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Abstract. Storm surges pose significant threats to coastal
regions, including the German Bight, where strong winds
from the northwesterly direction drive water levels to ex-
treme heights. In this study, we present a simple, effective
storm surge model for the German Bight, utilizing a multi-
ple linear regression approach based solely on 10 m effec-
tive wind speed as the predictor variable. We train and eval-
uate the model using historical skew surge data from 1959
to 2022, incorporating regularization techniques to improve
prediction accuracy while maintaining simplicity. The model
consists of only five terms, the effective wind at various lo-
cations with different lead times within the North Sea region,
and an intercept. It demonstrates high predictive skill, achiev-
ing a correlation of 0.88. This indicates that, despite its ex-
treme simplicity, the model performs just as well as more
complex models. The storm surge model provides robust pre-
dictions for both moderate and extreme storm surge events.
Moreover, due to its simplicity, the model can be effectively
used in climate simulations, making it a valuable tool for as-
sessing future storm surge risks under changing climate con-
ditions, independent of the ongoing and continuous sea-level
rise.

1 Introduction

Many of the world’s coasts are endangered by storm
surges. These can have devastating consequences, causing
widespread destruction and even loss of life (von Storch,
2014). The German Bight, located in the southeastern part
of the North Sea (Fig. 1), is an example of a region that is
prone to frequent and severe storm surges. The major driver

of storm surges in the German Bight is strong wind from
the northwesterly direction associated with intense extrat-
ropical cyclones traveling from the North Atlantic into the
North Sea region. The co-occurrence of such storms with
high tides leads to high coastal water levels, potentially re-
sulting in flooding, erosion and significant damage to infras-
tructure. Organizations responsible for the planning and con-
struction of protection structures have been confronted with
the challenge of managing these sudden extreme water-level
events for decades. The continuing rise in mean sea level in-
duced by anthropogenic climate change adds even greater ur-
gency to this issue. Assessing the potential of an impending
storm surge is therefore important in order to ensure public
safety and maintain regional infrastructure.

In addition to other factors such as atmospheric sea-level
pressure and external surges (Böhme et al., 2023), wind
proves to be the primary driver for sea-level variability in the
German Bight (Dangendorf et al., 2013) and therefore plays
an important role in estimating the height of storm surges.
Various studies investigate the meteorological conditions that
caused extreme storm surges in the past. While they focus on
just a few case studies, they demonstrate the successful ap-
plicability of reanalysis data for recreating these events: the
storm surge studies include the well known Hamburg storm
surge of 1962 (Jochner et al., 2013; Meyer and Gaslikova,
2024), one of the highest storm surges ever measured in 1976
(Meyer and Gaslikova, 2024) and the storm surge caused by
storm “Xaver” in 2013 (Dangendorf et al., 2016; Meyer and
Gaslikova, 2024). While these and other studies focus on the
analysis of individual historical events, Krieger et al. (2020)
concentrate on the statistics and long-term evolution of Ger-
man Bight storm activity. They find that storm activity over
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Figure 1. Map with marked areas of the North Sea (black box) and the German Bight (red box). The blue cross indicates the location of
Cuxhaven.

the German Bight is characterized by multidecadal variabil-
ity. This is in line with the results of Dangendorf et al. (2014),
who find that storm surges in the North Sea are characterized
by interannual to decadal variability associated with large-
scale atmospheric circulation patterns.

Nevertheless, in order to estimate the resulting storm surge
levels in the German Bight, a translation of wind speed into
water level is required. Hydrodynamic models are the most
widely used and reliable method for translating atmospheric
conditions into storm surge estimates. While they provide de-
tailed simulations of storm surges, they are computationally
expensive and require extensive input data, making them less
suitable for climate simulations. In such cases, simpler ap-
proaches, such as statistical methods, can serve as more prac-
tical alternatives to analyze storm surges. In particular, the
skew surge – the difference between the observed water level
and the expected astronomical high-water level – provides re-
liable information about storm surges (Williams et al., 2016;
Ganske et al., 2018). Here, two approaches are commonly
employed to translate atmospheric conditions into water lev-
els: one uses the so-called effective wind as a proxy, while
the second approach involves predicting skew surges using a
statistical model.

For the former, a variable – the effective wind – consist-
ing of wind speed and direction is used to objectively as-
sess the conditions for a storm surge in the German Bight
(Müller-Navarra et al., 2003; Jensen et al., 2006). Cuxhaven
(Fig. 1), located in the center of the German Bight coast and
with its long-gauge data series, is often used as a proxy for
that region. For Cuxhaven, the effective wind is defined as
the fraction of the 10 m wind blowing from direction 295°.

In an empirical study, this wind direction was determined as
the one for which the wind-induced increase in water lev-
els in the German Bight is greatest (Müller-Navarra et al.,
2003; Jensen et al., 2006). Averaged over the German Bight,
the effective wind is therefore a measure of the contribution
of wind to storm surges at the German Bight coastline and
can be used as an indicator for the storm surge potential of
a weather situation (Jensen et al., 2006). Befort et al. (2015)
use the effective wind in combination with a storm tracking
algorithm to detect storm surges in the German Bight. Using
this method, they show an improvement in the identification
of storm surge events compared to the sole use of the effec-
tive wind. This agrees with findings of Ganske et al. (2018),
who state that high effective wind alone is not necessarily
linked to a large storm surge height, but that additional pa-
rameters such as the storm track need to be taken into ac-
count.

Building upon the second approach, namely the use of
a statistical model, Müller-Navarra and Giese (1999) re-
examined and revised existing studies and similar methods
from the 1960s, setting up a statistical model using multi-
ple linear regression in order to determine storm surge sit-
uations in the German Bight, i.e., in Cuxhaven. The authors
use, as predictors for computing the skew surge in Cuxhaven,
wind speed and direction, air and sea surface temperature,
air pressure and its 3-hourly change, the water level in Wick
on the Scottish east coast 12 h earlier, and water levels in
Cuxhaven during the immediately preceding low and high
waters. Müller-Navarra and Giese (1999) find that the con-
sideration of external surge and autocorrelation improve the
model performance. The result is an empirical model with
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14 basic functions that is able to describe the skew surge
height in Cuxhaven (Müller-Navarra and Giese, 1999). Sev-
eral other studies build on this study and base their mod-
els on the mathematical approaches by Müller-Navarra and
Giese (1999). Jensen et al. (2013), for example, successfully
examine the empirical–statistical relationship between wind,
air pressure and the skew surge in Cuxhaven for the period
1918 to 2008. As an approximation for external surges, they
use air pressure and wind time series at the northern edge of
the North Sea. Dangendorf et al. (2014) extend this analy-
sis by reconstructing storm surges in the German Bight back
to 1871, but with higher predictive skill from 1910 onward.
However, it is worth noting that their model is only based
on atmospheric surface forcing as predictors; external surges
are excluded from the model setup (Dangendorf et al., 2014).
Niehüser et al. (2018) apply a similar model setup for mul-
tiple tide gauge locations along the North Sea coast, focus-
ing on the period from 2000 to 2014. In contrast to using
wind and air pressure information of the nearest grid cell
for each tide gauge location (Jensen et al., 2013; Dangen-
dorf et al., 2014), Niehüser et al. (2018) implement a step
wise regression approach, considering time lags up to 24 h.
This allows them to determine the location and time lag of
relevant predictors for each site. Their model shows compa-
rable skill measures to the more complex model by Jensen
et al. (2013). All mentioned statistical modeling approaches
require a large number of input variables for very specific
locations or regions. Most of these approaches have been
employed solely based on observational data or atmospheric
reanalysis (Müller-Navarra and Giese, 1999; Jensen et al.,
2013; Dangendorf et al., 2014; Niehüser et al., 2018).

In the context of climate change, the assessment of future
storm surge risk is of major importance (IPCC, 2023). In or-
der to incorporate necessary climate projections, a less com-
plex statistical model is needed that is applicable to a multi-
model ensemble of climate model simulations with only a
limited number of variables available and a comparatively
coarse spatial resolution.

To fill this gap, this paper seeks to (i) set up a simple storm
surge model for Cuxhaven using a multiple linear regression
approach based only on the 10 m wind from the ERA5 re-
analysis as predictor variable; (ii) improve prediction accu-
racy and reduce model complexity by applying regularization
methods; and (iii) assess the model’s performance by using
cross-validation methods and classification evaluation. The
reason for the restriction to winds is that most climate model
simulations provide corresponding information. Thus, this
paper introduces a new method for predicting storm surge
heights in the German Bight, which can also be applied us-
ing data from climate model projections in future studies.

2 Methods and data

We develop a simple storm surge model for the German
Bight, i.e., Cuxhaven, based on a multiple linear regression
approach and relying exclusively on the grid-cell-specific
10 m effective wind as the predictor variable. Broadly speak-
ing we follow four steps (Fig. 2): (a) data preprocessing
(Sect. 2.1.1 and 2.1.2); (b) the identification of the location
and lead time of the predictors across the entire North Sea re-
gion (namely certain grid cells of the atmospheric reanalysis
used; Sects. 2.2 and 3.1); (c) choosing an appropriate thresh-
old value and regularization method for training the model
(Sects. 2.3, 3.2 and 3.3); and (d) training and evaluation of
the storm surge model (Sects. 2.3, 3.4 and 3.5).

2.1 Data

2.1.1 Skew surge data

A valuable metric for storm surge research is the skew surge
at high waters (de Vries et al., 1995; Jensen et al., 2013;
Williams et al., 2016). It is the height difference between the
highest recorded sea level and the predicted tidal high water
within a tidal cycle, regardless of the time. We create a time
series of high-water skew surge (hwss) at the tide gauge Cux-
haven for the years 1959 to 2022 (Fig. 8). In order to derive
hwss, we calculate consistent tidal predictions for these years
based on the observed times and water levels of high waters.
The observation data are collected and quality checked by
the Waterways and Shipping Office Elbe-Nordsee, which op-
erates the Cuxhaven tide gauge. The height reference is tide
gauge zero.

We perform tidal analysis and prediction using the method
of “harmonic representation of inequalities”. We opt for
this method for two reasons: (1) It is a proven opera-
tional technique that delivers excellent results under the tidal
conditions in the German Bight (Horn, 1960; Boesch and
Müller-Navarra, 2019; Boesch and Jandt-Scheelke, 2020),
and (2) this technique is applied directly to the heights of the
vertices which are needed for this study. For the tidal anal-
ysis, we follow the scheme used for the official tide tables:
predictions for a given year are based on a tidal analysis of
the 19 water-level observation years ending 3 years prior to
the prediction year. For example, the prediction for the year
1959 is based on the results of the tidal analysis of the ob-
servations from 1938 to 1956. The tidal analysis employs 39
long-period tidal constituents and runs in two iterations, with
a three-sigma clipping of outliers before each iteration. We
derive the skew surge for 45 162 high waters compared to
45 169 semidiurnal tidal cycles theoretically present in the
studied years. It is worth noting that, due to the calculation
process, the skew surge data do not take into account sea-
level rise.

As this study aims for a storm surge model we only use
a subsample of high hwss events for training. As part of
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Figure 2. Schematic representation of the process for developing the wind-based storm surge model. Panel (a) shows the data preprocess-
ing steps; panel (b) shows the identification of relevant predictor positions; panel (c) shows the procedure for selecting a threshold and
regularization method for model training; panel (d) shows the final model training and evaluation.

Table 1. Number of data points for each subsample based on the selected threshold for the period 1959 to 2022.

hwss ≥ 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm 110 cm 120 cm 130 cm 140 cm 150 cm

Sample size 3761 2730 2018 1504 1161 923 717 551 431 329 253

this study, we test various thresholds as a lower boundary
for defining this subsample, specifically ranging from 50 to
150 cm. We decided on this range as it represents a fair com-
promise between sample size and the official storm surge def-
inition of greater than or equal to 150 cm above mean high
water (Sect. 2.3). In the following we refer to this range as
hwss≥ 50, 60, . . . , 150 cm. We show the number of avail-
able data points for each subsample in Table 1. We describe
the choice of the final threshold in Sects. 2.3 and 3.2. As
the selected skew surge range is not normally distributed, we
apply the natural logarithm to normalize the dataset before
using it. Consequently, we train the model based on logarith-
mic values.

2.1.2 Wind data

ERA5, generated by the European Centre for Medium-Range
Weather Forecasts (ECMWF), is the most recent atmospheric
reanalysis offering hourly data on various atmospheric, land-
surface, and sea-state variables. The data are provided at a
horizontal resolution of 31 km and 137 levels in the verti-

cal, covering the period from 1940 onwards (Hersbach et al.,
2020).

Based on the 10 m hourly wind components from the
ERA5 reanalysis, we use the concept of the effective wind
to analyze the wind conditions that contribute to water-level
variations in Cuxhaven. The effective wind refers to the com-
bined effect of wind speed and direction. It describes the
proportion of the wind projected onto a specific wind direc-
tion. Here, the specific wind direction is the one that causes a
certain wind-related water level in Cuxhaven. We perform a
composite analysis of the zonal (uas) and meridional (vas)
components of the 10 m wind, which are associated with
hwss≥ 50, 60, . . . , 150 cm. For each hour (up to 12 h) prior
to the corresponding skew surge event, we use the result of
this composite analysis to determine the specific wind direc-
tion separately for each hwss training threshold.

As we started our analysis when the backward extension
of ERA5 to 1940 was not yet available, we only use the
hourly wind components for the period 1959 to 2022. Since
our study area is the German Bight, we focus exclusively on
the North Sea region, which we define from −5 to 10.5° E in
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longitude and from 51 to 59° N in latitude. For this region,
we count 2079 grid cells. For each of these grid cells (k) and
in hourly time steps (t) we calculate the effective wind sep-
arately for each hwss training threshold. First, we normalize
the mean zonal (uask) and meridional (vask) wind compo-
nents from the composite analysis by dividing each by the
mean wind speed (U k). We subsequently calculate the effec-
tive wind (effwindk,t10 m (hwss)) by projecting the actual wind
components (uask,t and vask,t ) onto the corresponding nor-

malized mean components
(

uask
U k

and vask
U k

)
:

effwindk,t10 m (hwss)=
(

uask
U k

)
·uask,t +

(
vask
U k

)
·vask,t . (1)

The result is the effective wind for the period 1959 to
2022 in hourly time steps and individually for each grid
cell in the North Sea region. The particular feature of
effwindk,t10 m (hwss) is the fact that its value can be negative.
This is the case as soon as the wind blows from the opposite
direction to the specific wind direction.

2.2 Statistical model development

Similar to Niehüser et al. (2018), we apply the approach
of non-static predictors, but using a different method. This
method only considers predictor locations that are relevant
to the observed skew surge variability in Cuxhaven. Thus,
instead of just considering the nearest grid cell for the Cux-
haven gauge (Jensen et al., 2013; Dangendorf et al., 2014),
we identify grid cells and lead times across the entire North
Sea region that are most relevant to the respective subsample
(hwss≥ 50, 60, . . . , 150 cm). Using the effective wind data
up to 12 h before each hwss event, we select the grid cells
with the highest relevance at each lead time (further details
in Sect. A). This approach enables us to determine the most
significant grid cells and lead times for each hwss training
threshold (Fig. 2b).

Hereafter, the effective wind in these selected
grid cells, along with the corresponding lead times(

effwindGCt=1,...,12
10 m (hwss)

)
, serve as predictors. We stress

that each of the 12 predictor variables represents a specific
position and a lead time in the North Sea region. Sepa-
rately for every subsample (hwss≥ 50, 60, . . . , 150 cm),
we perform multiple linear regression using each of the
three regularization techniques – ridge, lasso and elastic
net (further details in Sect. B1). As we count 11 different
hwss training thresholds and three regularization methods,
we arrive at 33 models. In the following, we refer to these
models as skew surge models. We use the standardized
effwindGCt=1,...,12

10 m (hwss) and set up the skew surge models
in quadratic order and with forced positive coefficients
(Sect. 2.3). In addition, we determine the respective reg-
ularization parameter λ for ridge, lasso and elastic net
regression for each skew surge model using cross-validation.
Subsequently, we perform a leave-one-out-cross-validation

for each skew surge model and regularization technique
(Fig. 2c).

2.3 Evaluation and setup of the storm surge model

In order to evaluate the skew surge models (Sect. 2.2), we
calculate R2 and the root-mean-square error (RMSE) (fur-
ther details in Sect. B3). Based on these performance metrics,
data availability and the ability of the individual skew surge
models to capture even very severe storm surges, we decide
on one final hwss threshold for model training (Sect. 3.2) and
one regularization method (Sect. 3.3). The model trained on
the selected hwss subsample using the chosen regularization
method is hereafter referred to as the storm surge model.

We evaluate the storm surge model by predicting all hwss,
every 12 h, for the years from 1959 to 2022. In doing so, we
exclude the year to be predicted from the training. As be-
fore, we train the storm surge model based on the subsample
corresponding to the previously selected hwss event thresh-
old. Here, the predictors, namely effwindGCt=1,...,12

10 m (hwss),
are mostly positive, as they correspond to the wind direc-
tion relevant to the hwss subsample. For the year that the
model is supposed to predict, we have to take all high tides
into account. In doing so, we come across skew surge heights
that are smaller than the skew surge height with which the
model was trained – some even negative. Smaller or some-
times negative hwss indicate a minor water movement or
even a water movement away from the coast of Cuxhaven.
Here, effwindGCt=1,...,12

10 m (hwss), which is mainly responsible
for this water movement, tends to take on negative values.
Since the storm surge model consists of interaction terms
and squared terms, negative effwindGCt=1,...,12

10 m (hwss) as pre-
dictors would still lead to positive values. This means that
despite negative effwindGCt=1,...,12

10 m (hwss), the model would
predict positive hwss, which is contrary to the physical con-
sequence of negative effwindGCt=1,...,12

10 m (hwss). To overcome
this problem, we create a mathematical condition that we ap-
ply solely to the dataset of the year to be predicted. This
mathematical condition specifies that whenever a predictor
is negative, the coefficient associated with its squared term
becomes negative. Furthermore, if both predictors in an inter-
action term are negative, the coefficient before the term also
becomes negative. This mathematical condition, combined
with the forced positive coefficients in the training, allows
the model to reproduce the physical consequence of negative
effwindGCt=1,...,12

10 m (hwss).
However, since we train the model on logarithmic hwss,

the model will always predict hwss greater than zero. In or-
der to address this issue, we apply the quantile mapping bias
correction technique based on the equations of Cannon et al.
(2015). With this method we aim to minimize distributional
biases between predicted and observed hwss time series. Its
interval-independent approach considers the entire time se-
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ries, redistributing predicted values based on the distributions
of the observed hwss (Fig. 2d).

Moreover, we perform a classification evaluation to inves-
tigate whether the model correctly classifies the predicted
storm surges according to the storm surge definition for the
German North Sea coast. The latter is defined by the height
of the water level above mean high water (MHW). According
to the definition of the Federal Maritime and Hydrographic
Agency (BSH), a storm surge event along the German North
Sea coast is classified as follows: an increase in water level
of 150 to 250 cm above MHW is referred to as a “storm
surge”; if the water level reaches between 250 to 350 cm
above MHW, it is classified as a “severe storm surge”; and
any event exceeding 350 cm above MHW is referred to as
a “very severe storm surge” (Müller-Navarra et al., 2012).
To assess the extent to which the storm surge model assigns
the predicted hwss to the correct classes, we calculate the
F1 score (van Rijsbergen, 1979) (further details in Sect. B2).
Specifically, we calculate the F1 score for the classes start-
ing from a storm surge (≥ 150 cm) and from a severe storm
surge (≥ 250 cm) for the predicted and bias-corrected high-
water skew surges in the years 1959 to 2022.

3 Results

3.1 Identifying relevant predictor positions

In the first step for the development of a storm surge model,
we determine the location and lead time of the predictors
(effwindk,t10 m (hwss)) in the North Sea region, individually for
each hwss training threshold (hwss≥ 50, 60, . . . , 150 cm).
Figure 3 shows the location and lead time of the predic-
tors for the training threshold of hwss≥ 80 cm. 12 h before
skew surge events in Cuxhaven, the effective wind in the
northwestern section of the North Sea, near Scotland, shows
the highest explained variance (R2

= 0.205) (blue cross in
Fig. 3). With increasing temporal proximity to the skew surge
events, the relevance shifts toward the southeastern part of
the North Sea. Here, the effective wind in the most south-
easterly grid cell, approximately 2 h (R2

= 0.555) and 1 h
(R2
= 0.525) before the skew surge events, provides the best

description of the resulting water level in Cuxhaven (black
and pink cross in Fig. 3).

Even though the positions in the North Sea region, i.e.,
the individual grid cells, vary when applying the different
hwss subsamples (not shown), the temporal evolution of grid
points with maximum R2 consistently follows a northwest to
southeast progression. This result is in line with findings of
Meyer and Gaslikova (2024) and Gerber et al. (2016), who
investigate several storm surges and conclude that the north-
ern storm tracks induce high surges across the southern area
of the North Sea.

3.2 Selecting a threshold for model training

Once we have determined the location and lead time of the
predictors (Sect. 3.1), we create skew surge models by ap-
plying the three regularization methods (further details in
Sect. B1). We perform a leave-one-out-cross-validation for
the models based on ridge, lasso and elastic net regression
separately for the training thresholds hwss≥ 50, 60, . . . ,
150 cm, resulting in three models per hwss training thresh-
old. We assess the performance of these skew surge models
by computingR2 and RMSE (Fig. 4). We find a general trend
of decreasing R2 values across all three models as the train-
ing threshold increases, with the highest R2 value of 0.646
(hwss≥ 50 cm) and the lowest being 0.569 (hwss≥ 150 cm)
(Fig. 4a). Furthermore, skew surge models using ridge re-
gression have a slightly lower R2 value in most cases com-
pared to models using lasso and elastic net regression. Skew
surge models based on lasso and elastic net regression show
almost equal R2 values across all hwss training thresholds
(Fig. 4a). This trend is also reflected in the RMSE. When
trained with lower hwss thresholds, the RMSE is low and
the confidence interval is narrow. Conversely, training with
higher hwss thresholds results in higher RMSE values and
wider confidence intervals.

Despite lower R2 values for models with ridge regres-
sion, we find no significant differences in performance com-
pared to the other regularization methods trained on the same
threshold. We see this in the fact that the confidence intervals
of the models trained with the same hwss threshold value
overlap regardless of the regularization method. The similar-
ity in performance of the three models, each with a different
regularization method, is the result of forcing the positive co-
efficients. By forcing positive coefficients, ridge regression
reduces certain coefficients to zero if their impact on the ac-
curacy of the prediction is small. This process is similar to
predictor selection and results in model behavior similar to
lasso and elastic net regression. Consequently, in our case,
the performance of ridge regression is closely related to lasso
and elastic net regression.

However, when comparing skew surge models across
training thresholds, we find that some models trained with
higher thresholds (e.g., hwss≥ 110 cm) perform significantly
worse compared to those trained with lower thresholds (e.g.,
hwss≥ 50 cm) (Fig. 4b). Additionally, we observe strong
fluctuations in the decrease in R2 values and the increase in
RMSE values, which become visible from a hwss training
threshold of hwss≥ 90 cm (Fig. 4). One explanation for this
phenomenon and the partly resulting significant differences
in model performance might be the sample size. As the train-
ing threshold increases, the number of events decreases. Hav-
ing sufficient data is essential for the model to learn patterns
accurately and ensure better performance on unseen data.

In our pursuit of developing a storm surge model capa-
ble of simulating extreme events, we aim to train it using
the highest possible hwss threshold. However, when select-
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Figure 3. Map of the North Sea region showing the 12 relevant grid cells highlighted with crosses. Each cross represents a specific grid
cell, with the color variations indicating the different time intervals before the skew surge event and the corresponding R2 value (based on a
leave-one-out-cross-validation). The threshold for training is hwss≥ 80 cm.

Figure 4. R2 (a) and RMSE (b) with the corresponding 95 % confidence intervals of the skew surge models including the different regular-
ization methods across different hwss thresholds for training. The training thresholds are shown on the x axis with the number of available
data points in brackets. Each cross represents a specific regularization method (green: ridge regression, purple: lasso regression, orange:
elastic net regression). The results are based on a leave-one-out-cross-validation.
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Figure 5. Comparison between observed skew surge heights and predicted skew surge heights resulting from a leave-one-out-cross-validation
using ridge (a), lasso (b) and elastic net (c)regression.The black line represents the diagonal, indicating perfect agreement between observed
and predicted skew surges. The threshold for training is hwss≥ 80 cm.

ing from the number of possible training thresholds, we face
the challenge of striking a balance between sample size,
high threshold and model performance. We decide to use a
hwss training threshold of greater than or equal to 80 cm. We
base our decision on the following reasons: (1) this training
threshold does not lead to a significant difference in model
performance compared to other thresholds (Fig. 4b), (2) we
have sufficient data to effectively train the model with this
threshold, and (3) we find a satisfactory level of accuracy in
simulating extreme events (Fig. 5).

3.3 Selecting a regularization method

Following the selection of a hwss training threshold, the next
step is to choose a suitable regularization method. Figure 5
compares the observed and predicted skew surge heights
resulting from a leave-one-out-cross-validation using ridge,
lasso and elastic net regression, all related to a training
threshold of greater than or equal to 80 cm. As mentioned
earlier (Sect. 3.2), we observe a similarity in model per-
formance. This is also evident when predicting extremes,
with most of the extreme values being underestimated. This
could be attributed to the limited data on extreme skew surge
events. Moreover, the coarse resolution of the atmospheric
forcing (ERA5) may contribute to the underestimation of the
most extreme events (Dangendorf et al., 2014; Harter et al.,
2024). However, even with a relatively low training thresh-
old (hwss≥ 80 cm), we still get an appropriate representation
of the most extreme events (Fig. 5). The problem of under-
estimating extreme events is not unique to this study. Sev-
eral other studies attempting to reconstruct extreme storm
surges using statistical models also encounter similar issues
(Dangendorf et al., 2014; Niehüser et al., 2018; Harter et al.,
2024).

Furthermore, with regard to the performance of the skew
surge models, it is important to evaluate the influence of the

predictors. As mentioned above (Sect. 3.2), due to forced
positive coefficients, ridge regression performs a lasso-like
predictor selection, resulting in a sparse model with only
seven terms including the intercept. However, lasso and elas-
tic net regression models consist of just five terms in total, in-
cluding the intercept. Both models show similar performance
with identical selected predictors but slightly different coef-
ficients.

In summary, in our case, we observe an overall high level
of predictive performance with sparse models. Considering
the three potential regression methods, we opt for the elas-
tic net regression model (training threshold hwss≥ 80 cm) as
our final storm surge model (Fig. 5c):

hwssStorm Surge Model =

f
(

effwindGCt=−12
10 m ,effwindGCt=−6

10 m ,effwindGCt=−2
10 m ,

effwindGCt=−1
10 m

)
+ intercept. (2)

According to the elastic net regularization, the hwss pre-
dicted by the storm surge model is based on the following
predictors:

– effwindGCt=−12
10 m : effective wind in the respective grid cell

12 h prior the skew surge event (squared),

– effwindGCt=−6
10 m : effective wind in the respective grid cell

6 h prior the skew surge event (squared),

– effwindGCt=−2
10 m : effective wind in the respective grid cell

2 h prior the skew surge event (squared),

– effwindGCt=−1
10 m : effective wind in the respective grid cell

1 h prior the skew surge event (squared).

This choice is primarily motivated by its simplicity, as it has
even fewer terms compared to the ridge regression model
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and, unlike the lasso regression model, also includes coef-
ficient shrinkage.

3.4 Verification of the storm surge model and quantile
mapping bias correction

We eventually verify the storm surge model by using it to
predict all high-water skew surge events from 1959 to 2022.
By including this broader range of events, we ensure that the
model is capable of predicting skew surges on which it was
not trained, namely those below 80 cm. In doing so, we train
the model based on (hwss≥ 80 cm) events of all years except
the year we want to predict.

Figure 6a and b show the probability density function
(PDF) and cumulative distribution function (CDF) of the ob-
served and predicted skew surge events from 1959 to 2022.
The PDF (Fig. 6a) reveals that the observed skew surge data
have a broader distribution centered around lower skew surge
heights, whereas the predicted skew surge data are more con-
centrated and centered around greater skew surge heights,
never falling below zero. We also see the same pattern in
the CDF (Fig. 6b), with the predicted CDF indicating higher
skew surges at a given cumulative probability compared to
the observed CDF.

Additionally, we plot observed against predicted skew
surge heights (Fig. 7a) and find a strong correlation coeffi-
cient of 0.867 and an R2 value of 0.751. However, in the
lower range of skew surges (observed values below 80 cm),
the model tends to overestimate the values, while in the upper
range (observed values above 150 cm), it tends to underesti-
mate the skew surge heights. While the underestimation of
extreme skew surges may be due to a lack of data (Sect. 3.2),
the overestimation of low or negative skew surges is a conse-
quence of training on logarithmic values. The reason for this
lies in the nature of logarithmic functions which is defined
only for positive real numbers.

In order to adjust the model output, we apply bias cor-
rection using the quantile mapping method of Cannon et al.
(2015). We calculate the transfer function using the observed
and reconstructed skew surges, but without performing cross-
validation. Figure 6c and d show the PDF and CDF of the ob-
served and bias-corrected predicted skew surge events. After
applying the quantile mapping bias correction, the predicted
distribution aligns much more closely with the observed dis-
tribution, both in terms of central tendency and spread. Also,
the almost overlapping CDFs (Fig. 6d) and the tighter clus-
tering of points along the diagonal in Fig. 7b indicate that the
quantile mapping method successfully corrects the bias in
the model’s prediction. Moreover, it effectively reduces both
the overestimation of lower skew surges and the underesti-
mation of higher skew surges, resulting in better alignment
with the observed values. The corrected prediction exhibit
a higher correlation with the observed values (corr= 0.882)
and an increase in the R2 value (R2

= 0.778) (Fig. 7b). Com-
pared to the more complex models developed by Jensen et al.

Table 2. Contingency table summarizing model predictions for two
categories: skew surge ≥ 150 cm and skew surge ≥ 250 cm. Val-
ues in bold black represent bias-corrected predictions, while regular
black text indicates predictions without bias correction.

Skew surge Skew surge
≥ 150 cm ≥ 250 cm

True negatives (Correct rejection) 44 829 44 893 45 132 45 136
True positives (Hit) 170 126 19 6
False negatives (Miss) 83 127 5 18
False positives (False alarm) 79 15 5 1

(2013), Dangendorf et al. (2014) and Niehüser et al. (2018),
our storm surge model demonstrates equally high skill mea-
sures despite its extreme simplicity.

3.5 Classification evaluation

To assess the ability of the storm surge model to discriminate
extreme storm surge events, we conduct a classification eval-
uation and calculate the F1 score for two categories: (1) pre-
dicting a skew surge of greater than or equal to 150 cm, and
(2) predicting a skew surge of greater than or equal to 250 cm.
These threshold values are officially used by BSH to define a
storm surge and a severe storm surge (Sect. 2.3). To perform
the classification evaluation, we use values from the contin-
gency table based on the model’s prediction (Table 2). The
contingency table consists of four values: true negatives, true
positives, false negatives and false positives. We use the last
three values to calculate precision, recall and ultimately the
F1 score (see Sect. B2 for details), as shown in Fig. 7.

In our analysis, the F1 scores for predicting skew surges
greater than or equal to 150 and 250 cm demonstrate a clear
improvement after applying bias correction. After bias cor-
rection, the F1 scores are 0.677 and 0.792, respectively. In
contrast, before bias correction, the F1 scores are 0.64 at
the 150 cm threshold and 0.387 at the 250 cm threshold. This
indicates good model performance at the 150 cm threshold,
showing a reasonable balance between precision and recall.
For the higher threshold of 250 cm, the model demonstrates
even better performance. This improvement suggests that the
model is more accurate and reliable in predicting larger skew
surges. However, the very small sample size of just 24 events
with a skew surge of more than 250 cm (19 hits and 5 misses)
plus five false alarms is associated with much higher uncer-
tainty for the respective F1 score. These results underscore
the importance of bias correction, as it significantly enhances
the model’s ability to predict higher skew surge values, im-
proving both precision and recall for extreme events.

4 Discussion

The presented storm surge model, after bias correction,
demonstrates a strong correlation between observed and pre-
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Figure 6. Comparison of all observed (blue) and predicted (orange) PDFs and CDFs of skew surge events from 1959 to 2022, before (a, b)
and after (c, d) bias correction. The threshold for training is hwss≥ 80 cm and the regularization method is elastic net, with the year to be
predicted being excluded from the training.

Figure 7. Scatter plots comparing all observed and predicted skew surge heights from 1959 to 2022 – before (a) and after (b) quantile
mapping bias correction. The black line represents the diagonal, indicating perfect agreement between observed and predicted skew surges.
The threshold for training is hwss≥ 80 cm and the regularization method is elastic net, with the year to be predicted being excluded from the
training.

dicted skew surges (Figs. 7b and 8). The classification eval-
uation indicates that the model might be even more accu-
rate in predicting higher skew surges (≥ 250 cm) compared to
those above 150 cm. Other studies, such as those by Müller-
Navarra and Giese (1999), Niehüser et al. (2018) and Dan-
gendorf et al. (2014) often underestimate these higher skew
surges. As previously mentioned, the sample size for calcu-
lating the F1 score at the 250 cm threshold is very small, so
the F1 score is associated with a much greater uncertainty.
Nevertheless, the F1 score underlines that the model is ef-
fective in predicting extreme events. It is reasonable to as-
sume that especially severe storm surges are predominantly

caused by northwesterly winds, as this pattern aligns with
the predictor regions (Sect. 3.3; Fig. 3: 12, 6, 2 and 1 h be-
fore the storm surge). This assumption is supported by Ger-
ber et al. (2016), who identified, analyzed, and categorized
storm surges based on atmospheric conditions. They find that
severe storm surges in the German Bight occur more fre-
quently during the northwest type (NWT), characterized by
a northwesterly flow from the northern section of the North
Sea to the German Bight. Examples of storm surges result-
ing from an NWT weather situation include the very se-
vere storm surge in February 1962 and the one at the end
of January 1976 (Jochner et al., 2013; Gerber et al., 2016;
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Figure 8. Time series of all observed and predicted (quantile mapping) skew surges from 1959 to 2022 for the entire period (a) and a
zoom into the year 1976 for better visibility of particular events in an example year, containing the highest-ever recorded storm surge at
Cuxhaven (b). The threshold for training is hwss≥ 80 cm and the regularization method is elastic net, with the year to be predicted being
excluded from the training.

Meyer and Gaslikova, 2024). In these instances, high effec-
tive winds (17 to 21 m s−1) are recorded at all predictor loca-
tions and our storm surge model successfully predicts these
storm surges (Fig. 8). Another weather situation relevant to
storm surges in the German Bight is the west and southwest
type (W + SWT), characterized by westerly or southwest-
erly winds (Gerber et al., 2016). Notable examples of storm
surges resulting from W + SWT weather situations include
the highest storm surges ever recorded at the beginning of
January 1976 (Gerber et al., 2016; Meyer and Gaslikova,
2024) and the storm surge in February 2022 (Mühr et al.,
2022). Here, our model shows varying performance. On the
one hand, with high effective wind speeds (18 to 23 m s−1) at
all predictor locations, the storm surge model successfully
predicts the storm surge on 3 January 1976 (Fig. 8b). On
the other hand, the model underestimates the storm surge in
February 2022 (Fig. 8a). In this case, effective wind speeds
ranged from 15 to 18 m s−1 in the central (Fig. 3: 6 h be-
fore the storm surge) to southeastern sections of the North
Sea (Fig. 3: 2 and 1 h before the storm surge), but negative

effective winds of −7 m s−1 at the predictor location in the
very northwestern section of the North Sea (Fig. 3: 12 h be-
fore the storm surge). The influence of the negative effective
wind in the northwestern predictor location results in a lower
predicted skew surge. However, other external factors may
also influence the performance of the model. The storm surge
in February 2022 was not only the result of predominantly
southwesterly winds but also a part of a series of storms
(Mühr et al., 2022). This led to a pre-filling of the North Sea
(Mühr et al., 2022), causing weaker effective winds to in-
duce a higher skew surge. This pre-filling effect additionally
explains why the model underestimates the February 2022
storm surge. Nevertheless, the resulting skew surge predic-
tion still exceeds 150 cm, which means it is still able to iden-
tify an event exceeding this critical threshold operationally
used for issuing warnings.

When considering the categories for storm-surge-inducing
weather situations, the tracks of the NWT and W + SWT cat-
egories overlap in certain areas (Gerber et al., 2016). Thus,
we cannot conclusively state that our model is better at pre-
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dicting storm surges from one category over the other. Nev-
ertheless, as long as the triggering weather situation leads to
westerly to northwesterly winds, which is mostly the case,
the storm surge model is able to predict the resulting storm
surge very well.

Another factor contributing to extreme water levels in the
North Sea is external surges. These surges are caused by low-
pressure systems over the North Atlantic and are amplified at
the continental shelf (Böhme et al., 2023). External surges
can cause water-level changes exceeding 1 m along the along
the British, Dutch, and German coasts (Böhme et al., 2023).
When external surges coincide with storm surges, they have
the potential to create extreme water levels. Of the 126 ex-
ternal surges recorded between 1971 and 2020, 21 % oc-
curred during or close to a storm surge event in the German
Bight (Böhme et al., 2023). Notable examples of such co-
occurrences include the storm surge in February 1962 and
the one in December 2013 (Böhme et al., 2023). For both
events, the storm surge model predicted a skew surge of more
than 150 cm in December 2013 and even more than 250 cm
in February 1962 (Fig. 8a), leading to storm surge or severe
storm surge warnings. However, the actual water levels were
underestimated by approximately 50 cm, which roughly cor-
responds to the average influence of external surges on water
levels in Cuxhaven during storm surges (Böhme et al., 2023).

Despite the aforementioned limitations, we find strong
model performance in predicting both moderate and extreme
storm surges in the German Bight.

5 Summary and conclusions

In this study, we developed a statistical wind-based storm
surge model for the German Bight that is able to predict skew
surges based solely on the effective wind. Aiming for model
simplicity, we identified predictor locations across the en-
tire North Sea, considered numerous training thresholds, and
applied three different regularization methods. The resulting
storm surge model comprises only five terms: the squared ef-
fective wind in certain grid cells at four lead times (12, 6, 2,
and 1 h prior to the skew surge event) as robust predictors,
along with an intercept.

We validate the model against historical data and find that
it achieves high predictive accuracy, rivaling more complex
models despite its simplicity. Moreover, our findings under-
score the significance of wind as the primary driver of storm
surges in the German Bight. The model provides reliable pre-
dictions for both moderate and extreme storm surge events,
with more accurate predictions for surges preceded by west-
erly or northwesterly winds. In particular, the good predic-
tion accuracy for storm surges greater than or equal to 250 cm
is a unique outcome of this study.

Furthermore, the simplicity of our storm surge model facil-
itates its application to climate simulations, making it a valu-
able tool for assessing storm surge risk in the German Bight

under changing climate conditions, on top of sea-level rise.
Additionally, this approach is not only effective for the Ger-
man Bight but also adaptable to other coastal regions world-
wide.

Appendix A: Identifying relevant predictor positions

To determine the location and lead time of the predictors
(effwindk,t10 m (hwss)) within the North Sea region, we create
an individual statistical model for each grid cell in the North
Sea region at each time step using quadratic regression. In
the following, we refer to these models as grid-cell models.
In a first step, we select all time steps of effwindk,t10 m (hwss)
12 h before the respective occurrence of hwss≥ 50, 60, . . . ,
150 cm in Cuxhaven. Since effwindk,t10 m (hwss) is available
in hourly resolution, this corresponds to 12 time steps. We
choose 12 h, as this is approximately the time between two
high tides. Since we count 2079 grid cells in the North
Sea region and consider 12 time steps, we have a total of
24 948 grid-cell models for each of the 11 hwss training
thresholds. The dependent variable in each model is the
respective logarithmic hwss height, with the standardized
effwindk,t10 m (hwss) serving as predictor. As the wind stress
depends on the square of the wind speed (Olbers et al., 2012),
we create the grid-cell models with quadratic order.

Once we have defined the conditions for the grid-cell mod-
els, we perform a leave-one-out-cross-validation and calcu-
late the coefficient of determination (R2) for each grid-cell
model. In order to obtain the most relevant grid cells for the
respective subsample of events, we select the grid-cell model
with the highest R2 value from each time step (Fig. A1). As
we consider the 12 h before the occurrence of hwss≥ 50, 60,
. . . , 150 cm, we obtain 12 grid-cell models and thus grid cells
(GCt=1,...,12), each of which contains both the relevant lead
time and position in the North Sea region for the respective
hwss training threshold in Cuxhaven.
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Figure A1. R2 value (based on a leave-one-out-cross-validation) of each grid-cell model within the North Sea region for 12 h before the skew
surge event (top left) to 1 h before the skew surge event (bottom right). The darker the color, the greater the R2 value. The event threshold
for training is hwss≥ 80 cm.
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Appendix B: Performance metrics and model
optimization strategies

B1 Regularization methods

The usual regression procedure for determining the unknown
coefficients in a multiple linear regression model is based on
the ordinary least squares (OLS) method. Its error criterion is
the minimization of the sum of the squared errors, where the
error is the difference between the actual and the predicted
value (Wilks, 2011). However, OLS has some known disad-
vantages. For example, OLS is highly sensitive to outliers in
the data and can be prone to overfitting. In addition, OLS per-
forms poorly when it comes to accuracy in predicting unseen
data and in interpreting the model (Zou and Hastie, 2005).
For the latter, the simpler the model, the more the relation-
ship between the dependent variable and the predictors is
highlighted. The model’s simplicity is particularly important
when the number of predictors is large.

An effective method for overcoming the difficulties of
OLS is regularization. It is a method to avoid overfitting
and control the complexity of models by adding a penalty
term to the model’s target function during training. The aim
is to keep the model from fitting too closely to the training
data and to encourage simpler models that are better suited
to unseen data. Here, we consider three different regulariza-
tion techniques, namely ridge (Hoerl and Kennard, 1970a, b),
lasso (Tibshirani, 1996) and elastic net regression (Zou and
Hastie, 2005).

The main idea behind ridge regression (Hoerl and Ken-
nard, 1970a, b) is its ability to strike a balance between bias
and variance. This is achieved by including a penalty term
proportional to the square of the coefficients in the loss func-
tion. This approach leads to the coefficient estimates being
smaller while still having non-zero values. The target func-
tion to be minimized becomes:

LossRidge = LossOLS+ λ

n∑
j=1

β2
j , (B1)

where LossOLS is the loss function of Ordinary Least
Squares, λ is the regularization parameter that defines the
regularization strength and

∑n
j=1β

2
j is the regularization

term – the sum of squared coefficients. Since large coeffi-
cients may lead to low bias and high variance, they are penal-
ized by adding the regularization term and effectively shrink
toward zero. Consequently the model becomes sensitive to
fluctuations in the data. However, ridge regression is unable
to create a simple model, in the sense of fewer predictors, as
it always retains all predictors in the model. This contrasts
with the lasso regression (Tibshirani, 1996).

Lasso regression is a method to reduce overfitting and per-
form predictor selection by setting some coefficient estimates
to exactly zero. For this purpose, a regularization term pro-
portional to the absolute value of the coefficients is added to

the loss function. The target function to be minimized be-
comes:

LossLasso = LossOLS+ λ

n∑
j=1
|βj |, (B2)

where LossOLS is the OLS loss function, λ is the regulariza-
tion parameter and

∑n
j=1|βj | is the regularization term – the

sum of absolute values of coefficients. Lasso regression sim-
plifies the model by shrinking less important coefficients to
zero, effectively eliminating some predictors from the model.
This leads to simpler and more interpretable models.

Zou and Hastie (2005) propose a third regularization
method whose main principle is to balance ridge and lasso re-
gression by adding both ridge and lasso regularization terms
to the loss function. The target function to be minimized be-
comes:

LossElastic Net = LossOLS+ λ1

n∑
j=1
|βj | + λ2

n∑
j=1

β2
j , (B3)

where LossOLS is the loss function of OLS, λ1 and λ2 are
the regularization parameters for lasso and ridge penalties,
respectively,

∑n
j=1|βj | is the lasso regularization term and∑n

j=1β
2
j is the ridge regularization term. Elastic net regres-

sion combines the strength of both lasso and ridge regres-
sion by balancing the selection of predictors and coefficient
shrinkage, resulting in more robust and reliable predictive
models.

B2 F1 score

The F1 score combines precision and recall into one metric.
Precision measures the accuracy of positive predictions made
by the model. It is determined by dividing the number of true
positive predictions by the total number of samples predicted
as positive, regardless of correct identification:

Precision=
TP

TP+FP
, (B4)

where TP represents true positive predictions and FP indi-
cates false positive predictions.

Recall measures the fraction of actual positives that were
correctly identified by the model. It is computed by dividing
the number of true positive predictions by the total number
of samples that should have been identified as positive:

Recall=
TP

TP+FN
, (B5)

where TP refers to true positive predictions and FN to false
negative predictions. The F1 score is defined as the harmonic
mean of precision and recall:

F1= 2
PR

P +R
, (B6)

where P stands for precision and R for recall. The F1 score
has its best value at 1 (perfect precision and recall) and its
worst at 0.
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B3 Root-mean-square error

The root-mean-square error (RMSE) is a measure of how
well the model is performing in terms of prediction accu-
racy, with lower values indicating better performance. It has
the same units as the observed values – in this case cm. We
also determine the 95 % confidence interval for the RMSE
by applying the bootstrap method. This method involves re-
sampling from the original dataset – here 1000 times – with
replacements to simulate multiple scenarios.

Data availability. Water-level data for the Cuxhaven gauge are
available upon request from the Waterways and Shipping Of-
fice Elbe-Nordsee via email (wsa-elbe-nordsee@wsv.bund.de). The
ERA5 reanalysis products used for this study are available in the
Copernicus Data Store at https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2023). The skew surge data used in this study can
be accessed at https://doi.org/10.60751/96dc-te47 (Boesch, 2024).
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