-
lated. The synoptic analysis of the storms illustrate what
key parameters contribute to the triggering mechanism of
a storm and where in the particular watershed is likely to
rain. Using reanalysis data, all these parameters can be col-
lected for each flood event and a database can be formed.
When flooding, large quantities of sediments from the catch-
ments can be transported to the sea, where they may serve
as a climate archive. Although sediments upon arriving to
the sea in the northernmost GAE undergo different levels of
post-depositional processes that alter their physical-chemical
properties; by recognizing changes in flood deposit signa-
tures, it is possible to reconstruct past climatic variations
on the seafloor downcore (Kalman et al., 2020, 2022; Katz
et al., 2015). Just as atmospheric parameters are catalogued
in synoptic analyses, the physical and chemical properties
of flashflood sediments in their depositional settings can be
compiled into the same database, linking atmospheric trig-
gers with sedimentary responses. While the use of machine
learning requires large datasets, we propose that in loca-
tions where distinct flood layers are consistently preserved
(potentially hundreds of well-characterized sediment-climate
pairs), such datasets could be developed and applied to train
machine learning models. It is expected that the combined
analysis of climatology, hydrology and sedimentology of
flash flood events will help to better understand the interlink-
ages between the otherwise separately discussed aspects of
flood hazards in hyperarid regions (Fig. 9). Furthermore, it
will impose careful site selection and proper planning in the
establishment of new coastal cities and already existing cities
planning to expand.
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Figure 9. Sequence of sediment transport processes during the October 2016 flash flood in Eilat. The figure illustrates daily changes from
26-29 October 2016, showing the evolution of sediment transport from precipitation to offshore deposition in the northern Red Sea. It details
concurrent developments in offshore waters, at the canal discharge point, within the watershed, and includes rainfall intensity for each day.
The seven key stages include: (1) atmospheric conditions conducive to precipitation, (2) precipitation events, (3) watershed drainage, (4) flash
flood formation, (5) sediment and water transport to the coastline, (6) discharge at the coastal outlet, and (7) marine dispersal and deposition.

5 Conclusions

A hyper arid region flashflood event was studied from its pre-
ceding meteorological conditions, precipitation, run-off de-
velopment, and ending with its arrival into the Gulf of Eilat-
Agqaba. It was observed that a negative phase of the North
Atlantic Oscillation triggered an amplified Rossby wave,
whereas its lower flank reached the Levant region and created
thunderstorms leading to an exceptional 3 d long rain event
in Eilat, Israel. The precipitation was unevenly distributed
in the watershed, and needed 51 h to reach the Kinnet canal
outlet. Only 0.75 % of the precipitated water reached the sea
eventually. Sediment transport into the sea during this single
event far exceeded annual airborne dust precipitation. Both
hypo- and hyperpycnal plumes during the flood event were
instrumentally captured. It is concluded that meteorological
and climate precursors are the earliest to identify actual envi-
ronmental conditions, and since precipitation and sedimenta-
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tion are linked, flash flood born sediment in marine deposits
can provide a key to identifying paleoclimatic trends that to-
gether can serve as basic input for developing early warning
systems against flash floods and related hazards.

Data availability. The data supporting the findings of this study is
available from the corresponding author upon reasonable request.

Supplement. The Supplement contains a video (“Video S1.gif”) il-
lustrating the visualization of cold air escaping from the Arctic re-
gion and triggering the ARST event. The supplement related to this
article is available online at https://doi.org/10.5194/nhess-25-3201-
2025-supplement.
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