Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-2081-2025
https://doi.org/10.5194/nhess-25-2081-2025
Research article
 | 
26 Jun 2025
Research article |  | 26 Jun 2025

Development of a wind-based storm surge model for the German Bight

Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke

Related authors

Historical Climate and Future Projection in the North Atlantic and Arctic: Insights from EC-Earth3 High-Resolution Simulations
Mehdi Pasha Karami, Torben Koenigk, Shiyu Wang, René Navarro Labastida, Tim Kruschke, Aude Carreric, Pablo Ortega, Klaus Wyser, Ramon Fuentes Franco, Agatha M. de Boer, Marie Sicard, and Aitor Aldama Campino
EGUsphere, https://doi.org/10.5194/egusphere-2025-2653,https://doi.org/10.5194/egusphere-2025-2653, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Causal relationships and predictability of the summer East Atlantic teleconnection
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024,https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Baltic Sea surface temperature analysis 2022: a study of marine heatwaves and overall high seasonal temperatures
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024,https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Improving seasonal predictions of German Bight storm activity
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024,https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Skillful decadal prediction of German Bight storm activity
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022,https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary

Cited articles

Befort, D. J., Fischer, M., Leckebusch, G. C., Ulbrich, U., Ganske, A., Rosenhagen, G., and Heinrich, H.: Identification of storm surge events over the German Bight from atmospheric reanalysis and climate model data, Nat. Hazards Earth Syst. Sci., 15, 1437–-1447, https://doi.org/10.5194/nhess-15-1437-2015, 2015. a
Boesch, A.: Skew surge for tide gauge Cuxhaven (1959–2022), Federal Maritime and Hydrographic Agency [data set], https://doi.org/10.60751/96dc-te47​​​​​​​, 2024. a
Boesch, A. and Jandt-Scheelke, S.: A comparison study of tidal prediction techniques for applications in the German Bight, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1640, https://doi.org/10.5194/egusphere-egu2020-1640, 2020. a
Boesch, A. and Müller-Navarra, S.: Reassessment of long-period constituents for tidal predictions along the German North Sea coast and its tidally influenced rivers, Ocean Sci., 15, 1363-–1379, https://doi.org/10.5194/os-15-1363-2019, 2019. a
Böhme, A., Gerkensmeier, B., Bratz, B., Krautwald, C., Müller, O., Goseberg, N., and Gönnert, G.: Improvements to the detection and analysis of external surges in the North Sea, Nat. Hazards Earth Syst. Sci., 23, 1947-–1966, https://doi.org/10.5194/nhess-23-1947-2023, 2023. a, b, c, d, e, f
Download
Short summary
We developed a simple and effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Share
Altmetrics
Final-revised paper
Preprint