Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3055-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3055-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Invited perspectives: Fostering interoperability of data, models, communication, and governance for disaster resilience through transdisciplinary knowledge co-production
Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Division Hydrology and River Basin Management, Technische Universität Braunschweig, Beethovenstr. 51a, 38106 Braunschweig, Germany
Pia-Johanna Schweizer
Research Institute for Sustainability at GFZ Helmholtz Centre for Geosciences, Berliner Straße 130, 14467 Potsdam, Germany
Benedikt Gräler
52°North Spatial Information Research GmbH, Martin-Luther-King-Weg 24, 48155 Münster, Germany
Lydia Cumiskey
MaREI: The SFI Research Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Beaufort building, Ringaskiddy, P43 C573 Cork, Ireland
Sukaina Bharwani
Stockholm Environment Institute (SEI), Oxford Centre, Roger House, Osney Mead, Oxford, OX2 0ES, United Kingdom
Janne Parviainen
Stockholm Environment Institute (SEI), Oxford Centre, Roger House, Osney Mead, Oxford, OX2 0ES, United Kingdom
Chahan M. Kropf
Institute for Environmental Decisions, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss Operation Center 1, P.O. Box 257, 8058 Zürich, Switzerland
Viktor Wattin Håkansson
Institute for Environmental Decisions, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
Martin Drews
Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet B424, 2800, Kgs. Lyngby, Denmark
Tracy Irvine
Oasis Hub Ltd, 39,60 Barge Walk, SE10 0UG London, United Kingdom
Clarissa Dondi
Agenzia regionale per la sicurezza territoriale e la protezione civile – Emilia Romagna, Viale Silvani 6, 40122 Bologna, Italy
Heiko Apel
Section Hydrology, GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Jana Löhrlein
Erftverband, Am Erftverband 6, 50126 Bergheim, Germany
Stefan Hochrainer-Stigler
IIASA – International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, Austria
Stefano Bagli
GECOsistema srl, Piazza Malatesta 21, 47923 Rimini, Italy
Levente Huszti
Zala Special Rescue, Épitök utja 5., 8900 Zalaegerszeg, Hungary
Christopher Genillard
Genillard & Co, Ismaninger Str. 102, 81672 Munich, Germany
Silvia Unguendoli
Hydro-Meteo-Climate Service of the Agency for Prevention, Environment and Energy of Emilia-Romagna (Arpae-SIMC), V.le Silvani 6, 40133 Bologna, Italy
Fred Hattermann
Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg, 14473 Potsdam, Germany
Max Steinhausen
Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Division Hydrology and River Basin Management, Technische Universität Braunschweig, Beethovenstr. 51a, 38106 Braunschweig, Germany
Related authors
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025, https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Short summary
This work introduces RIM2D (Rapid Inundation Model 2D), a hydrodynamic model for precise and rapid flood predictions that is ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Marco Cerri, Max Steinhausen, Heidi Kreibich, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 21, 643–662, https://doi.org/10.5194/nhess-21-643-2021, https://doi.org/10.5194/nhess-21-643-2021, 2021
Short summary
Short summary
Effective flood management requires information about the potential consequences of flooding. We show how openly accessible data from OpenStreetMap can support the estimation of flood damage for residential buildings. Working with methods of machine learning, the building geometry is used to predict flood damage in combination with information about inundation depth. Our approach makes it easier to transfer models to regions where no detailed data of flood impacts have been observed yet.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Sophie L. Buijs, Inga J. Sauer, Chahan M. Kropf, Samuel Juhel, Zélie Stalhandske, and Marleen C. De Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3200, https://doi.org/10.5194/egusphere-2025-3200, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how repeated disasters affect recovery across housing, health, economic systems, and governance. Our findings show that failing to recover fully between events can increase long-term risks but also offers opportunities for learning and adaptation. Understanding these dynamics can help societies plan better, reduce vulnerability, and build resilience to increasingly frequent and severe hazards.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Atabek Umirbekov, Mayra Daniela Peña-Guerrero, Iulii Didovets, Heiko Apel, Abror Gafurov, and Daniel Müller
Hydrol. Earth Syst. Sci., 29, 3055–3071, https://doi.org/10.5194/hess-29-3055-2025, https://doi.org/10.5194/hess-29-3055-2025, 2025
Short summary
Short summary
Seasonal streamflow forecasts for snowmelt-dominated catchments often rely on snowpack data, which are not always available and are prone to errors. Our study evaluates near-real-time global snow estimates and climate oscillation indices for predictions in the data-scarce mountains of central Asia. We show that climate indices can improve prediction accuracy at longer lead times, help offset snow data uncertainty, and enhance predictions where streamflow depends on in-season climate variability.
Nicole van Maanen, Marleen de Ruiter, Wiebke Jäger, Veronica Casartelli, Roxana Ciurean, Noemi Padron, Anne Sophie Daloz, David Geurts, Stefania Gottardo, Stefan Hochrainer-Stigler, Abel López Diez, Jaime Díaz Pacheco, Pedro Dorta Antequera, Tamara Febles Arévalo, Sara García González, Raúl Hernández-Martín, Carmen Alvarez-Albelo, Juan José Diaz-Hernandez, Lin Ma, Letizia Monteleone, Karina Reiter, Tristian Stolte, Robert Šakić Trogrlić, Silvia Torresan, Sharon Tatman, David Romero Manrique de Lara, Yeray Hernández González, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3075, https://doi.org/10.5194/egusphere-2025-3075, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Shahin Khosh Bin Ghomash, Siqi Deng, Johannes Spazier, and Heiko Apel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2425, https://doi.org/10.5194/egusphere-2025-2425, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Urban pluvial flooding is worsening due to climate change and urbanization, requiring faster forecasts. This study presents RIM2D, a multi-GPU 2D flood model, simulating high-resolution events (2–10 m) across Berlin (891.8 km2) with up to 8 GPUs. Simulations of real and synthetic floods show multi-GPU use is vital for fine-scale, timely forecasts. RIM2D proves operationally viable for urban-scale early warning using modern GPU hardware.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Shahin Khosh Bin Ghomash, Nithila Devi Nallasamy, and Heiko Apel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2304, https://doi.org/10.5194/egusphere-2025-2304, 2025
Short summary
Short summary
This study explores how the way buildings are represented in flood models influences predictions of flood extent, water depth, flow speed, and overall impact. Using a major flood event in Germany as a case study, we evaluate different representation methods across various model resolutions. The results support more accurate flood modeling and impact assessments, helping cities better prepare for and respond to future floods.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025, https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Short summary
This work introduces RIM2D (Rapid Inundation Model 2D), a hydrodynamic model for precise and rapid flood predictions that is ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025, https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary
Short summary
Hydrodynamic models are vital for predicting floods, like those in Germany's Ahr region in July 2021. We refine the RIM2D model for the Ahr region, analyzing the impact of various factors using Monte Carlo simulations. Accurate parameter assignment is crucial, with channel roughness and resolution playing key roles. Coarser resolutions are suitable for flood extent predictions, aiding early-warning systems. Our work provides guidelines for optimizing hydrodynamic models in the Ahr region.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Shahin Khosh Bin Ghomash, Nithila Devi Nallasamy, and Heiko Apel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-314, https://doi.org/10.5194/hess-2024-314, 2024
Manuscript not accepted for further review
Short summary
Short summary
Urbanization and climate change raise flood risk in cities, emphasizing the need for accurate building representation in flood hydrodynamic models. We examine the effects of different building representation techniques on flood modeling using the 2021 Ahr Valley flood data. We demonstrate that building representation significantly affects flood extent and flow dynamics, highlighting the need to choose the appropriate method based on model resolution for effective flood impact assessments.
Julius Schlumberger, Robert Šakić Trogrlić, Jeroen C. J. H. Aerts, Jung-Hee Hyun, Stefan Hochrainer-Stigler, Marleen de Ruiter, and Marjolijn Haasnoot
EGUsphere, https://doi.org/10.5194/egusphere-2024-3655, https://doi.org/10.5194/egusphere-2024-3655, 2024
Short summary
Short summary
This study presents a dashboard to help decision-makers manage risks in a changing climate. Using interactive visualizations, it simplifies complex choices, even with uncertain information. Tested with 54 users of varying expertise, it enabled accurate responses to 71–80 % of questions. Users valued its scenario exploration and detailed data features. While effective, the guidance and set of visualizations could be extended and the prototype could be adapted for broader applications.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024, https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Short summary
Early warning is essential to minimise the impact of flash floods. We explore the use of highly detailed flood models to simulate the 2021 flood event in the lower Ahr valley (Germany). Using very high-resolution models resolving individual streets and buildings, we produce detailed, quantitative, and actionable information for early flood warning systems. Using state-of-the-art computational technology, these models can guarantee very fast forecasts which allow for sufficient time to respond.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Georg C. Pflug, Viktoria Kittler, and Stefan Hochrainer-Stigler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-194, https://doi.org/10.5194/nhess-2023-194, 2024
Preprint withdrawn
Short summary
Short summary
Multi-hazard events can be devastating and there are indications that in such situations the exposed risk-bearers are affected more severely compared to single-hazard events. We present some statistical modeling approaches to determine possible interrelationships of hazards and tested them for the specific case of the countries within the Danube Region. We especially focused on the question whether certain hazards are more likely to occur due to preceding hazardous events.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024, https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Short summary
Coastal floods occur due to extreme sea levels (ESLs) which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale increase ESL predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighbouring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023, https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Mattia Amadio, Arthur H. Essenfelder, Stefano Bagli, Sepehr Marzi, Paolo Mazzoli, Jaroslav Mysiak, and Stephen Roberts
Nat. Hazards Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022, https://doi.org/10.5194/nhess-22-265-2022, 2022
Short summary
Short summary
We estimate the risk associated with storm surge events at two case study locations along the North Adriatic Italian coast, considering sea level rise up to the year 2100, and perform a cost–benefit analysis of planned or proposed coastal renovation projects. The study uses nearshore hydrodynamic modelling. Our findings represent a useful indication for disaster risk management, helping to understand the importance of investing in adaptation and estimating the economic return on investments.
Claudia Canedo-Rosso, Stefan Hochrainer-Stigler, Georg Pflug, Bruno Condori, and Ronny Berndtsson
Nat. Hazards Earth Syst. Sci., 21, 995–1010, https://doi.org/10.5194/nhess-21-995-2021, https://doi.org/10.5194/nhess-21-995-2021, 2021
Short summary
Short summary
Drought is a major natural hazard that causes large losses for farmers. This study evaluated drought severity based on a drought classification scheme using NDVI and LST, which was related to the ENSO anomalies. In addition, the spatial distribution of NDVI was associated with precipitation and air temperature at the local level. Our findings show that drought severity increases during El Niño years, and as a consequence the socio-economic drought risk of farmers will likely increase.
Marco Cerri, Max Steinhausen, Heidi Kreibich, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 21, 643–662, https://doi.org/10.5194/nhess-21-643-2021, https://doi.org/10.5194/nhess-21-643-2021, 2021
Short summary
Short summary
Effective flood management requires information about the potential consequences of flooding. We show how openly accessible data from OpenStreetMap can support the estimation of flood damage for residential buildings. Working with methods of machine learning, the building geometry is used to predict flood damage in combination with information about inundation depth. Our approach makes it easier to transfer models to regions where no detailed data of flood impacts have been observed yet.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Cited articles
Adams, K., Klein, R., Pulquério, M., Bachofen, C., Barrot, J., Bentz, J., Bharwani, S., Bojovic, D., Brandon, K., Buschmann, D., Capela, J., Laurenco, T., Coninx, I., Curl, M., Giupponi, C., Houtkamp, J., Karali, E., Leitner, M., Lokers, R., Michalek, G., Mysiak, J., Pringle, P., Prutsch, A., Schmidt, A., Schwarze, R., Street, R., Sushchenko, O., Talebian, S., and Walton, P.: Adapting to extremes: Key insights for bridging CCA and DRR in the European Green Deal, Policy Brief, PLACARD project, Brussels, Belgium, https://adaptationwithoutborders.org/knowledge-base/disasters-and-climate-change/key-insights-for-bridging-cca-and-drr-in-the-european-green-deal/ (last access: 19 July 2025), 2020. a
André, K., Järnberg, L., Gerger Swartling, Å., Berg, P., Segersson, D., Amorim, J. H., and Strömbäck, L.: Assessing the Quality of Knowledge for Adaptation–Experiences From Co-designing Climate Services in Sweden, Front. Clim., 3, 636069, https://doi.org/10.3389/fclim.2021.636069, 2021. a
Ansell, C. and Torfing, J. (Eds.): Introduction: theories of governance, in: Handbook on Theories of Governance, Edward Elgar Publishing, ISBN 978-1-78254-849-2, https://doi.org/10.4337/9781782548508.00008, 2016. a
Arribas, A., Fairgrieve, R., Dhu, T., Bell, J., Cornforth, R., Gooley, G., Hilson, C. J., Luers, A., Shepherd, T. G., Street, R., and Wood, N.: Climate risk assessment needs urgent improvement, Nat. Commun., 13, 4326, https://doi.org/10.1038/s41467-022-31979-w, 2022. a
Arrighi, C. and Domeneghetti, A.: Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy), Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, 2024. a
Balog-Way, D., McComas, K., and Besley, J.: The Evolving Field of Risk Communication, Risk Anal., 40, 2240–2262, https://doi.org/10.1111/risa.13615, 2020. a
Barrot, J., Bharwani, S., and Brandon, K.: Transforming knowledge management for climate action: a road map for accelerated discovery and learning, PLACARD project FC.ID, PLACARD project, FC.ID: Lisbon, https://www.sei.org/publications/transforming-knowledge-management-for-climate-action-a-road-map-for-accelerated-discovery-and-learning/ (last access: 22 August 2025), 2020. a
Bastin, L., Cornford, D., Jones, R., Heuvelink, G. B. M., Pebesma, E., Stasch, C., Nativi, S., Mazzetti, P., and Williams, M.: Managing uncertainty in integrated environmental modelling: The UncertWeb framework, Environ. Model. Softw., 39, 116–134, https://doi.org/10.1016/j.envsoft.2012.02.008, 2013. a
Benson, D., Lorenzoni, I., and Cook, H.: Evaluating social learning in England flood risk management: An “individual-community interaction” perspective, Environ. Sci. Policy, 55, 326–334, https://doi.org/10.1016/j.envsci.2015.05.013, 2016. a
Bergmann, M., Schäpke, N., Marg, O., Stelzer, F., Lang, D. J., Bossert, M., Gantert, M., Häußler, E., Marquardt, E., Piontek, F. M., Potthast, T., Rhodius, R., Rudolph, M., Ruddat, M., Seebacher, A., and Sußmann, N.: Transdisciplinary sustainability research in real-world labs: success factors and methods for change, Sustain. Sci., 16, 541–564, https://doi.org/10.1007/s11625-020-00886-8, 2021. a, b
Bertola, M., Blöschl, G., Bohac, M., Borga, M., Castellarin, A., Chirico, G. B., Claps, P., Dallan, E., Danilovich, I., Ganora, D., Gorbachova, L., Ledvinka, O., Mavrova-Guirguinova, M., Montanari, A., Ovcharuk, V., Viglione, A., Volpi, E., Arheimer, B., Aronica, G. T., Bonacci, O., Čanjevac, I., Csik, A., Frolova, N., Gnandt, B., Gribovszki, Z., Gül, A., Günther, K., Guse, B., Hannaford, J., Harrigan, S., Kireeva, M., Kohnová, S., Komma, J., Kriauciuniene, J., Kronvang, B., Lawrence, D., Lüdtke, S., Mediero, L., Merz, B., Molnar, P., Murphy, C., Oskoruš, D., Osuch, M., Parajka, J., Pfister, L., Radevski, I., Sauquet, E., Schröter, K., Šraj, M., Szolgay, J., Turner, S., Valent, P., Veijalainen, N., Ward, P. J., Willems, P., and Zivkovic, N.: Megafloods in Europe can be anticipated from observations in hydrologically similar catchments, Nat. Geosci., 16, 982–988, https://doi.org/10.1038/s41561-023-01300-5, 2023. a, b
Bharwani, S., Gerger Swartling, Å., André, K., Santos Santos, T. F., Salamanca, A., Biskupska, N., Takama, T., Järnberg, L., and Liu, A.: Co-designing in Tandem: Case study journeys to inspire and guide climate services, Climate Services, 35, 100503, https://doi.org/10.1016/j.cliser.2024.100503, 2024. a, b, c, d, e, f
Birkmann, J. and Von Teichman, K.: Integrating disaster risk reduction and climate change adaptation: key challenges – scales, knowledge, and norms, Sustain. Sci., 5, 171–184, https://doi.org/10.1007/s11625-010-0108-y, 2010. a
Boersma, K., Berg, R., Rijbroek, J., Ardai, P., Azarhoosh, F., Forozesh, F., De Kort, S., Van Scheepstal, A. J., and Bos, J.: Exploring the potential of local stakeholders' involvement in crisis management. The living lab approach in a case study from amsterdam, Int. J. Disast. Risk Re., 79, 103179, https://doi.org/10.1016/j.ijdrr.2022.103179, 2022. a
Booth, L., Fleming, K., Abad, J., Schueller, L. A., Leone, M., Scolobig, A., and Baills, A.: Simulating synergies between Climate Change Adaptation and Disaster Risk Reduction stakeholders to improve management of transboundary disasters in Europe, Int. J. Disast. Risk Re., 49, 101668, https://doi.org/10.1016/j.ijdrr.2020.101668, 2020. a
Brasseur, G. P. and Gallardo, L.: Climate services: Lessons learned and future prospects, Earths Future, 4, 79–89, https://doi.org/10.1002/2015EF000338, 2016. a
Brugnach, M. and Özerol, G.: Knowledge Co-Production and Transdisciplinarity: Opening Pandora's Box, Water, 11, 1997, https://doi.org/10.3390/w11101997, 2019. a
Buhaug, H. and Vestby, J.: On Growth Projections in the Shared Socioeconomic Pathways, Global Environ. Polit., 19, 118–132, https://doi.org/10.1162/glep_a_00525, 2019. a
Burby, R. J.: Hurricane Katrina and the Paradoxes of Government Disaster Policy: Bringing About Wise Governmental Decisions for Hazardous Areas, Ann. Am. Acad. Polit. S. S., 604, 171–191, https://doi.org/10.1177/0002716205284676, 2006. a
Byun, K. and Hamlet, A. F.: A risk-based analytical framework for quantifying non-stationary flood risks and establishing infrastructure design standards in a changing environment, J. Hydrol., 584, 124575, https://doi.org/10.1016/j.jhydrol.2020.124575, 2020. a
Cosens, B., Ruhl, J. B., Soininen, N., Gunderson, L., Belinskij, A., Blenckner, T., Camacho, A. E., Chaffin, B. C., Craig, R. K., Doremus, H., Glicksman, R., Heiskanen, A.-S., Larson, R., and Similä, J.: Governing complexity: Integrating science, governance, and law to manage accelerating change in the globalized commons, P. Natl. Acad. Sci. USA, 118, e2102798118, https://doi.org/10.1073/pnas.2102798118, 2021. a, b, c
Crosby, B. C. and Bryson, J. M.: Integrative leadership and the creation and maintenance of cross-sector collaborations, Leadership Quart., 21, 211–230, https://doi.org/10.1016/j.leaqua.2010.01.003, 2010. a
Cumiskey, L., Priest, S., Klijn, F., and Juntti, M.: A framework to assess integration in flood risk management: implications for governance, policy, and practice, Ecol. Soc., 24 (4), 17, https://doi.org/10.5751/ES-11298-240417, 2019. a
Cumiskey, L., Parviainen, J., Bharwani, S., Ng, N., Bagli, S., Drews, M., Genillard, C., Hedderich, D., Hochrainer-Stigler, S., Hofbauer, B., Huszti, L., Kropf, C. M., Löhrlein, J., Pou, A. M., Mazzoli, P., Pedersen, J., Rosa, A., Schweizer, P.-J., Steinhausen, M., Struck, J., and Håkansson, V. W.: Capacity development for locally-led knowledge co-production processes in Real World Labs for managing climate and disaster risk, Int. J. Disast. Risk Re., 125, 105398, https://doi.org/10.1016/j.ijdrr.2025.105398, 2025. a
Cvitanovic, C., McDonald, J., and Hobday, A.: From science to action: Principles for undertaking environmental research that enables knowledge exchange and evidence-based decision-making, J. Environ. Manage., 183, 864–874, https://doi.org/10.1016/j.jenvman.2016.09.038, 2016. a, b
Daniels, E., Bharwani, S., Gerger Swartling, Å., Vulturius, G., and Brandon, K.: Refocusing the climate services lens: Introducing a framework for co-designing “transdisciplinary knowledge integration processes” to build climate resilience, Climate Services, 19, 100181, https://doi.org/10.1016/j.cliser.2020.100181, 2020. a, b, c, d, e, f, g, h, i
Deubelli, T. M. and Mechler, R.: Perspectives on transformational change in climate risk management and adaptation, Environ. Res. Lett., 16, 053002, https://doi.org/10.1088/1748-9326/abd42d, 2021. a
Dias, N., Amaratunga, D., Haigh, R., Clegg, G., and Malalgoda, C.: Critical Factors that Hinder Integration of CCA and DRR: Global Perspective, in: Handbook of Climate Change Management: Research, Leadership, Transformation, edited by: Leal Filho, W., Luetz, J., and Ayal, D., Springer International Publishing, Cham, 1–22, ISBN 978-3-030-22759-3, https://doi.org/10.1007/978-3-030-22759-3_124-1, 2020. a
Directive 2007/60/EC: The European Parliament and of the Council of 23 October 2007 On the assessment and management of flood risks, Offic. J. Eur. Union, https://eur-lex.europa.eu/eli/dir/2007/60/oj/eng (last access: 22 August 2025), 2007. a
Doyle, E. E. H., Johnston, D. M., Smith, R., and Paton, D.: Communicating model uncertainty for natural hazards: A qualitative systematic thematic review, Int. J. Disast. Risk Re., 33, 449–476, https://doi.org/10.1016/j.ijdrr.2018.10.023, 2019. a
Fakhruddin, B., Clark, H., Robinson, L., and Hieber-Girardet, L.: Should I stay or should I go now? Why risk communication is the critical component in disaster risk reduction, Progress in Disaster Science, 8, 100139, https://doi.org/10.1016/j.pdisas.2020.100139, 2020. a
Fekete, A. and Sandholz, S.: Here Comes the Flood, but Not Failure? Lessons to Learn after the Heavy Rain and Pluvial Floods in Germany 2021, Water, 13, 3016, https://doi.org/10.3390/w13213016, 2021. a
Fischhoff, B.: Risk Perception and Communication Unplugged: Twenty Years of Process, Risk Anal., 15, 137–145, https://doi.org/10.1111/j.1539-6924.1995.tb00308.x, 1995. a
Fledderus, J.: The Effects of Co-Production on Trust, in: Co-Production and Co-Creation, Routledge, 8 pp., ISBN 978-1-315-20495-6, 2018. a
Florin, M.-V. and Bürkler, M. T.: Introduction to the IRGC Risk Governance Framework, EPFL, https://doi.org/10.5075/EPFL-IRGC-233739, 2018. a, b
Funk, J. and Guthadjaka, K.: Indigenous Authorship on Open and Digital Platforms: Social Justice Processes and Potential, Journal of Interactive Media in Education, 2020, p. 6, https://doi.org/10.5334/jime.560, 2020. a
Gilissen, H., Alexander, M., Beyers, J.-C., Chmielewski, P., Matczak, P., Schellenberger, T., and Suykens, C.: Bridges over troubled waters: An interdisciplinary framework for evaluating the interconnectedness within fragmented domestic flood risk management systems, Journal of Water Law, 5, 12–26, 2015. a
Haer, T., Husby, T. G., Botzen, W. J. W., and Aerts, J. C. J. H.: The safe development paradox: An agent-based model for flood risk under climate change in the European Union, Global Environ. Chang., 60, 102009, https://doi.org/10.1016/j.gloenvcha.2019.102009, 2020. a
Halsnæs, K., Kaspersen, P., and Drews, M.: Key drivers and economic consequences of high-end climate scenarios: uncertainties and risks, Clim. Res., 64, 85–98, https://doi.org/10.3354/cr01308, 2015. a
Hattermann, F. F., Wortmann, M., Liersch, S., Toumi, R., Sparks, N., Genillard, C., Schröter, K., Steinhausen, M., Gyalai-Korpos, M., Máté, K., Hayes, B., del Rocío Rivas López, M., Rácz, T., Nielsen, M. R., Kaspersen, P. S., and Drews, M.: Simulation of flood hazard and risk in the Danube basin with the Future Danube Model, Climate Services, 12, 14–26, https://doi.org/10.1016/j.cliser.2018.07.001, 2018. a
Hochrainer-Stigler, S. and Reiter, K.: Risk-Layering for Indirect Effects, Int. J. Disast. Risk Sc., 12, 770–778, https://doi.org/10.1007/s13753-021-00366-2, 2021. a
Hochrainer-Stigler, S., Šakić Trogrlić, R., Reiter, K., Ward, P. J., de Ruiter, M. C., Duncan, M. J., Torresan, S., Ciurean, R., Mysiak, J., Stuparu, D., and Gottardo, S.: Toward a framework for systemic multi-hazard and multi-risk assessment and management, iScience, 26, 106736, https://doi.org/10.1016/j.isci.2023.106736, 2023. a
Hochrainer-Stigler, S., Deubelli-Hwang, T. M., Parviainen, J., Cumiskey, L., Schweizer, P.-J., and Dieckmann, U.: Managing systemic risk through transformative change: Combining systemic risk analysis with knowledge co-production, One Earth, 7, 771–781, https://doi.org/10.1016/j.oneear.2024.04.014, 2024. a
Hoffmann, S., Deutsch, L., Klein, J. T., and O'Rourke, M.: Integrate the integrators! A call for establishing academic careers for integration experts, Humanit. Soc. Sci. Commun., 9, 147, https://doi.org/10.1057/s41599-022-01138-z, 2022. a
Hsu, P.-C., Xie, J., Lee, J.-Y., Zhu, Z., Li, Y., Chen, B., and Zhang, S.: Multiscale interactions driving the devastating floods in Henan Province, China during July 2021, Weather and Climate Extremes, 39, 100541, https://doi.org/10.1016/j.wace.2022.100541, 2023. a
Jack, C. D., Jones, R., Burgin, L., and Daron, J.: Climate risk narratives: An iterative reflective process for co-producing and integrating climate knowledge, Climate Risk Management, 29, 100239, https://doi.org/10.1016/j.crm.2020.100239, 2020. a
Kates, R. W., Colten, C. E., Laska, S., and Leatherman, S. P.: Reconstruction of New Orleans after Hurricane Katrina: A research perspective, P. Natl. Acad. Sci. USA, 103, 14653–14660, https://doi.org/10.1073/pnas.0605726103, 2006. a
Keast, R., Brown, K., and Mandell, M.: Getting the right mix: Unpacking integration meanings and strategies, Int. Public Manag. J., 10, 9–33, https://doi.org/10.1080/10967490601185716, 2007. a
Keating, A., Venkateswaran, K., Szoenyi, M., MacClune, K., and Mechler, R.: From event analysis to global lessons: disaster forensics for building resilience, Nat. Hazards Earth Syst. Sci., 16, 1603–1616, https://doi.org/10.5194/nhess-16-1603-2016, 2016. a
Kelman, I., Mercer, J., and Gaillard, J.: Indigenous knowledge and disaster risk reduction, Geography, 97, 12–21, https://doi.org/10.1080/00167487.2012.12094332, 2012. a
Klein, R. J. and Juhola, S.: A framework for Nordic actor-oriented climate adaptation research, Environ. Sci. Policy, 40, 101–115, https://doi.org/10.1016/j.envsci.2014.01.011, 2014. a
Klinke, A. and Renn, O.: The Coming of Age of Risk Governance, Risk Anal., 41, 544–557, https://doi.org/10.1111/risa.13383, 2021. a, b
Kreibich, H., Müller, M., Schröter, K., and Thieken, A. H.: New insights into flood warning reception and emergency response by affected parties, Nat. Hazards Earth Syst. Sci., 17, 2075–2092, https://doi.org/10.5194/nhess-17-2075-2017, 2017. a, b
Kreibich, H., Hudson, P., and Merz, B.: Knowing What to Do Substantially Improves the Effectiveness of Flood Early Warning, B. Am. Meteorol. Soc., 102, E1450–E1463, https://doi.org/10.1175/BAMS-D-20-0262.1, 2021. a
Kreibich, H., Van Loon, A. F., Schröter, K., Ward, P. J., Mazzoleni, M., Sairam, N., Abeshu, G. W., Agafonova, S., AghaKouchak, A., Aksoy, H., Alvarez-Garreton, C., Aznar, B., Balkhi, L., Barendrecht, M. H., Biancamaria, S., Bos-Burgering, L., Bradley, C., Budiyono, Y., Buytaert, W., Capewell, L., Carlson, H., Cavus, Y., Couasnon, A., Coxon, G., Daliakopoulos, I., de Ruiter, M. C., Delus, C., Erfurt, M., Esposito, G., François, D., Frappart, F., Freer, J., Frolova, N., Gain, A. K., Grillakis, M., Grima, J. O., Guzmán, D. A., Huning, L. S., Ionita, M., Kharlamov, M., Khoi, D. N., Kieboom, N., Kireeva, M., Koutroulis, A., Lavado-Casimiro, W., Li, H.-Y., LLasat, M. C., Macdonald, D., Mård, J., Mathew-Richards, H., McKenzie, A., Mejia, A., Mendiondo, E. M., Mens, M., Mobini, S., Mohor, G. S., Nagavciuc, V., Ngo-Duc, T., Thao Nguyen Huynh, T., Nhi, P. T. T., Petrucci, O., Nguyen, H. Q., Quintana-Seguí, P., Razavi, S., Ridolfi, E., Riegel, J., Sadik, M. S., Savelli, E., Sazonov, A., Sharma, S., Sörensen, J., Arguello Souza, F. A., Stahl, K., Steinhausen, M., Stoelzle, M., Szalińska, W., Tang, Q., Tian, F., Tokarczyk, T., Tovar, C., Tran, T. V. T., Van Huijgevoort, M. H. J., van Vliet, M. T. H., Vorogushyn, S., Wagener, T., Wang, Y., Wendt, D. E., Wickham, E., Yang, L., Zambrano-Bigiarini, M., Blöschl, G., and Di Baldassarre, G.: The challenge of unprecedented floods and droughts in risk management, Nature, 608, 80–86, https://doi.org/10.1038/s41586-022-04917-5, 2022. a
Kreibich, H., Schröter, K., Di Baldassarre, G., Van Loon, A. F., Mazzoleni, M., Abeshu, G. W., Agafonova, S., AghaKouchak, A., Aksoy, H., Alvarez-Garreton, C., Aznar, B., Balkhi, L., Barendrecht, M. H., Biancamaria, S., Bos-Burgering, L., Bradley, C., Budiyono, Y., Buytaert, W., Capewell, L., Carlson, H., Cavus, Y., Couasnon, A., Coxon, G., Daliakopoulos, I., de Ruiter, M. C., Delus, C., Erfurt, M., Esposito, G., François, D., Frappart, F., Freer, J., Frolova, N., Gain, A. K., Grillakis, M., Grima, J. O., Guzmán, D. A., Huning, L. S., Ionita, M., Kharlamov, M., Khoi, D. N., Kieboom, N., Kireeva, M., Koutroulis, A., Lavado-Casimiro, W., Li, H.-Y., LLasat, M. C., Macdonald, D., Mård, J., Mathew-Richards, H., McKenzie, A., Mejia, A., Mendiondo, E. M., Mens, M., Mobini, S., Mohor, G. S., Nagavciuc, V., Ngo-Duc, T., Nguyen, H. T. T., Nhi, P. T. T., Petrucci, O., Quan, N. H., Quintana-Seguí, P., Razavi, S., Ridolfi, E., Riegel, J., Sadik, M. S., Sairam, N., Savelli, E., Sazonov, A., Sharma, S., Sörensen, J., Souza, F. A. A., Stahl, K., Steinhausen, M., Stoelzle, M., Szalińska, W., Tang, Q., Tian, F., Tokarczyk, T., Tovar, C., Tran, T. V. T., van Huijgevoort, M. H. J., van Vliet, M. T. H., Vorogushyn, S., Wagener, T., Wang, Y., Wendt, D. E., Wickham, E., Yang, L., Zambrano-Bigiarini, M., and Ward, P. J.: Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts, Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, 2023. a
Kropf, C. M., Ciullo, A., Otth, L., Meiler, S., Rana, A., Schmid, E., McCaughey, J. W., and Bresch, D. N.: Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0, Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, 2022. a
Lauta, K., Albris, K., Zuccaro, G., and Grandjean, G. (Eds.): ESPREssO Enhancing Risk Management Capabilities Guidelines, Tech. rep., ESPREssO – Enhancing Synergies for Disaster Prevention in the European Union, ISBN 978-88-943902-0-9, https://dkkv.org/wp-content/uploads/2023/05/DKKV_GL_ENGLISCH-ONLINE_30102018.pdf (last access: 22 August 2025), 2018. a
Leitner, M., Buschmann, D., Lourenço, T. C., Coninx, I., and Schmidt, A.: Bonding CCA and DRR: recommendations for strengthening institutional coordination and capacities, Placard, p. 138, https://research.wur.nl/en/publications/bonding-cca-and-drr-recommendations-for-strengthening-institution (last access: 22 August 2025), 2020. a
Lemos, M. C., Kirchhoff, C. J., and Ramprasad, V.: Narrowing the climate information usability gap, Nat. Clim. Change, 2, 789–794, https://doi.org/10.1038/nclimate1614, 2012. a, b, c, d
Mallapaty, S.: Why are Pakistan's floods so extreme this year?, Nature, https://doi.org/10.1038/d41586-022-02813-6, 2022. a
McNamara, K. E. and Jackson, G.: Loss and damage: A review of the literature and directions for future research, WIREs Clim. Change, 10, e564, https://doi.org/10.1002/wcc.564, 2019. a, b
Medway, P., Flood, S., Cubie, D., and Le Tissier, M.: Enhancing Integration of Disaster Risk and Climate Change Adaptation into Irish Emergency Planning, in: Creating Resilient Futures: Integrating Disaster Risk Reduction, Sustainable Development Goals and Climate Change Adaptation Agendas, 83–108, ISBN 978-3-030-80791-7, https://doi.org/10.1007/978-3-030-80791-7_5, 2021. a
Mees, H., Crabbé, A., and Driessen, P. P.: Conditions for citizen co-production in a resilient, efficient and legitimate flood risk governance arrangement. A tentative framework, J. Environ. Pol. Plan., 19, 827–842, https://doi.org/10.1080/1523908X.2017.1299623, 2017. a
Meijerink, S. and Huitema, D.: Policy Entrepreneurs and Change Strategies: Lessons from Sixteen Case Studies of Water Transitions around the Globe, Ecol. Soc., 15, 21, https://doi.org/10.5751/ES-03509-150221, 2010. a
Mercer, S.: The Complexity of Learner Agency, Journal of Applied Language Studies, 6, 41–59, http://urn.fi/URN:NBN:fi:jyu-201302041153 (last access: 22 August 2025), 2012. a
Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H., Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., and Macdonald, E.: Causes, impacts and patterns of disastrous river floods, Nat. Rev. Earth Environ., 2, 592–609, https://doi.org/10.1038/s43017-021-00195-3, 2021. a
Merz, B., Blöschl, G., Jüpner, R., Kreibich, H., Schröter, K., and Vorogushyn, S.: Invited perspectives: safeguarding the usability and credibility of flood hazard and risk assessments, Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, 2024. a, b
Meyer, M.: The Rise of the Knowledge Broker, Sci. Commun., 32, 118–127, https://doi.org/10.1177/1075547009359797, 2010. a
Migliorini, M., Hagen, J., Mihaljević, J., Mysiak, J., Rossi, J.-L., Siegmund, A., Meliksetian, K., and Guha Sapir, D.: Data interoperability for disaster risk reduction in Europe, Disaster Prev. Manag., 28, 796–808, https://doi.org/10.1108/DPM-09-2019-0291, 2019. a
Miller, C. A. and Wyborn, C.: Co-production in global sustainability: Histories and theories, Environ. Sci. Policy, 113, 88–95, https://doi.org/10.1016/j.envsci.2018.01.016, 2020. a
Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., Hundhausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M., Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis, Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, 2023. a, b
Mysiak, J., Castellari, S., Kurnik, B., Swart, R., Pringle, P., Schwarze, R., Wolters, H., Jeuken, A., and van der Linden, P.: Brief communication: Strengthening coherence between climate change adaptation and disaster risk reduction, Nat. Hazards Earth Syst. Sci., 18, 3137–3143, https://doi.org/10.5194/nhess-18-3137-2018, 2018. a, b
Norström, A. V., Cvitanovic, C., Löf, M. F., West, S., Wyborn, C., Balvanera, P., Bednarek, A. T., Bennett, E. M., Biggs, R., De Bremond, A., Campbell, B. M., Canadell, J. G., Carpenter, S. R., Folke, C., Fulton, E. A., Gaffney, O., Gelcich, S., Jouffray, J.-B., Leach, M., Le Tissier, M., Martín-López, B., Louder, E., Loutre, M.-F., Meadow, A. M., Nagendra, H., Payne, D., Peterson, G. D., Reyers, B., Scholes, R., Speranza, C. I., Spierenburg, M., Stafford-Smith, M., Tengö, M., Van Der Hel, S., Van Putten, I., and Österblom, H.: Principles for knowledge co-production in sustainability research, Nature Sustainability, 3, 182–190, https://doi.org/10.1038/s41893-019-0448-2, 2020. a, b, c, d, e, f
OGC: Open Geospatial Consortium, https://www.ogc.org/ (last access: 22 August 2025), 2024. a
Olsson, L., Thorén, H., Harnesk, D., and Persson, J.: Ethics of Probabilistic Extreme Event Attribution in Climate Change Science: A Critique, Earths Future, 10, e2021EF002258, https://doi.org/10.1029/2021EF002258, 2022. a, b
Ommer, J., Neumann, J., Kalas, M., Blackburn, S., and Cloke, H. L.: Surprise floods: the role of our imagination in preparing for disasters, Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, 2024. a
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017. a
Parviainen, J., Hochrainer-Stigler, S., Cumiskey, L., Bharwani, S., Schweizer, P.-J., Hofbauer, B., and Cubie, D.: The Risk-Tandem Framework: An iterative framework for combining risk governance and knowledge co-production toward integrated disaster risk management and climate change adaptation, Int. J. Disast. Risk Re., 116, 105070, https://doi.org/10.1016/j.ijdrr.2024.105070, 2025. a, b
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T.: Sensitivity analysis of environmental models: A systematic review with practical workflow, Environ. Model. Softw., 79, 214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016. a
Polk, M.: Transdisciplinary co-production: Designing and testing a transdisciplinary research framework for societal problem solving, Futures, 65, 110–122, https://doi.org/10.1016/j.futures.2014.11.001, 2015. a, b
Renn, O. and Schweizer, P.: Inclusive risk governance: concepts and application to environmental policy making, Environ. Policy Gov., 19, 174–185, https://doi.org/10.1002/eet.507, 2009. a
Šakić Trogrlić, R., Wright, G., Duncan, M., Van Den Homberg, M., Adeloye, A., Mwale, F., and Mwafulirwa, J.: Characterising Local Knowledge across the Flood Risk Management Cycle: A Case Study of Southern Malawi, Sustainability, 11, 1681, https://doi.org/10.3390/su11061681, 2019. a
Schäpke, N., Stelzer, F., Caniglia, G., Bergmann, M., Wanner, M., Singer-Brodowski, M., Loorbach, D., Olsson, P., Baedeker, C., and Lang, D. J.: Jointly Experimenting for Transformation? Shaping Real-World Laboratories by Comparing Them, GAIA, 27, 85–96, https://doi.org/10.14512/gaia.27.S1.16, 2018. a, b
Schipper, E. L. F.: Catching maladaptation before it happens, Nat. Clim. Change, 12, 617–618, https://doi.org/10.1038/s41558-022-01409-2, 2022. a
Schröter, K., Molinari, D., Kunz, M., and Kreibich, H.: Preface: Natural hazard event analysis for risk reduction and adaptation, Nat. Hazards Earth Syst. Sci., 18, 963–968, https://doi.org/10.5194/nhess-18-963-2018, 2018. a
Schweizer, P.-J.: Systemic risks – concepts and challenges for risk governance, J. Risk Res., 24, 78–93, https://doi.org/10.1080/13669877.2019.1687574, 2021. a
Schweizer, P.-J. and Renn, O.: Governance of systemic risks for disaster prevention and mitigation, Disaster Prev. Manag., 28, 862–874, https://doi.org/10.1108/DPM-09-2019-0282, 2019. a, b, c, d
Shawoo, Z. and Thornton, T.: The UN local communities and Indigenous peoples' platform: A traditional ecological knowledge-based evaluation, WIREs Clim. Change, 10 (3), e575, https://doi.org/10.1002/wcc.575, 2019. a
Sillmann, J., Christensen, I., Hochrainer-Stigler, S., Huang-Lachmann, J., Juhola, S., Kornhuber, K., Mahecha, M., Mechler, R., Reichstein, M., Ruane, A., Schweizer, P., and Williams, S.: ISC-UNDRR-RISK KAN Briefing note on systemic risk, Briefing note on systemic risks, International Science Council, Paris, https://doi.org/10.24948/2022.01, 2022. a
Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., Lawrence, J., Lempert, R. J., Muccione, V., Mackey, B., New, M. G., O'Neill, B., Otto, F., Pörtner, H.-O., Reisinger, A., Roberts, D., Schmidt, D. N., Seneviratne, S., Strongin, S., van Aalst, M., Totin, E., and Trisos, C. H.: A framework for complex climate change risk assessment, One Earth, 4, 489–501, https://doi.org/10.1016/j.oneear.2021.03.005, 2021. a
Steinhausen, M., Paprotny, D., Dottori, F., Sairam, N., Mentaschi, L., Alfieri, L., Lüdtke, S., Kreibich, H., and Schröter, K.: Drivers of future fluvial flood risk change for residential buildings in Europe, Global Environ. Chang., 76, 102559, https://doi.org/10.1016/j.gloenvcha.2022.102559, 2022. a
Stewart, I.: Advancing disaster risk communications, Earth-Sci. Rev., 249, 104677, https://doi.org/10.1016/j.earscirev.2024.104677, 2024. a, b, c, d
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Mühr, B., Müller, M., Otto, A., Petrow, T., Pisi, S., and Schröter, K.: Review of the flood risk management system in Germany after the major flood in 2013, Ecol. Soc., 21(2):51, https://doi.org/10.5751/ES-08547-210251, 2016. a
Thieken, A. H., Bubeck, P., Heidenreich, A., von Keyserlingk, J., Dillenardt, L., and Otto, A.: Performance of the flood warning system in Germany in July 2021 – insights from affected residents, Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023, 2023. a
Tomas, R., Harrison, M., Barredo, J., Thomas, F., Llorente Isidro, M., Pfeiffer, M., and Čerba, O.: Towards a cross-domain interoperable framework for natural hazards and disaster risk reduction information, Nat. Hazards, 78, 1545–1563, https://doi.org/10.1007/s11069-015-1786-7, 2015. a
Turnhout, E., Metze, T., Wyborn, C., Klenk, N., and Louder, E.: The politics of co-production: participation, power, and transformation, Curr. Opin. Env. Sust., 42, 15–21, https://doi.org/10.1016/j.cosust.2019.11.009, 2020. a
Vercruysse, K., Dawson, D. A., and Wright, N.: Interoperability: A conceptual framework to bridge the gap between multifunctional and multisystem urban flood management, J. Flood Risk Manage., 12, e12535, https://doi.org/10.1111/jfr3.12535, 2019. a
Vorogushyn, S., Apel, H., Kempter, M., and Thieken, A. H.: Analyse der Hochwassergefährdung im Ahrtal unter Berücksichtigung historischer Hochwasser – Analysis of flood hazard in the Ahr Valley considering historical floods, Hydrol. Wasserbewirts., 66, 244–254, https://www.hywa-online.de/analyse-der-hochwassergefaehrdung-im-ahrtal-unter-beruecksichtigung-historischer-hochwasser-analysis-of-flood-hazard-in-the-ahr-valley-considering-historical-floods/ (last access: 1 September 2025), 2022. a
Wang, C., Zhang, L., Lee, S.-K., Wu, L., and Mechoso, C. R.: A Global Perspective on CMIP5 Climate Model Biases, Nat. Clim. Change, 4, 201–205, https://doi.org/10.1038/nclimate2118, 2014. a
Weichselgartner, J. and Pigeon, P.: The Role of Knowledge in Disaster Risk Reduction, Int. J. Disast. Risk Sc., 6, 107–116, https://doi.org/10.1007/s13753-015-0052-7, 2015. a
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. a
Williams, P.: The life and times of the boundary spanner, Journal of Integrated Care, 19, 26–33, https://doi.org/10.1108/14769011111148140, 2011. a
Wyborn, C., Datta, A., Montana, J., Ryan, M., Leith, P., Chaffin, B., Miller, C., and Van Kerkhoff, L.: Co-Producing Sustainability: Reordering the Governance of Science, Policy, and Practice, Annu. Rev. Env. Resour., 44, 319–346, https://doi.org/10.1146/annurev-environ-101718-033103, 2019. a, b
Zuccaro, G., Leone, M., and Martucci, C.: Future research and innovation priorities in the field of natural hazards, disaster risk reduction, disaster risk management and climate change adaptation: a shared vision from the ESPREssO project, Int. J. Disast. Risk Re., 51, 101783, https://doi.org/10.1016/j.ijdrr.2020.101783, 2020. a
Short summary
With the increasing negative impacts of extreme weather events globally, it is crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
With the increasing negative impacts of extreme weather events globally, it is crucial to align...
Altmetrics
Final-revised paper
Preprint