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Abstract. In this study, we analyze how precipitation, an-
tecedent conditions, and their spatial patterns and interac-
tions lead to extreme floods in a large catchment. The analy-
sis is based on 10 000 years of continuous simulations from a
hydro-meteorological modelling chain for a large catchment,
the Aare River basin, Switzerland. To account for different
flood-generating processes, we based our work on simula-
tions with hourly time resolution. The hydro-meteorological
modelling chain consisted of a stochastic weather genera-
tor (GWEX), a bucket-type hydrological model (HBV), and
a routing system (RS MINERVE), providing the hydrologi-
cal basis for flood protection management in the Aare River
basin.

From the long continuous simulations of runoff, snow, soil
moisture, and dynamic storage, we were able to assess which
combinations of antecedent conditions and triggering precip-
itation lead to extreme floods in the sub-basins of the Aare
catchment. We found that only about 18 % to 44 % (depend-
ing on the sub-catchment) of annual maximum precipitation
(AMP) and simulated annual maximum flood (AMF) events
occurred simultaneously, highlighting the importance of an-
tecedent conditions for the generation of large floods. For
most sub-catchments in the 200–500 km2 range, after return
periods greater than 500 years we found only AMF caused
by triggering AMP, which is notably higher than the return
periods typically used for design floods.

Spatial organization within a larger area is complicated.
After routing the simulated runoff, we analyzed the impor-
tant patterns and drivers of extreme flooding at the outlet of

the Aare River basin using a random forest. The different re-
turn period classes had distinct key predictors and showed
specific spatial patterns of antecedent conditions in the sub-
catchments, leading to different degrees of extreme flood-
ing. While precipitation and soil moisture conditions from
almost all sub-catchments were important for more frequent
floods, for rarer events only the conditions in specific sub-
catchments were important. Snow conditions were impor-
tant only from specific sub-catchments and for more frequent
events.

1 Introduction

Floods in general and extreme floods in particular are a
threat to infrastructure and human life. With the awareness
that it is not feasible to protect everything and everybody
from damage caused by floods, the goal today is to mini-
mize damage. This is achieved by a combination of structural
and technical management as well as regional development
planning (e.g. hazard maps). In this context, the return pe-
riod of floods, i.e. the expected time interval between flood
events exceeding a specific magnitude (Makkonen, 2006), is
a crucial metric. The standard approach to flood frequency
analysis is to use observations of floods and fit a theoreti-
cal extreme value distribution to estimate return periods for
specific flood peaks and ultimately derive design floods for
safety assessments. However, there is generally a lack of ob-
servations for extreme events such as floods, which leads to
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uncertain estimations of the associated return periods. The
uncertainty inherent in the return periods is directly linked
to the measurement accuracy and quantity of observed ex-
treme events. For instance, established rating curves may no
longer be appropriate for very large floods (Westerberg et al.,
2011, 2020), leading to particularly large uncertainties in the
estimation of return periods for larger floods, i.e. rarer events.
Recently, there has been a growing body of literature on so-
called heavy tails describing the effects of the lack of ob-
servations (Merz et al., 2022; Mathevet and Garçon, 2010;
Klemeš, 2000a, b, and references therein). The issue is exac-
erbated because of the increasing non-stationarity of obser-
vations, which is caused not only by climate change but also
by the impacts of human infrastructure such as water reser-
voirs on the streamflow and the extremes (e.g. Hingray et al.,
2010).

There are some alternative approaches to overcome the
lack of flood observations using historical data from archives
or paleo-floods (Schulte et al., 2019; Castellarin et al., 2012;
Merz and Blöschl, 2008); however for ungauged catchments
we face a real challenge in that we have no observations at
all. For very rare flood events, approaches linking extreme
precipitation to floods are often used (e.g. Naghettini et al.,
1996) instead of performing flood frequency analysis based
on discharge observations. Contributing to the uncertainty of
the estimated return periods are not only limited data but also
the choice of a suitable theoretical extreme value distribution
as well as the optimization method to find appropriate pa-
rameters describing the theoretical extreme value distribution
(Klemeš, 2000a, b).

To overcome the lack of data in flood frequency analy-
sis, hydro-meteorological modelling chain approaches have
been proposed and applied in a scientific context as an al-
ternative (Lamb et al., 2016; Falter et al., 2015; Hundecha
and Merz, 2012; Cameron et al., 1999; Viviroli et al., 2022).
In these hydro-meteorological modelling chain approaches,
meteorological scenarios from a weather generator force a
hydrological model which performs continuous simulation
(CS) (Beven, 1987) of discharge over long to very long peri-
ods, including floods. These approaches provide a consid-
erably larger pool of realistic weather configurations that
can potentially lead to floods compared to the pool of ob-
served events. Thus, this approach (1) allows for estimat-
ing rarer flood events and (2) provides a more robust basis
for floods of medium to high return periods than is possible
with observations alone. There are several additional advan-
tages when combining CS with weather generators: it allows
for the exploration of a very large panel of different hydro-
meteorological configurations, with different combinations
of weather and catchment hydrological states (e.g. soil mois-
ture conditions, snowpack importance and maturity, filling
states of reservoirs); i.e. it also provides antecedent flood
conditions without the need for explicit assumptions about
them (Calver and Lamb, 1995; Pathiraja et al., 2012; Vivi-
roli et al., 2022). It is applicable in ungauged catchments

(using parameters derived from regionalization) and allows
for a better linkage of flood estimation with physical pro-
cesses. Furthermore, this approach treats the processes in a
spatially consistent manner and captures the space–time in-
teractions of the relevant processes (Falter et al., 2015). It
offers the possibility of extracting not only flood peaks but
also any other feature of the hydrograph, such as for instance
flood volume, and thus allows for a bi- or multivariate flood
frequency analysis for safety assessment (e.g. Blazkova and
Beven, 2004; Brunner et al., 2016). Moreover, this type of
modelling chain can be easily extended using discharge sim-
ulations as input to flood plains (see e.g. Lamb et al., 2016)
or in a further step to a damage model (see e.g. Falter et al.,
2015). Finally, this approach also allows for testing future
scenarios under changed conditions for instance regarding
climate or land use change (see e.g. Köplin et al., 2013, 2014)
or regarding different regulation in the catchment.

The sources of uncertainty shift when such a hydro-
meteorological modelling chain is used for flood frequency
analysis. While this approach reduces the uncertainties in-
herent in conventional flood frequency analysis, it adds var-
ious model uncertainties. The weather generator is a statisti-
cal model that includes numerous parameters estimated with
uncertainty and that provides a simplified representation of
weather dynamics in both space and time (Lafaysse et al.,
2014). The weather generator is used in a specific temporal
resolution and parameterization and makes use of a given un-
derlying meteorological-station density for a specific catch-
ment. These components introduce uncertainty in the rep-
resentativity of the rainfall distribution types generated that
can lead to floods in a specific region. Also the hydrologi-
cal model and the routing system are subject to uncertainty.
Here, the main sources of uncertainty stem from model struc-
ture and parameter uncertainty. These uncertainties could be
estimated using an ensemble of simulations with different
parameter sets and thus help in the decision-making pro-
cess for flood safety management (Todini, 2004; Blazkova
and Beven, 2004; Wood and Lettenmaier, 2008). Some stud-
ies have attempted to use multi-model approaches that at-
tempt to represent the structural uncertainty of hydrologi-
cal simulations, and particularly for extremes this approach
was followed by Thébault et al. (2024). When following this
methodology, however, there is also the need to make spe-
cific decisions, e.g. on how many models and which models
to choose (see Gupta and Govindaraju, 2023). This explains
why ensemble approaches have been more commonly used;
i.e. a single model is run multiple times with different input
data, parameterizations, or initial conditions.

Floods can be generated by different processes, and a spe-
cific amount of rainfall can trigger a flood in some cases.
In other cases, the same amount may barely increase the
discharge. The outcome depends on the intensity, duration,
and spatial distribution and the localization of the precipita-
tion event as well as on the antecedent conditions within the
catchment.
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The antecedent conditions of the catchment are shaped by
its history of drying and wetting over time. These dynamics
depend on catchment properties that allow for a large or only
a small storage capacity and on spatiotemporal interactions
in the catchment (activated or not; see Tarasova et al., 2019,
and references therein), such as how the stream network
is connected during a precipitation event and other aspects
of functional connectivity (Blume and van Meerveld, 2015)
within a catchment. Knowledge of the relationship between
antecedent catchment hydrological conditions and meteoro-
logical conditions during the event can help better estimate
floods (Nied et al., 2017; Brunner et al., 2021). Many stud-
ies showed the importance of the antecedent moisture con-
ditions for flood generation in catchments of various scales,
revealing a notable influence for the streamflow response to a
preceding extreme rainfall event (e.g. Michele and Salvadori,
2002; Berthet et al., 2009; Brocca et al., 2008; Bennett et al.,
2018; Merz and Blöschl, 2009; Nied et al., 2013). By linking
these relationships between antecedent conditions, trigger-
ing precipitation, and catchment response to flood frequency,
more accurate estimations can be made, such as those for in-
undated areas (Sikorska et al., 2015; Brunner et al., 2017).

Many flood-generating processes can be captured by daily
streamflow observations (Nied et al., 2013; Falter et al.,
2015). However, some flood-generating processes occur on
a very short temporal scale and require hourly or even finer
data resolution to capture the potentially critical space–time
dynamics within a catchment. The final flood at a specific site
depends not only on the antecedent conditions and the trig-
gering precipitation but also on the spatial interplay of pro-
cesses occurring at different scales. Lakes and flood plains
may buffer the flood peaks, while coincident floods from trib-
utaries of different sub-catchments may increase the overall
flood peak due to the superposition, which usually occurs at
a sub-daily timescale.

Objectives

In this study we assess the role of antecedent condi-
tions for floods of different return periods including ex-
treme floods. The floods and associated antecedent condi-
tions are extracted from very long (10 000-year) simula-
tions from a hydro-meteorological modelling chain consist-
ing of a stochastic weather generator optimized for the large-
catchment scale, a hydrological model, and a routing system
in hourly resolution. We specifically assess

1. the link between precipitation, antecedent conditions,
and return periods for the sub-catchments of the Aare
River catchment and

2. their temporal and spatial interaction, also accounting
for retention and confluences leading to extreme floods
at the large-catchment outlet.

Given the hourly time resolution and the exceptionally long
precipitation time series, we anticipate seeing a much greater

diversity of precipitation sequences prior to floods as well as
a wider variety of hydrological initial conditions in the catch-
ment. This is expected to lead to a more robust identification
of process-based relationships. Furthermore, by explicitly in-
cluding hydrological routing and analyzing its effects, we can
link the return periods of events to the spatial contribution of
sub-catchments and the processes occurring within them.

2 Methods and data

2.1 Catchments

We studied the large-scale Aare River basin, which is one
of the largest hydrological catchments in Switzerland, cov-
ering 17 700 km2. It includes parts of the Alps, the Swiss
Plateau, and the Jura and extends from the confluence with
the Rhine at about 310 to 4274 m a.s.l. in the Bernese Alps
(average elevation of 1050 m a.s.l.). Land use consists of
pasture (36 %), forest (30 %), sub-Alpine grassland (14 %),
bare rock (8 %), and glaciers (∼ 2 %). Streamflow is heav-
ily managed through the regulation of the large pre-Alpine
lakes of Biel, Brienz, Lucerne, Murten, Neuchâtel, Thun, and
Zurich and through several hydroelectric dams (Viviroli et
al., 2022). The basin was divided into 127 sub-catchments,
of which we selected 20 (Table 1, Fig. 1) for a more de-
tailed analysis of antecedent conditions, triggering precipita-
tion, and flood return periods. These selected sub-catchments
are larger than 200 km2 and vary in elevation range, slope,
aspect, and hence hydrological regime (Table 1, Fig. 1).

2.2 Hydro-meteorological modelling chain

We used the CS approach paired with a stochastic
weather generator producing very long time series (here
10 000 years), which expands the pool of possible flood
events and encompasses more extreme events than observa-
tions alone. This way, we could analyze many possible but
unobserved meteorological conditions causing a wide range
of antecedent conditions. This enabled us to study the effect
of antecedent conditions on the generation of extreme floods.

To account for many flood-generating configurations rel-
evant in our study catchments, we based our work on simu-
lations at hourly resolution (see average catchment response
times (ACRTs) in Table 1 and Obled et al., 2009). This also
allows for a more comprehensive pool of flood events than
using daily data. Moreover, the hourly time step enables a
realistic simulation and examination of the interplay of flood
peaks coming from different parts of the large river catch-
ment. Note that some runoff generation processes leading
to floods that happen at finer temporal resolution are not in-
cluded and some smaller-scale flood processes are not cov-
ered with the structure of the hydrological model. These
small-scale processes may occur in parts of most of the catch-
ments, but their relevance diminishes as catchment area in-
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Table 1. Selection of sub-catchments of the Aare River basin with a size larger than 200 km2. Average catchment response time (ACRT) in
hours was calculated from the maximum cross-correlation between precipitation and discharge.

River Site No. in Fig. 1 Area Glacier [%] Karst [%] Lakes [%] Regime1 ACRT [h]

Suhre Suhr 1 243 0.00 0.02 5.91 pluvial inférieur 8
Wigger Zofingen 2 366 0.00 0.00 0.23 pluvial inférieur 10
Dünnern Olten, Hammermühle 3 234 0.00 30.02 0.00 pluvial jurassien 9
Broye Payerne, Caserne d’aviation 4 416 0.00 0.49 0.00 pluvial inférieur 12
Emme Burgdorf, Lochbach 5 661 0.00 2.14 0.00 pluvial supérieur 9
Suze Biel/Bienne, Hauserwehr 6 209 0.00 69.00 0.00 nivo-pluvial jurassien 9
Kleine Emme Emmen 7 478 0.00 7.04 0.00 nivo-pluvial préalpin 13
Sense Thörishaus, Sensematt 8 351 0.00 8.07 0.13 nivo-pluvial préalpin 9
Areuse Boudry 9 378 0.00 77.60 0.14 nivo-pluvial jurassien 17
L’Orbe Orbe, Le Chalet 10 343 0.00 72.03 3.05 nivo-pluvial jurassien 14
Sarner Aa Sarnen 11 269 0.00 38.72 3.79 nival de transition 49
Muota Ingenbohl 12 317 0.00 35.63 0.95 nival de transition 10
Kander Hondrich 13 491 6.69 27.74 0.26 nivo-glaciaire 8
Simme Latterbach 14 563 1.75 22.94 0.00 nival alpin 14
Engelberger Aa Buochs, Flugplatz 15 228 3.45 39.17 0.13 b-glacio-nival 10
Linth Mollis, Linthbrücke 16 600 3.61 28.09 0.81 nivo-glaciaire 11
Reuss Seedorf 17 833 8.54 8.93 0.23 b-glacio-nival 11
Lütschine Gsteig 18 381 18.43 26.32 0.00 a-glacio-nival 6
Aare Brienzwiler 19 555 20.54 12.50 1.08 a-glacio-nival 7
Sarine Broc, Château d’en bas 20 636 0.49 21.24 0.40 nival de transition 12

1 Weingartner and Aschwanden (1992).

Figure 1. Location of the selected sub-catchments in the Aare River basin, Switzerland. The number labels are indices that can be found in
Table 1. The black points are the routing system nodes that are considered in this study, and the red point is the outlet of the Aare River basin.
The source of the underlying relief map is the Swiss Federal Office of Topography.

creases. For the large Aare basin, the largest events are un-
likely to be governed by these processes.

The sub-catchments were selected using an appropriate
discretization level regarding the study goals, i.e. to identify
large floods for the entire Aare River basin. An even finer
discretization might not lead to more insights regarding this
goal because regionally confined floods were hardly ever ob-
served to contribute to notable floods in the Aare River basin.

2.2.1 Weather generator

This study exploits 10 000-year simulations of mean areal
precipitation (MAP) and mean areal temperature (MAT) for
each sub-catchment of the Aare River basin described in
Viviroli et al. (2022). These long synthetic time series were
generated by the GWEX stochastic weather generator (Evin
et al., 2018, 2019), which reproduces the statistical behaviour
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of weather events at different temporal and spatial resolu-
tions, focusing on extremes. GWEX is a multi-site, two-part
stochastic weather generator, relying on the structure pro-
posed by Wilks and Wilby (1999) for precipitation.

Observations of precipitation from 300 stations and ob-
servations of temperature from 77 stations were used to fit
the weather generator. Precipitation and temperature records
are available on a daily time step for the 1930–1980 time
period and on a hourly time step for the 1981–2015 period
(85 years). GWEX was fitted at the daily time step with
available daily time series. GWEX was then used to generate
multi-site times series of daily scenarios, further disaggre-
gated to hourly resolution with a non-parametric disaggre-
gation approach. For each day of the generation, the daily
values are disaggregated using the spatiotemporal structure
of precipitation observed for a similar day with hourly data
available (method of fragments; see details in Viviroli et al.,
2022). GWEX simulations at the different stations were fi-
nally used to calculate time series of MAP and MAT for each
sub-catchment of the Aare River.

Note that the original precipitation data were not specifi-
cally tested for stationarity. However, we used homogeneous
precipitation time series. Due to the large inter-annual vari-
ability, identifying long-term trends in our precipitation data
is very challenging. Isotta et al. (2019) found that seasonal
precipitation trends in Switzerland are mostly not significant
statistically, with weak signals of systematic change.

The weather generator was optimized for the entire Rhine
River basin, rather than specifically for the Aare River basin
or its individual sub-catchments. It very well reproduced the
cumulative distribution functions of at-site precipitation for
different temporal aggregation levels and of all persistence
properties of precipitation including the cumulative distri-
bution functions of wet- and dry-spell lengths (see Evin et
al., 2018). There are no known spatial inconsistencies con-
cerning the generation of extreme events, despite in-depth
evaluations as shown in Viviroli et al. (2022). Due to the
hourly resolution of the disaggregated precipitation and tem-
perature observations from meteorological stations and due
to the sparse spatial coverage of the station network, very
high-intensity but strongly localized events that occur at sub-
hourly resolution are not reliably simulated. However, the ad-
vantage of a regionally applied weather generator is the pos-
sibility of analyzing the hydrological effects emerging at the
regional scale, for example, for a large hydrological catch-
ment such as the Aare River basin.

2.2.2 Hydrological model

We modelled all sub-catchments within the Aare River basin
using the bucket-type hydrological model HBV (Bergström,
1995; Seibert and Vis, 2012). The model was calibrated to
observed discharge using a performance metric based on
the Kling–Gupta efficiency (Gupta et al., 2009), with more
weight given to the bias in the upper quantiles (50 %–80 %)

than in the classic metric, i.e. 0.25 weight to correlation be-
tween simulated and observed discharge, 0.25 weight to vari-
ability, 0.25 weight to bias of the full discharge range, and
0.25 weight to the upper quantiles of discharge. This was
done to focus more on flood events and at the same time not
to give too much weight to the uncertain peaks.

For the simulations, we forced the hydrological model
with MAT and MAP from the weather generator. The gen-
erated daily temperature lapse rate was used to allocate the
temperature conditions to the different elevations bands of
each catchment. A constant adjustment factor of 5 % per
100 m was applied to account for the precipitation lapse rate.

The HBV model simulates snow accumulation and melt-
ing with a degree-day approach, evapotranspiration and soil
moisture storage, the drainage from groundwater storage (re-
sponse routine), and routing to finally simulate streamflow
at the outlet of the catchment. In the snow routine, precip-
itation is adjusted for gauge undercatch and other errors if
it is classified as snowfall. The extent of this correction can
vary considerably depending on the hypsography of a catch-
ment. In this study the response routine was chosen in the
configuration of a non-linear drainage equation (Lindström
et al., 1997), assuming an exponential increase in groundwa-
ter response with increasing water stored in the groundwater
bucket. The model ultimately had 16 parameters, of which
13 were used in the calibration and 3 were fixed to values
that were used in previous studies (Viviroli et al., 2022). For
glaciated catchments, the model has five additional parame-
ters, three of which are set to default values. An overview of
the model parameters and limits for calibration can be found
in Table 2.

For each catchment, we derived 100 plausible parameter
sets using a genetic algorithm calibration procedure (Seibert,
2001) by calibrating on different 9-year sub-periods of the
available discharge records, with each sub-period resulting
in 25 parameter sets. For this study, only one representative
parameter set was selected from these. It is representative in
the sense that it represents the median floods from the ensem-
ble (100 parameter sets) of exceedance curves (relationships
between annual maximum flood and return periods) using
a percentile approach and choosing the median as proposed
by Sikorska-Senoner et al. (2020). To consider the parameter
uncertainty, we could use the whole ensemble or some mem-
bers representing the range of possible parameter sets, but in
this study we focused on the median representative parameter
set and the antecedent conditions created with it.

2.2.3 Routing system

The simulated discharge from the HBV model was then com-
bined and routed using the RS MINERVE hydrological rout-
ing system (García Hernández et al., 2020). This system is
fast to run and is well suited for application in topograph-
ically and hydraulically complex regions (regulated lakes,
hydropower) such as Switzerland (Horton et al., 2022). The
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Table 2. Parameters of the HBV bucket-type hydrological model. gw: groundwater.

Routine Parameter Lower limit Upper limit Fixed Description

Glacier KGmin 0.0001 0.2 minimum outflow coefficient
Glacier CFGlacier 1 2 correction factor glacier
Glacier KSI 5 × 10−5 snow-to-ice conversion factor [h−1]
Glacier RangeKG 0 max minus min outflow coefficient [h−1]
Glacier CFSlope 1 correction factor slope [–]
Snow TT −2.5 2.5 threshold temperature [°C]
Snow CFMAX 0.001 5 degree-day factor [mm/h °C]
Snow SFCF 0.4 1.6 snow correction factor [–]
Snow CFR 0.05 refreezing coefficient
Snow CWH 0.1 snow water holding capacity
Soil FC 50 100 maximum storage in soil box [mm]
Soil LP 0.3 1 threshold reduction [–]
Soil BETA 1 5 shape coefficient [–]
Soil PERC 0 1 max flow from upper to lower gw bucket [–]
Response Alpha 0 1 shape coefficient [–]
Response K1 0.0001 0.1 recession coefficient (upper gw bucket) [h−1]
Response K2 0.00001 0.05 recession coefficient (lower gw bucket) [h−1]
Routing MAXBAS 1 100 factor of triangular weighting [h]
Precipitation redistribution PCALT 5 lapse rate precipitation [% per 100 m]

main impacts of bank overflow and floodplain retention were
considered for a wide range of peak flows by adding channels
at relevant sites, both in series and in parallel. These channels
account for estimated channel flow capacity and inundated
areas. Levee breaks were not considered. Stage–area–volume
relationships were extracted from digital terrain information
(Swisstopo, 2005) for the nine larger lakes in the Aare River
basin. Six of these lakes are regulated, and the regulation
rules are usually expressed as stage–discharge relationships
with seasonal, monthly, or even daily variations. These rules
have been digitized and implemented in RS MINERVE, with
simplifications made where necessary. Where available and
feasible, the rules were adapted for flood events (i.e. deviat-
ing from normal operation). The output nodes were placed
at sites corresponding to selected gauging sites of the Swiss
Federal Office for the Environment. For the 10 000-year sim-
ulation we assumed no changes in the current regulation and
general stationarity of the system.

2.3 Event selection

For each of the selected sub-catchments the annual maxi-
mum flood (AMF; maximum hourly discharge) and the an-
nual maximum precipitation (AMP) sum over a fixed time
window were extracted from the full simulation period of
10 000 years. A fixed window for the precipitation sums is
common in meteorological studies for extreme value statis-
tics. However, we adjusted the fixed-window size from the
commonly used meteorological windows to a catchment-
specific hydrologically more meaningful window, namely the
average response time of the catchment. The average catch-
ment response time (ACRT) was estimated by calculating the

maximum cross-correlation between precipitation and dis-
charge, making a seasonal distinction, because of possible
delays due to snow accumulation and melt in winter and
spring (see Keller et al., 2018; Tarasova et al., 2019). This
means that some catchments may have a fixed window of
12 h to find the AMP, 24 h for others, etc. For our set of sub-
catchments, the ACRT varies from 6 to 49 h, with a median of
11 h. The different ACRTs may be explained to some extent
by the percentage of karst, river network density, and domi-
nant runoff processes within each catchment. The flood event
belonging to the AMF peak is estimated using the recursive
Eckhardt filter (Eckhardt, 2005), defining the start and end
of the flood event where baseflow and discharge converge.
Therefore, in addition to the flood peak, flood volume was
also estimated. The filter works well for most flood events
in our catchment selection, but it tends to underestimate the
flood volume for double-peak events.

Flood-triggering precipitation was defined as the precipi-
tation that fell between ACRT before the start of the flood
event and the flood peak. Hence, any precipitation that fell
before that start point in time (ACRT before the start of the
AMF event) was assumed to alter the antecedent conditions
but not to directly trigger the flood event. The ACRTs for
each catchment are listed in Table 3. Snow has a dual func-
tion as both a temporary storage of precipitation and a de-
layed precipitation input in the form of snowmelt. Like rain,
snow influences the antecedent conditions, and the meltwater
can contribute to triggering or intensifying a flood event. We
excluded annual maximum precipitation events where pre-
cipitation was likely snow and not rain, considering the sub-
stantial time gap between snow accumulation and snowmelt.
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Figure 2. Sketch of the extracted antecedent conditions and the trig-
gering precipitation for one exemplary flood event at hourly time
resolution. The reference time is the peak of the annual maximum
flood (AMF); the dashed lines indicate the flood event as found by
the recursive filter (Eckhardt, 2005). The grey area in the precipita-
tion panel shows the average catchment response time (ACRT) for
this example catchment. The triggering precipitation is the sum over
a catchment-specific time window considering the ACRT before the
beginning of the flood event. The blue line in the hydrograph (upper
panel) indicates the contribution of snowmelt to the discharge. Rel-
ative soil moisture (lower panel) is extracted at different points in
time (24, 48, and 72 h before the AMF) as well as at the beginning
of the flood event.

Rain-on-snow events are not covered by this approach and
would also not be adequately simulated by the hydrological
model used.

Starting from the AMF peak, we extracted a set of char-
acteristics including simulated soil moisture, dynamic catch-
ment storage (consisting of soil water and groundwater stor-
age; see Staudinger et al., 2019), snowpack at time points
before the AMF, and snowmelt contributing to the flood as
simulated by the model, as well as the associated triggering
precipitation (see Fig. 2). These characteristics collectively
describe the conditions during and preceding the flood. The
same characteristics were also extracted before the AMP, but
here the discharge response to each AMP was extracted. All
considered characteristics regarding flood events, antecedent
conditions, and triggering precipitation as well as antecedent
conditions and reaction to the AMPs are listed in Table 3.

The soil moisture conditions of the catchment were calcu-
lated as relative soil moisture filling. For this the simulated
soil moisture [mm] at any time was compared to the absolute
maximum soil moisture that was simulated during the full
simulation period [mm] in each sub-catchment. Snow condi-
tions in the catchment were included in terms of snowpack
before a flood event and in terms of relative snowmelt water
contribution to discharge during the flood event. The latter

was calculated as the fraction of simulated snowmelt in sim-
ulated discharge during the flood event.

2.4 Return period estimation

Return periods were calculated for all annual maximum flood
events and all annual maximum precipitation events. We cal-
culated the empirical return periods of each AMF and AMP
based on Weibull plotting positions. The return periods were
categorized into return period classes of “10 years” (between
0 and 10 years), “100 years” (between 10 and 100 years),
“300 years” (between 100 and 300 years), “500 years” (be-
tween 300 and 500 years), “1000 years” (between 500 and
1000 years), and “1000+ years” (more than 1000 years).
These classes are based on the different stages of flood safety
assessment and formed by definition an unbalanced stratifi-
cation of the full sample of annual events.

2.5 Occurrence of annual maxima of precipitation and
floods at the sub-catchment scale

When the AMF was not caused by the AMP, we expect the
greatest influence of wet catchment antecedent conditions. In
these “non-matching” cases, annual maximum precipitation
does not trigger the annual maximum flood, and hence dur-
ing and before the AMP there might be antecedent conditions
that allow for the precipitation to be stored in the catchment
and do not lead to an immediate large streamflow response.
For the AMFs that were not triggered by the largest precipi-
tation events, there are two possible cases: (1) the catchment
was considerably wetter compared to the conditions during
the AMP – pointing at the decisive role of antecedent catch-
ment conditions – or (2) the precipitation amount triggering
the AMF was very similar to the AMP but did not quite reach
the AMP amount. In other words, in these non-matching
cases a rainfall event that is slightly or markedly lower than
the AMP event leads to much higher runoff production effi-
ciency and thus ultimately to the annual maximum flood.

We considered cases to be “non-matching” when the AMP
did not overlap with the window of the flood event plus the
preceding ACRT before the flood event. Since we want to
focus on hydrologically effective precipitation, we excluded
AMPs where the precipitation was presumed to be snow and
accumulated.

2.6 Critical flood conditions for the large-scale
catchment

From a regional-management point of view, the floods that
matter are those that occur at the outlet of the river basin
or at a point of interest within the basin. Critical conditions
at these points are formed by antecedent conditions in spe-
cific regions (spatial patterns of wetness for contributing sub-
catchments); by the phase, amount, and location of precipi-
tation; and by the combined effect of individual space–time
dynamics.
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Table 3. Characteristics extracted for the annual maximum flood (AMF) and the annual maximum precipitation (AMP) event to describe the
antecedent conditions, triggering precipitation event, and streamflow response. ACRT: average catchment response time.

Type AMF AMP

Reference flood peak max sum of P over ACRT window

Precipitation (P ) sum of P over ACRT plus flood start to peak

Discharge (Q) flood peak max Q within ACRT after AMP
flood volume
flood duration
fast component volume
snowmelt water volume

Snow conditions snowmelt in Q snowmelt in Q

snowpack at ACRT before snowpack at ACRT before

Storage state soil moisture at ACRT before soil moisture (ACRT)

Seasonality month of occurrence month of occurrence

By only examining many catchments individually and how
precipitation and antecedent conditions shape the streamflow
response at their outlets, the link to the regional importance
of floods at the sub-catchment scale would be missing. For
instance, if the extreme flood of one catchment always oc-
curs out of sync with the other sub-catchments, then there
might not be a great impact expected in the large-catchment
context. However, if two or more catchments usually exhibit
a strong response to precipitation inputs and their flood peaks
combine and reinforce one another, then these cases become
critical in the regional-flood-risk context.

In this study, critical floods at the large-catchment scale
were defined by the return periods of the floods at the out-
let of the Aare River basin. In order to model the return pe-
riod classes of these critical floods, we set up a classifica-
tion type random forest. The spatial pattern of the antecedent
conditions of the sub-catchments, the triggering precipitation
within these sub-catchments, and the conditions at the criti-
cal points of the routing were used as features for this random
forest.

The precipitation conditions and antecedent conditions for
each sub-catchment were extracted for the individual sub-
catchments, trying to capture the seasonality of streamflow
to travel from the outlet of each sub-catchment to the basin
outlet. The conditions of the routing system that were consid-
ered features in the random forest were the discharge values
at critical locations preceding the floods at the outlet of the
Aare River basin. Again, we accounted for travel times from
the outlet to each potentially relevant routing system loca-
tion. The distributions of the features for the precipitation,
antecedent soil moisture conditions, and conditions at poten-
tially relevant routing system locations can be found in the
Supplement.

The random forest was grown using a stratified sampling
to improve the detection of the rarer return period classes

given the very biased distribution of the number of flood
events per return period class. The stratified sampling was set
to 26, the size of flood events of the rarest class (500+). For
the random forest, 5000 trees were grown and we applied 26
variables at each split, which is more than the default square
root of the number of features but what is recommended in
Genuer et al. (2008) as being better for high-dimensional
classification type data sets. The optimal number of trees
was determined by incrementally testing different numbers
of trees and evaluating the overall out-of-bag estimate of the
error rate for misclassifying the return period class of flood
events. We examined the variable importance of the different
predictors for each flood return period class using the mean
decrease in the Gini index (MDI), which measures node im-
purity, i.e. how well the random forest trees split the data.

3 Results

3.1 Matching and non-matching AMP and AMF –
sub-catchment scale

We found that only about 18 % to 44 % (depending on the
sub-catchment) of the annual maximum precipitation (AMP)
events and annual maximum flood (AMF) events occurred
simultaneously in the simulations, highlighting the impor-
tance of antecedent conditions for the generation of large
floods. When looking more closely into the non-matching
events, we found that numerous AMPs occurred after the
AMF of that year. This means that these AMPs neither di-
rectly triggered the flood event nor contributed to wetting up
the catchment prior to the flood event (Fig. 3). For the rain-
and snow-dominated catchments, 60 % or more of the events
of the AMP occurred after the AMF, while for the glacier-
influenced catchments about 40 % of the AMPs occurred af-
ter the AMF. While this could be an artifact of forcing a link
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Figure 3. Timing of AMP to AMF events, i.e. occurrence of an-
nual maximum precipitation (AMP) before, with, or after the annual
maximum flood (AMF).

between AMP and AMF using blocks of years, we found that
the cases with a suspicious time difference in this regard were
less than 2 %.

In addition to the general decrease in the number of events
for increasing return periods, the matching and non-matching
AMPs and AMFs are not evenly distributed per return pe-
riod class (Fig. 4). With higher return periods there were
more matching events. This indicates that increasingly ex-
treme flood events are primarily explained by large amounts
of precipitation and less by existing antecedent conditions.
Nevertheless, even for very large return periods, the an-
tecedent conditions still seemed non-negligible and for sin-
gle sub-catchments, with even large fractions of AMF not
being explained by AMP (> 25 % up to 75 % for the class
of 1000+ years). The points indicating a high percentage of
non-matching events in the large return periods come from
the Wigger River catchment (Fig. 4).

Figure 5 shows the distribution of soil moisture condi-
tions for matching and non-matching events separately and
grouped for the different return period classes. Applying this
separation reveals that the soils are wetter during the non-
matching events than in the matching events (Fig. 5). This
implies that even smaller precipitation events can lead to
large floods if the antecedent conditions are wetter. When
comparing different return period classes, it appears that soil
moisture filling increases for the more extreme events (higher
return periods) in the non-matching event years. In some

Figure 4. Percentage of non-matching events per return period
class, excluding years with presumed snow AMPs. The higher the
return period class is, the lower the percentage of non-matching
events is. The dots show the percentage of non-matching events for
the individual selected sub-catchments.

catchments, only matching events were found in the higher-
return-period classes, meaning that the highest precipitation
amount triggered the largest flood. In most of the catchments
studied, for a return period class of 500 years or more, only
matching events were noted. This indicates the diminishing
influence of antecedent soil moisture conditions on the oc-
currence of rarer flood events. The Wigger River catchment
stands out among the selected catchments due to the pres-
ence of non-matching events across all return period classes.
In addition, only one matching event occurred for each return
period class of 500 years or more. This catchment has a spe-
cific seasonality with numerous floods driven by snowmelt
that result in AMF, rather than summer rainfall events.

For the glaciated catchments, the ranges of antecedent soil
moisture conditions were very similar between matching and
non-matching events, indicating generally more persistent
wet soil moisture conditions in these catchments. This can
be also be seen in the reference daily soil moisture distribu-
tion of all years. The difference in soil moisture conditions
between matching and non-matching events decreases as we
move from rain-dominated to snow-influenced and glaciated
catchments. In rain-dominated catchments, antecedent soil
moisture conditions vary widely for both matching and non-
matching events. However, there is a tendency towards wet-
ter soil moisture conditions for the non-matching events. The
ranges of soil moisture conditions tend to be narrower in the
snow-influenced catchments compared to the rain-dominated
catchments. Here, the difference between matching and non-
matching events in terms of soil moisture conditions dimin-
ishes and all events occur under wetter conditions compared
to the rain-dominated regime type catchments. The glaciated
catchments show the narrowest range and are characterized

https://doi.org/10.5194/nhess-25-247-2025 Nat. Hazards Earth Syst. Sci., 25, 247–265, 2025



256 M. Staudinger et al.: The role of antecedent conditions in the generation of extreme floods

Figure 5. Comparison between antecedent soil moisture conditions for matching and non-matching annual maxima of precipitation and
discharge and the reference of daily soil moisture conditions throughout the year (grey). In cases with two or fewer events per class, no
density distribution is plotted. Instead, the soil moisture values are shown as single points. The colour frame around the panel indicates the
discharge regime of the catchment.

by consistently wetter antecedent soil moisture conditions for
both matching and non-matching events, as they do also for
the daily reference throughout the year. Generally and for all
regime types, we see a more pronounced difference between
the matching and non-matching events as we move towards
higher return periods. It is important to keep in mind that
as the return period increases, the depicted density functions
are constructed from a decreasing number of events. For the
more frequent events, a larger pool of events is available,
with a wider spread for both matching and non-matching
events. Conversely, for the rarer flood events, there are only
few to very few events to compare.

We analyzed the contribution of snowmelt to both match-
ing and non-matching annual maxima of precipitation and

discharge by calculating the volume of simulated snowmelt
relative to the flood volume (Fig. 6). As for the antecedent
soil moisture conditions, there was more snowmelt con-
tribution in non-matching events than in matching events.
In the rain-dominated catchments we found a rather large
difference for the snowmelt contribution to the stream-
flow when comparing matching and non-matching events.
For the snowmelt-dominated catchments this difference is
smaller, reflecting that these catchments frequently experi-
ence snowmelt-influenced floods. Also the Wigger catch-
ment, which has a rain-dominated regime, aligns with the
description provided in the part about antecedent soil mois-
ture conditions above. It shows important snowmelt contri-
butions in the AMF up to the highest-return-period class.
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Table 4. Confusion matrix of the classification type random forest
with stratified sampling. The elements of the matrix indicate how
many events found in one return period class were also modelled
(prediction) into the reference return period class by the random
forest.

Reference
10 100 300 500+ Class error

Pr
ed

ic
tio

n 10 6278 1325 50 7 0.18
100 108 511 114 17 0.32
300 0 18 24 9 0.53

500+ 0 4 6 16 0.38

The catchments with glacier-melt-influenced regimes display
similar distributions of snowmelt contributions to floods for
both matching and non-matching events.

3.2 Drivers and spatial patterns leading to floods at the
large-basin outlet

The confusion matrix of the random forest (Table 4) displays
how accurately the random forest attributed the floods of a
specific return period class to that same class based on the
provided features. For instance, in the confusion matrix (Ta-
ble 4), the return period class of 10 years was matched 6278
times. However, it was misclassified in the return period class
of 100 years 1325 times and in the return period class of
300 years 50 times. The random forest model appeared to
have difficulty classifying the 300-year return period class,
with a classification error of 52 % (see Table 4), compared to
the other return period classes.

The maps in Fig. 7 illustrate the variable importance of
the antecedent conditions regarding snow and soil moisture,
triggering precipitation and routing node conditions split
up for the different return period classes. The higher the
mean decrease in the Gini impurity (MDI), the higher the
variable importance. From these maps, it appears that for
lower return periods (100 years), soil moisture is the most
important feature for all analyzed sub-catchments. Snow-
pack conditions are assigned little importance in general but
slightly more for the glacier- and snow-influenced Alpine
catchments. However, triggering precipitation is only impor-
tant for some sub-catchments and not important for all the
glacier-influenced catchments from the sub-catchment selec-
tion. The triggering precipitation of the Simme, Emme, and
Suhre sub-catchments gets slightly more importance than the
other considered sub-catchments. The MDI indicates some
but little importance for the discharge conditions at all loca-
tions of the routing system.

Moving to higher return periods the pattern of the attri-
bution of the individual sub-catchments changes and precip-
itation generally becomes more important in explaining the
attribution to the very high-return-period class and here also
for the catchments with a glacier-influenced regime. The at-

tribution level assigned by the MDI to the triggering precip-
itation for the 300-year return period class is very homoge-
neous. While the pattern of the variable importance of an-
tecedent soil moisture conditions remains about the same as
in the lower-return-period class, the importance of triggering
precipitation increases compared to the soil moisture con-
ditions when looking at the 300-year return period. Snow-
pack instead loses importance in classifying the return period
class. For the 300-year return period class the locations in
the routing system cascading downstream of the Sarine sub-
catchment gain variable importance, while there was barely
any assigned to these routing system locations for the return
period class of 100 years.

In the return period class of 500+ years, the variable im-
portance is mainly attributed to the triggering precipitation of
all sub-catchments and particularly to the Reuss and Muota.
Also in the Broye sub-catchment, triggering precipitation be-
comes more prominent in assigned variable importance for
these events, while it was negligible for the lower-return-
period classes. Soil moisture does not help much in deter-
mining this return period class, with some importance be-
ing assigned to the Kander sub-catchment and some but even
less assigned to the Sense, Wigger, Suhre, and Dünnern sub-
catchments. The Muota sub-catchment did have very little
variable importance in the lower-return-period classes but be-
comes more important in the classification of events for the
return period class of 1000+ years.

While the contribution of snowmelt to the flood at the
small sub-catchment scale showed a distinct difference be-
tween the matching and the non-matching events, underscor-
ing their importance for some events of this return period
class, it barely contributed to the flood return period classifi-
cation at the river basin outlet, particularly for the rarer flood
events. This can be explained by the different seasonality of
floods occurring at the sub-catchment scale compared to the
floods at the outlet, which are mainly summer floods. For
both snow and the flow conditions at locations in the rout-
ing system there were no noteworthy instances of assigned
variable importance. Interestingly, when looking only at the
change in variable importance for the conditions at the rout-
ing system locations, some changes in attribution can be seen
for the different return period classes. The attribution of vari-
able importance for the lower-return-period class (100 years)
is at the locations closest to the Aare River basin outlet, for
the higher-return-period class (300 years) it moves to the lo-
cations in the cascade downstream of the Sarine catchment,
and for the highest-return-period class it moves to the outlet
of Lake Thun.

4 Discussion

The result that the AMP and AMF to a large degree do not
occur together is also found in other climate zones; for in-
stance in the contiguous United States Do et al. (2020) found
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Figure 6. Comparison between contributing snowmelt at matching and non-matching annual maxima of precipitation and discharge. In cases
with two or fewer events per class, no density distribution is plotted. Instead, the contributing snowmelt values are shown as single points.
The colour frame around the panel indicates the discharge regime of the catchment.

a low correlation between changes in precipitation extremes
and floods and attributed that to the small fraction of co-
occurrence of these events.

As found by Nied et al. (2017) for the Elbe catchment
on a large-catchment scale, antecedent soil moisture condi-
tions are important for both frequent and rare flood events
observed in our study at the sub-catchments. In contrast to
the finding of Nied et al. (2017), we discovered that these
conditions are important up to surprisingly high return peri-
ods. The soil moisture conditions of the sub-catchments were
also identified as important variables to describe the return
period classes at the river basin outlet, particularly for the
medium-range frequent floods (100- and 300-year return pe-
riod classes). Only for the rarest flood events could the role of
the soil moisture condition no longer be distinguished when

comparing the matching and non-matching events. The de-
creasing effect of antecedent conditions was also found in
comparisons of trends in floods and extreme precipitation
events (Woldemeskel and Sharma, 2016; Tramblay et al.,
2019; Bennett et al., 2018). Wasko and Nathan (2019) found
that the threshold of the importance of antecedent soil mois-
ture conditions was negligible compared to the triggering
precipitation for Australian catchments using a flood stream-
flow elasticity approach already for events of around a 10-
year return period.

There was a difference in the different regime types of
the sub-catchments regarding the influence of antecedent
soil moisture conditions. Notably, the rain-dominated and
slightly snow-influenced catchments exhibited the most im-
portant difference in antecedent conditions between match-
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Figure 7. Maps of the Aare River basin and its sub-catchments showing the variable importance of triggering precipitation (PREC), soil
moisture (SM), and snow conditions (SNOW) in the sub-catchments as well as the flow conditions at important nodes in the routing system
for the return period classes of 100, 300, and 500+ years. The mean decrease in the Gini impurity (MDI) is used to measure the variable
importance: the darker the colour is, the more importance was assigned to the respective variable.

ing and non-matching events. This points to the importance
of antecedent soil moisture conditions, particularly for catch-
ments with these specific regimes. For the antecedent snow
condition and its influence on the flood events, although they
were to a certain degree important for the floods at the outlets
of the sub-catchments, they did not emerge as important trig-
gering factors at the large-catchment scale. Also, the routing
was not found to be important for modelling the return pe-
riod classes of the floods at the outlet. This does not mean
that they are unimportant for single events but rather sug-
gests that they are not as critical in classifying the events into
return period classes.

Having very long CS periods available allowed for look-
ing at many more flood events than would have been possible
with observations alone. For instance, it would not have been
possible to analyze the space–time patterns that are important
in describing floods on a large-catchment scale with observa-
tions alone. Nied et al. (2017) used a reshuffling of meteoro-
logical and soil moisture conditions to gain more insight into
the importance of hydro-meteorological processes on floods.

In our approach, using the stochastic weather generator at the
beginning of the hydro-meteorological modelling chain, the
CS was extended even further, allowing for an analysis of the
space–time patterns at the large-catchment scale for the rare
flood events as well and providing a more robust basis for
the more frequent floods. Based on the CS approach, which
includes a stochastic weather generator, extreme floods with
return periods of more than 300 years still had relevant vari-
able importance assigned to soil moisture conditions for al-
most all sub-catchments. Nevertheless, when trying to model
the return period classes of the 500-year return period, the
data set may still have been too small, and the floods included
in the 500-year return period may have been too diverse to be
properly classified with the features provided to the random
forest.

4.1 Limitations of the study design

With our study design we could not analyze if the pre-
cipitation event was patchy or not (spatial analysis of the
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rain event), as for instance Tarasova et al. (2020, 2019) did
within the hydrological catchments. However, we could an-
alyze the spatial interplay of the sub-catchments of the Aare
River basin with regard to large floods at its outlet. We used
a lumped hydrological model for each sub-catchment with
mean areal input. This means that we could not find patterns
within the sub-catchments that are particularly critical for the
large system. These patterns might have been informative
for some flood events in specific sub-catchments, since the
relationship between performance of the streamflow simula-
tion and spatial resolution of precipitation is both scale and
catchment dependent as shown for instance by Lobligeois
et al. (2014) for France. However, from the regional per-
spective, we could analyze how the interplay of antecedent
sub-catchment conditions and precipitation input as well as
buffering and timing upstream of the outlet of the Aare River
basin influenced the floods at the outlet.

The robustness of the results depends, in part, on the type
of precipitation events that is used to force the hydrological
model. This assigns a crucial role to the weather generator
at the beginning of the modelling chain. However, for this
study the main goal was to find conditions that lead to ex-
treme flood events and determine the role of antecedent con-
ditions therein. The way in which the weather generator was
set up and optimized might not represent the full range of
possible events at each sub-catchment in the region. Never-
theless, we do not expect major changes in the antecedent
conditions prior to a large precipitation event, as these gen-
erally build up over a longer period of time. Note that the
variability of extreme floods is inherently a multivariate vari-
ability, which as such is never well captured by multi-decadal
observations. Moreover, decadal climate variability (as dis-
cussed e.g. by Vance et al., 2022) cannot be accurately repre-
sented by stochastic weather generators such as the one used
in this study.

4.1.1 Event definition

The flood event was defined based on Qpeak, and the precip-
itation event was defined based on the sum of precipitation
over the catchment-specific window (average response time),
which does not include any information about other precip-
itation event properties that are potentially of interest, such
as precipitation intensity or storm advancement. However,
these catchment-specific windows for the definition of the
precipitation events are important when considering varying
timescales of flood-generating processes in different catch-
ments. For Switzerland, for instance, Froidevaux et al. (2015)
found a rather short discharge memory for catchments in pre-
Alpine, Alpine, and Southern Alpine regions and that con-
sidering more than 3 to 4 d of antecedent precipitation was
not relevant for flood generation. However, antecedent con-
ditions of 4 or more days before the flood were found to be
relevant in the Jura Mountains, in the western and eastern
Swiss Plateau, and at the outlet of large lakes.

When considering return periods, a more process-based
event definition is not possible because the events must orig-
inate from the same population. It is not reasonable to as-
sume that longer and shorter precipitation sums belong to the
same population. This leaves us with the approach of choos-
ing fixed time windows as a basis. While this is not problem-
atic for flood peaks, which represent a single discharge value
per year, it becomes an issue for precipitation events. For
instance, when precipitation events are defined over a fixed
window, which is the standard approach in meteorology, we
might not capture the entire precipitation event including its
start and end. This can result in the loss of information about
storm intensity, storm advancement, and other important fac-
tors. In addition, by looking at precipitation amounts only, we
may be missing complete information about effective precip-
itation.

The event definition in this study relies solely on in-
formation about precipitation and discharge, and this can
be done with both simulated time series (as in our hydro-
meteorological modelling chain approach) and observed time
series. Even if we have additional simulated variables in our
approach, we could pretend not to have them and see how
far we get in predicting floods using only precipitation. Pre-
cipitation events and their return periods are often used to
estimate the flood return periods (Naghettini et al., 1996).
Having the additional simulated variables to analyze the an-
tecedent conditions to the flood events reveals cases where
this approach is not sufficient, i.e. the cases where the an-
nual largest precipitation event did not lead to the largest an-
nual flood event. We found that such cases are rather com-
mon within our catchments. This challenges the assumptions
made in design approaches transferring AMP to AMF on a
statistical rather than event-based basis. Hence, these results
point to the important role of antecedent conditions even for
relatively large return periods.

The definition of when a flood and a precipitation event
match could influence the role assigned to antecedent condi-
tions. Many AMPs occurred after the AMF and had no effect
on triggering or preparing antecedent conditions. However,
for AMPs before the AMFs, the definition could play a role.
After conducting a sensitivity analysis by systematically al-
tering the definition of ACRT before the flood from 0.5 to 1.5
to 2 times, we found that our findings remained unchanged
(Supplement).

4.1.2 Characterization of the antecedent conditions

At times, precipitation accumulates as snow, and the subse-
quent snowmelt later in the season contributes to the liquid
water input into a catchment. To accurately select the largest
water input event and compare it to the largest flood re-
sponse event, it becomes necessary to consider snow accu-
mulation and melt processes. However, the buildup of the
snowpack varies spatially within each sub-catchment, influ-
enced by factors such as elevation, aspect, vegetation distri-
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bution, and wind re-distribution. This is only very roughly
covered in our hydrological model by distributing precipi-
tation into elevation zones. This spatial heterogeneity, for in-
stance, results in varying routing times for snowmelt and will
probably vary strongly between sub-catchments. Moreover,
the snow melting process in the hydrological model is based
on a degree-day approach, neglecting for instance rain-on-
snow events, which can substantially contribute to the gener-
ation of floods.

A future approach to studying the antecedent conditions
that lead to floods could be to look directly at snowmelt
and rain rather than precipitation to understand the processes
and antecedent conditions that lead to floods, seasonal differ-
ences in soil moisture, etc. By additionally looking at the an-
nual maximum total water input to the system, i.e. the sum of
liquid precipitation and snowmelt, we might be able examine
the antecedent conditions of soil moisture and other catch-
ment storage more closely. However, snowmelt can be differ-
ent depending on the processes involved (Sikorska-Senoner
and Seibert, 2020), and in a simple snow routine, rain events
that fall on a snowpack and bring energy to melt it faster
would not have been included (rain on snow). In this study
we focused on the return periods from an almost classical
AMP approach versus the return periods of AMFs and found
that not all AMPs necessarily lead to AMFs. One of the mo-
tivations for using this almost classical approach of a fixed
window for the AMP extraction was that the AMPs usu-
ally come without further information about other possible
inputs to the catchment but are derived directly from the
meteorological-station data.

4.1.3 Flood frequency analysis and flood-generating
processes

Hydrologically, the question can be asked whether all these
maximum annual flood events can be treated as if they orig-
inated from the same population since often they are cre-
ated by different flood-generating processes (see e.g. Merz
and Blöschl, 2008). Also from a management point of view,
floods originating from different generating processes might
be expected to occur more in one season than in another.
In addition, they might behave differently in flood inunda-
tion areas (Sikorska et al., 2015; Brunner et al., 2017). In the
statistical analysis, floods types that dominate upper tails of
the distribution may not be adequately represented and are
often treated as a single sample along with more frequent
floods Tarasova et al. (2020). A flood-type-wise model was
proposed by Fischer (2018), Fischer et al. (2019), and Fis-
cher and Schumann (2021), where floods from a peak-over-
threshold approach were first separated into flood types and
then combined into a mixture model to calculate the return
period from the joint function.

With the annual maximum flood approach, only one flood
per year is analyzed regarding the antecedent conditions.
If we would have chosen a peak-over-threshold (POT) ap-

proach instead, we could have sampled more relevant events
per year. However, this approach has the downside that
events could be dependent. In statistical flood frequency
analysis, the assumption of event independence is however
crucial, allowing for these events to be treated as random
variables. Moreover, employing a POT approach often in-
volves subjective choices, such as determining the appropri-
ate threshold (Fischer, 2018; Fischer and Schumann, 2021)
and selecting which events to pool.

When we compare AMF and AMP and assess their rela-
tionship, we may come to conclusions that stem from a lack
of clear differentiation regarding the size of the event. For
instance, the precipitation sum preceding the AMF may be
nearly as large as the AMP or it may be much smaller. The
conclusion regarding antecedent conditions could be differ-
ent depending on which time window we used. Similarly, the
streamflow response to an AMP might be large but not quite
as large as the streamflow response that contributed to the ac-
tual AMF. Since we selected the AMP using a fixed window
and adjusted the precipitation triggering the AMF based on
the onset of the flood, peak, and fixed window preceding the
flood onset, this comparison could not be done in a straight-
forward manner. The relative difference of the precipitation
preceding the AMF with regard to AMP ranged, on average,
from 22 % to 85 % across all catchments.

4.2 Broader impact

As outlined in the Introduction, the approach of using a
weather generator in a regional (large-catchment) context,
in combination with a hydrological model and routing, has
several advantages. It implicitly “reshuffles” the initial con-
ditions and combines them with plausible weather events for
that region. This approach results in a larger and more di-
verse pool of flood events compared to using only obser-
vations or making assumptions about the antecedent condi-
tions. The approach could also be applied to different large
catchments within a comparable climate, dominated by sim-
ilar regime types. However, one important prerequisite for
generating long weather time series using a weather genera-
tor is the availability of a sufficient number of weather sta-
tions with sufficiently long records for robust estimation of
plausible weather.

As in other studies comparing flood and precipitation
events, such as GRADEX (e.g. Guillot and Duband, 1969;
Naghettini et al., 1996), or future (Brunner et al., 2021) and
past (Wilhelm et al., 2022) frequency distributions of the two
variables, there are some thresholds or tipping points that
emerge. These thresholds are associated with the influence
of the antecedent conditions and appear to remain important
even for remarkably high flood return periods in our study.
This underlines their importance and emphasizes that they
should not be neglected. Comparative studies applying dif-
ferent flood estimation methods, both event-based using sta-
tistical approaches based on streamflow data alone and con-
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tinuous simulation, concluded that at sub-daily time reso-
lution such a threshold does not occur in the event-based
approaches and that these tend to underestimate floods and
particularly their volume and duration for small catchments
(Grimaldi et al., 2012; Rogger et al., 2012; Winter et al.,
2019). Lang et al. (2014), in their comparative study – which
also included historical and paleo-data, various event-based
statistical approaches, and continuous simulation – addition-
ally emphasize that event-based approaches often lack ro-
bustness, in particular when the available database spans
only a few decades. Okoli et al. (2019) developed a frame-
work to compare different statistical and hydrological mod-
elling methods for estimating design floods with up to 1000-
year return periods and also concluded that large differences
in flood estimates can arise depending on the method cho-
sen. However, due to the large uncertainties inherent in each
method, they recommend that these methods should be used
in a complementary manner in practice. Consequently, the
transfer from precipitation frequency distributions to flood
frequency distributions should be checked for appropriate-
ness in each specific case.

5 Conclusions

In this study, we assessed the role of antecedent conditions
for floods of different return periods using simulations from
a hydro-meteorological modelling chain, which includes a
stochastic weather generator, a hydrological model, and a
routing system as the basis. We focused on the relationship
between precipitation, antecedent conditions, and return pe-
riods for the sub-catchments of the Aare River basin. The
availability of very long CS periods allowed for the analy-
sis of a larger number of flood events than would have been
possible with observations alone. For example, it would not
have been possible to analyze the space–time patterns that
are crucial for describing floods on a large-catchment scale
using observations alone. In this way, we could investigate
the temporal and spatial interactions between conditions in
these sub-catchments that lead to floods at the outlet of the
Aare River basin.

In the case of sub-catchments, antecedent conditions play
an important role in floods with large return periods up to
500 years. This role decreases and becomes negligible only
for very high return periods of more than 500 years. The
regime type of the sub-catchments played a critical role: in
the rain-dominated catchments, the soil moisture antecedent
conditions led to the most substantial difference between
matching and non-matching events of AMP and AMF. For
the snow-influenced and the glacier-influenced catchments,
this difference diminished.

At the large-catchment scale, antecedent soil moisture
conditions are critical for correctly classifying the lower re-
turn periods but become less important as we consider higher
return periods of 500 or more years. Neither antecedent snow

conditions nor confluence and flow time were found to be im-
portant for classification at the outlet of the river basin when
using a random forest classification type model.

Hence, it is important to check the appropriateness of
transferring from precipitation frequency distributions to
flood frequency distributions, as the antecedent catchment
conditions are usually not negligible.
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