Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-247-2025
https://doi.org/10.5194/nhess-25-247-2025
Research article
 | 
16 Jan 2025
Research article |  | 16 Jan 2025

The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context

Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli

Related authors

How well do hydrological models learn from limited discharge data? A comparison of process- and data-driven models
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076,https://doi.org/10.5194/egusphere-2025-1076, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022,https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
The CH-IRP data set: a decade of fortnightly data on δ2H and δ18O in streamflow and precipitation in Switzerland
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020,https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Stress testing as complement to climate scenarios: recharge scenarios to quantify streamflow drought sensitivity
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020,https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Importance of maximum snow accumulation for summer low flows in humid catchments
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016,https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary

Related subject area

Hydrological Hazards
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025,https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025,https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025,https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary
Mind the gap: misalignment between drought monitoring and community realities
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 893–912, https://doi.org/10.5194/nhess-25-893-2025,https://doi.org/10.5194/nhess-25-893-2025, 2025
Short summary
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025,https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary

Cited articles

Bennett, B., Leonard, M., Deng, Y., and Westra, S.: An empirical investigation into the effect of antecedent precipitation on flood volume, J. Hydrol., 567, 435–445, https://doi.org/10.1016/j.jhydrol.2018.10.025, 2018. a, b
Bergström, S.: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Colorado, USA, 1995. a
Berthet, L., Andréassian, V., Perrin, C., and Javelle, P.: How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments, Hydrol. Earth Syst. Sci., 13, 819–831, https://doi.org/10.5194/hess-13-819-2009, 2009. a
Beven, K.: Towards the use of catchment geomorphology in flood frequency predictions, Earth Surf. Proc. Land., 12, 69–82, https://doi.org/10.1002/esp.3290120109, 1987. a
Blazkova, S. and Beven, K.: Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic, J. Hydrol., 292, 153–172, https://doi.org/10.1016/j.jhydrol.2003.12.025, 2004. a, b
Download
Short summary
Various combinations of antecedent conditions and precipitation result in floods of varying degrees. Antecedent conditions played a crucial role in generating even large ones. The key predictors and spatial patterns of antecedent conditions leading to flooding at the basin's outlet were distinct. Precipitation and soil moisture from almost all sub-catchments were important for more frequent floods. For rarer events, only the predictors of specific sub-catchments were important.
Share
Altmetrics
Final-revised paper
Preprint