Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-1841-2025
https://doi.org/10.5194/nhess-25-1841-2025
Research article
 | 
03 Jun 2025
Research article |  | 03 Jun 2025

Exploring implications of input parameter uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow

Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili

Data sets

High Mountain Asia 8-meter DEM mosaics derived from optical imagery (1) D. Shean https://doi.org/10.5067/KXOVQ9L172S2

Shuttle Radar Topography Mission (SRTM) Global NASA Shuttle Radar Topography Mission (SRTM) https://doi.org/10.5069/G9445JDF

NASADEM Merged DEM Global 1 arc second V001 NASA JPL https://doi.org/10.5069/G93T9FD9

ALOS World 3D 30 meter DEM (V3.2) Japan Aerospace Exploration Agency (JAXA) https://doi.org/10.5069/G94M92HB

Download
Short summary
We modelled multiple glacial lake outburst flood (GLOF) scenarios (84 simulations) and tested the effect of nine key input parameters on the modelling results using r.avaflow. Our results highlight that GLOF modelling results are subject to uncertainty from the multiple input parameters. The variation in the volume of mass movement entering the lake causes the highest uncertainty in the modelled GLOF, followed by the DEM dataset and the origin of mass movement.
Share
Altmetrics
Final-revised paper
Preprint