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Abstract. Modelling complex mass flow processes, such as
glacial lake outburst floods (GLOFs), for hazard and risk
assessments requires extensive data and computational re-
sources. Researchers often rely on low-resolution, open-
access datasets and parameters derived from plausibility due
to the difficulty involved in conducting direct measurements.
This results in considerable uncertainties in forward mod-
elling, potentially limiting the accuracy and reliability of pre-
dictions. To determine the sensitivity of the model outputs
stemming from input parameter uncertainties in the forward
modelling, we selected 9 parameters relevant to GLOF mod-
elling and performed a total of 84 simulations, each rep-
resenting a unique GLOF scenario in the physically based
r.avaflow model. Our results indicate that mass-movement-
triggered moraine-dammed GLOF modelling outputs are no-
tably sensitive to five parameters, which are, in order of im-
portance: (1) volume of mass movement entering the lake,
(2) DEM datasets, (3) origin of mass movement, (4) entrain-
ment coefficient, and (5) basal friction angle. The GLOF
output parameter resulting from the volume of mass move-
ment entering the lake has the greatest coefficient of varia-
tion (CV) (47 %), while the internal friction angle had the
lowest CV (0.4 %). For future GLOF modelling, we recom-
mend carefully considering the output uncertainty stemming
from the sensitive input parameters identified here, some of
which cannot be constrained before a GLOF and which must
be addressed using statistical approaches.

1 Introduction

Glacial lakes can store millions of cubic metres of water
(Zhang et al., 2024, 2023a; Shugar et al., 2020): as of 2020,
it is estimated that glacial lakes (0.002 km?) store about
1280.6 + 354.1 km? of water around the world (Zhang et al.,
2024). The glacial lakes in High Mountain Asia (HMA) have
experienced the greatest expansion (46 %) between 1990 and
2018 (Shugar et al., 2020). Furthermore, over 28 % of glacial
lakes in HMA are dammed by loose/destabilizing moraines
(Fujita et al., 2013; Zheng et al., 2021b) and the majority of
glacial lakes (70 %) are exposed to mass inputs in the form
of ice/snow avalanches, rockfalls, and landslides from the
surrounding slopes (Dubey et al., 2023). Meltwater resulting
from the shrinkage of glaciers leads to the formation of new
glacial lakes and the expansion of existing ones (Zhang et al.,
2015; Wang et al., 2020). This process sometimes exposes
them to mass movement from the slopes above and increases
the total volume of stored water (Rounce et al., 2016). Addi-
tionally, the degradation of permafrost destabilizes the slopes
surrounding the glacial lakes, increasing the likelihood of
mass movement entering the lake (Huggel, 2009).

Recent work has documented 3151 glacial lake outburst
flood (GLOF) events between 850 and 2022 CE globally
(Liitzow et al., 2023) and 682 GLOF events in HMA between
1833 and 2022 (Shrestha et al., 2023). In HMA alone, these
GLOF events have resulted in 6907 human deaths (Allen et
al., 2015) and caused damage to more than 2200 buildings,
71km? of agricultural land, 163 MW of hydropower capac-
ity, 2000 heads of livestock, and numerous other structures
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including bridges and roads (Shrestha et al., 2023). How-
ever, the reported deaths and damage are significantly under-
estimated because of patchy documentation (Carrivick and
Tweed, 2016). The risk from GLOFs is expected to rise in the
future with the anticipated expansion of glacial lakes (Zheng
et al., 2021b; Zhang et al., 2023b) compounded by a growing
population and the construction of structures in areas prone
to GLOFs (Taylor et al., 2023; Nie et al., 2023).

Most GLOF events in HMA start with mass movements
entering the lake from surrounding slopes, leading to the dis-
placement of water and waves overtopping the dam (Shrestha
et al., 2023; Liitzow et al., 2023; Nie et al., 2018). Mass
movements such as rock or ice avalanches and landslides en-
tering the lake constitute 70 % of known causes of historical
HMA GLOF events (Shrestha et al., 2023). The overtopping
waves cause moraine dam incision and dam failure, resulting
in a sudden discharge of lake water. To a lesser extent, GLOF
events are also triggered by factors such as excess hydrostatic
pressure from runoff snow and ice melt, intense rainfall and
cloud outbursts, and dam settling caused by the melting of
ice cores or internal piping. However, it is important to note
that, in some cases, these triggering factors may not neces-
sarily result in a complete moraine dam failure. As the flood
propagates further downstream, it can transform into a de-
bris flow and/or a hyper-concentrated flow depending on the
geologic and topographic characteristics of the river channel
as well as depending on the availability of erodible sediment
and its grain size distribution (GAPHAZ, 2017; Schneider
et al., 2014; Westoby et al., 2015; Westoby et al., 2014).
These complex GLOF process chains are difficult to accu-
rately capture in numerical models, given the large number of
processes and parameters, which limits our ability to model
the impacts of the hazard cascade as a whole.

Numerical modelling of GLOFs

Previous studies have used various modelling codes such as
HEC-RAS (Sattar et al., 2021b), BASEMENT (Worni et al.,
2013, 2012; Byers et al., 2018), FLO-2D (Somos-Valenzuela
et al., 2015), RAMMS (Lala et al., 2018), and r.avaflow
(Mergili et al., 2020b). Most of these codes, however, can-
not model the evolution of the GLOF process chain through
interaction at the boundary of different processes involved
(e.g. the interaction of mass movements with the lake) and
dynamic transformation of flow through sediment entrain-
ment and deposition. To address this limitation, some of the
studies modelled each component separately and then fed the
results of each modelling component into the next stage (Lala
et al., 2018; Schneider et al., 2014; Frey et al., 2018). For ex-
ample, Lala et al. (2018) have used RAMMS to model mass
movement from the surrounding slope into the Imja Lake,
Nepal; the Heller—-Hager model and BASEMENT to model
wave propagation across the lake surface; and BASEMENT
to model the subsequent downstream hydrodynamic evolu-
tion of GLOFs. In contrast, the r.avaflow model (Mergili et
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al., 2017; Mergili and Pudasaini, 2024) enables the integra-
tion of all components of the GLOF process chain and their
interactions and transformation without the need to combine
the results of different models. It enables the detailed mod-
elling of the GLOF process chain, covering everything from
the initial trigger to the downstream propagation. r.avaflow
is an open-source, GIS-based tool for simulating mass flows
over arbitrary terrain. Furthermore, r.avaflow allows for mod-
ification of all input parameters, which sets it apart from
many modelling codes (where most of the parameters re-
main hidden within a “black box”), making it suitable for
conducting GLOF parameter sensitivity analysis (Mergili et
al., 2017; Mergili and Pudasaini, 2024).

r.avaflow utilizes the total variation diminishing non-
oscillatory central differencing (NOC-TVD) numerical
scheme (Wang et al., 2004) to solve an enhanced version of
the Pudasaini multiphase flow model (Pudasaini and Mergili,
2019). It also offers added features for entrainment, deposi-
tion, dispersion, and phase transformation. Because of these
features, r.avaflow can model the full process chain of a
GLOF and flow transformation due to erosion of bed mate-
rial and deposition of entrained material (Mergili et al., 2017;
Mergili and Pudasaini, 2024). However, the precision of this
model output parameters such as peak flow, depth, and ve-
locity depends on the accuracy of various input parameters
and initial conditions, such as the release volume of mass,
the resolution and vertical accuracy of the digital elevation
model (DEM), density, entrainment, and frictional parame-
ters (Mergili et al., 2017).

Because of the significant logistical challenges associated
with collecting field data and the financial costs involved in
acquiring high-resolution remote sensing data, many of the
parameters in GLOF modelling are derived from open-access
data, leading to considerable uncertainties in the resultant
discharge, inundation extent, and arrival times. Also, certain
input parameters such as the volume of mass movement en-
tering the lake are impossible to measure accurately before
a GLOF event. For example, the global-scale DEM SRT-
MGLI1 (Shuttle Radar Topography Mission Global 1 arcsec),
with a ground resolution of 30m, is commonly employed
in GLOF modelling without adequately considering the in-
herent uncertainty due to horizontal and vertical inaccura-
cies in this DEM (Rinzin et al., 2023). Similarly, the origin
of avalanches and other mass movements is determined us-
ing low- to medium-resolution remote sensing imagery and
DEMs, often supplemented by secondary datasets like per-
mafrost data (Obu et al., 2019), which can introduce notable
uncertainties (Sattar et al., 2023; Allen et al., 2016). When
estimating the volume of avalanches entering the lake, DEM
differencing between pre- and post-event conditions can be
advantageous for reconstructing historical events (Baggio et
al., 2021; Zheng et al., 2021a), although the accuracy is con-
tingent upon the vertical and horizontal accuracy and reso-
lution of the data and the temporal interval between data ac-
quisition. Likewise, when ice is considered the sole source
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of the mass movement, ice thickness is employed to calcu-
late the avalanche volume (Allen et al., 2022), for which the
accuracy of the computed volume relies on the resolution and
availability of ice thickness data from the ice-flow inversion
model in the region of interest. When the depths of landslides
and avalanches are not known, arbitrary thicknesses of 10,
30, and 50 m based on past events (Dubey et al., 2023) are
often utilized for forward modelling, further contributing to
significant uncertainties in the modelling results (Rounce et
al., 2017, 2016; Dubey and Goyal, 2020).

Moreover, the flow parameters in r.avaflow are adjusted
and optimized based on the fit of the model’s results to well-
documented past events (Mergili et al., 2017, 2020a; Vilca
et al., 2021) and the physically plausible range suggested by
Mergili et al. (2017, 2018a, b). Efforts to fine-tune parame-
ters to fit with historical events of varying magnitude, tem-
porality, and spatiality have led to the use of wide-ranging
values. For example, Mergili et al. (2020b) used an internal
solid friction angle of 28° to reconstruct the 1941 GLOF pro-
cess chain of Lake Palcacocha in the Cordillera Blanca, Peru.
In contrast, Vilca et al. (2021) used 45° to model the 2020
glacial lake outburst process chain of Lake Salkantaycocha
located in Cordillera Vilcabamba of Peru. Likewise, the value
of the basal friction angle ranges between 6—18° (Baggio et
al., 2021; Mergili et al., 2020a) (Supplement Fig. S1). Be-
cause each GLOF event is inherently distinct, even when
originating from the same glacial lake (Emmer and Cocha-
chine, 2013; Lala et al., 2018), inferring reconstructed values
from past events for forward modelling introduces substan-
tial uncertainties (GAPHAZ, 2017; Mergili et al., 2020b). Fi-
nally, r.avaflow model outputs are extremely sensitive to pa-
rameters like the entrainment coefficient value, basal friction
angle, and initial release volume (Mergili et al., 2018b, a;
Baggio et al., 2021). While all these indicate that the value
of input parameters is highly variable depending on specific
events, to our knowledge, how changes in the values of these
input parameters affect the model output (for example, peak
and total flow, flow depth, flow velocity, and arrival time) is
not known.

To determine the relative contribution of uncertainties in
different input parameters to variability in GLOF extent, we
identified 9 out of 38 input parameters and initial conditions
relevant to GLOF flow modelling: digital elevation model,
the volume of mass movement entering the lake, the origin
of mass movement entering the lake, grain density of mass
movement entering the lake, volume of the lake, entrainment
coefficient, internal friction angle, basal friction angle, and
fluid friction number (Table S1 in the Supplement). Our se-
lection was motivated by the recognition that these input pa-
rameters are considered essential and have been frequently
adjusted in previous studies to align with values inferred
from the observed past events (Baggio et al., 2021; Mergili et
al., 2018b; Allen et al., 2022; Zheng et al., 2021a; Vilca et al.,
2021). We believe that these parameters are the most likely
to influence the results of future modelling efforts, making
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it critical to evaluate their impacts on model outputs. We as-
sessed the sensitivity of the model output to each of these
parameters by conducting up to 10 r.avaflow simulations per
parameter and varying their values within the range deter-
mined from the literature that employed r.avaflow modelling
(Fig. S1). We investigated the impact of variation of these pa-
rameter values on the model outputs and used the following
diagnostic variables: peak discharge, total discharge, flow ar-
rival time, flow depth, flow velocity, and reach distance. We
then calculated the coefficient of variation for each parameter
and ranked them based on this metric.

2 Study site

Here, our sensitivity analysis was conducted on Thorthormi
Tsho (28.10°N, 90.27°E) located in the Lunana region of
the Bhutan Himalaya (Fig. 1). The area of Thorthormi Tsho
has expanded by ~192% since 1990, evolving into the
largest proglacial lake (area of 4.35km?) in Bhutan by 2020
(Rinzin et al., 2023) (Fig. 1b and f). Although the lake
level was lowered by 5 m by artificially draining out the wa-
ter between 2008 and 2012 (NCHM, 2019a), Thorthormi
Tsho is considered the most dangerous glacial lake as it
is determined to be susceptible to triggering factors (like
mass movement entering the lake) and potentially unstable
moraine damming the lake (NCHM, 2019a; Rinzin et al.,
2021) (Fig. 1b). In recent years, Thorthormi Tsho has pro-
duced two GLOF events (NCHM, 2023), with the first oc-
curring on 20 June 2019 (NCHM, 2019b) and the latest oc-
curring on 30 October 2023. Also, modelling of future pre-
dicted GLOFs from Thorthormi Tsho shows it can produce
a flood with flow volume of up to 3 x 103 m? of water with
a peak discharge of up to 75000m?> s~!, affecting more than
16 000 people and various infrastructure downstream of this
glacial lake (Rinzin et al., 2023). This high level of outburst
susceptibility and hazard makes Thorthormi Tsho an ideal
candidate for GLOF modelling to improve our modelling
output of GLOF uncertainty.

Additionally, the Phochu and Punatsangchu basins, lo-
cated downstream of Thorthormi Tsho, are the most pop-
ulated basins in Bhutan. The latest updated version of
OpenStreetMap (https://www.openstreetmap.org, last ac-
cess: 30 March 2024), although it does not have 100 % cov-
erage, shows that there are over 7000 buildings, 50 bridges,
4 schools, 687km of road, and a large area of agricultural
land within a 1km radius of the Phochu and Punatsangchu
rivers (Fig. lc, d, g). Besides, located downstream are
the two biggest hydropower plants (Punatsangchu-I and
Punatsangchu-II) in Bhutan, poised to become key contrib-
utors to the nation’s gross domestic product (GDP). Also,
the Punakha Dzong, which has great historical and cultural
significance to Bhutan, is located downstream of Thorthormi
Tsho. This high downstream exposure to GLOF hazard fur-
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Figure 1. Study area. (a) The location of Thorthormi Tsho and its downstream condition in Bhutan. (b) Elevation (as per SRTMGL1)
and the overview of glacial lakes in Lunana and settlements along the Phochu and Punatsangchu basins, downstream of Thorthormi Tsho.
The downstream settlement is divided into 17 zones (1-17), each 10 km long. (¢) Area of Thorthormi Tsho between 1960 and 2020 and
the surrounding slope with topography potential (TPP) for mass movement entering Thorthormi Tsho. The downstream settlements in the
(d) Lunana and (e) Punakha and Wangdue Phodrang regions. (f) The change in the area of Thorthormi Tsho between 1960 and 2020 (Rinzin
et al., 2023) and (g) the buildings (count) and road (km) within 1km on either side of the river centreline as per the latest version of
OpenStreetMap (as of 30 March 2024). Loc-1 to Loc-6 are the locations of the origin of mass movement entering the lake considered for this
study. The background map for the panels is hillshade from SRTMGL1.

ther highlights the importance of understanding GLOF char-
acteristics from Thorthormi Tsho (Fig. 1).

3 Methods
3.1 r.avaflow model framework

r.avaflow is a comprehensive GIS-based open-source com-
putational framework for modelling mass movement from
one or more release areas over the defined basal topogra-
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phy (Mergili et al., 2017; Mergili and Pudasaini, 2024). It
can model the entire GLOF process chain from the release of
avalanches through the dynamic interaction of the avalanche
and lake water and overtopping and retrogressive moraine
dam erosion and finally to the downstream evolution of the
resulting flow (Mergili et al., 2020b; Vilca et al., 2021; Sattar
et al., 2023). It can also robustly consider the interactions be-
tween the phases as well as erosion and deposition (Mergili
et al., 2017). Furthermore, it is equipped with a built-in func-
tion for visualization and validation. Because of this capabil-
ity, r.avaflow has been widely used to model process chains
such as GLOFs in high mountains all over the world, mostly
to reconstruct past events (Zheng et al., 2021a; Mergili et al.,
2020b; Vilca et al., 2021) and to a lesser extent to predict
future hazards (Sattar et al., 2023; Allen et al., 2022).

In r.avaflow, the evolution of the flow in space and time
is solved using an enhanced version of the Pudasaini mul-
tiphase flow model (Pudasaini and Mergili, 2019; Puda-
saini, 2012). The flow is computed through depth-averaged
conservation of mass and momentum equations for solid
and fluid components. These equations involve six differ-
ential equations accounting for solid (Ds) and fluid (Dy)
flow depths, solid (Ms,) and fluid (Mf,) momentum in the
x direction (Mg, = Ds X vy, Mgy = Dt X vgy), and Mgy and
Mgy in the y direction (Msy = Ds X vgy, Mgy = Dt X vyy,
where v is the flow velocity) (Mergili et al., 2017). Mohr-
Coulomb plasticity is used to compute solid stress, while
fluid is subjected to solid volume-fraction-gradient-enhanced
non-Newtonian viscous stress. r.avaflow also considers other
factors like virtual mass force, viscous drag, and buoyancy.
These factors collectively facilitate momentum transfer be-
tween the solid and fluid phases, enabling the simultane-
ous deformation, separation, and mixing of phases as they
propagate across the mountain topography (Pudasaini and
Mergili, 2019; Pudasaini and Krautblatter, 2014b; Mergili et
al., 2020b; Pudasaini, 2012). To numerically solve these dif-
ferential equations and propagate flow over time and space,
r.avaflow uses a high-resolution total variation diminishing
non-oscillatory central differencing (TVD-NOC) scheme, a
commonly used numerical scheme to handle the advection
of quantities, whilst minimizing numerical artefacts like os-
cillations (Wang et al., 2004). The internal friction angle
and basal friction angle, which are crucial factors governing
the frictional forces influencing flow rheology, are adjusted
based on the solid fraction of the flow material (Mergili et
al., 2018b, 2017; Pudasaini and Mergili, 2019).

r.avaflow has three different models, namely, a single-
phase shallow-water model with Voellmy friction relation, an
enhanced version of the multiphase flow model of Pudasaini
and Mergili (2019), and an equilibrium-of-motion model for
slow-flow process (Mergili and Pudasaini, 2024). Here, we
chose an enhanced version of the multiphase flow model con-
sidering an erodible moraine dam and mass movement enter-
ing the lake as the solid component and lake water as the fluid
component. The multiphase mass flow model can simulate
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the propagation of three different elements — solids (coarse
material including boulders, cobbles, and gravel), fine solids
(including sand and particles larger than clay and silt), and
fluids (including water and very fine particle including clay,
silt and colloids) — and assign each of them a distinct flow
rheology (Pudasaini and Mergili, 2019).

Furthermore, r.avaflow has six specific optional func-
tions including conversion of release height to depth, dif-
fusion control, surface control, entrainment, stopping, and
dynamic adaption of frictional parameters. The latest ver-
sion of r.avaflow has four options to compute erosion and
entrainment: (i) a model calculated by multiplying the en-
trainment coefficient with flow momentum, (ii) a simplified
entrainment—deposition numerical model of Pudasaini and
Krautblatter (2014a), (iii) a combination of models i and ii,
and (iv) an acceleration—deceleration entrainment and depo-
sition model. Since models ii to iv are in the experimental
phase, here, we used model i, where the amount of entrain-
ment is computed dynamically by multiplying with the user-
defined entrainment coefficient (Cg) with the total momen-
tum of the flow at the given raster cell and time step (Mergili
etal., 2017) (Egs. 1 and 2).

qE,;s = Cg|M; + Mf|as,EmaXa (1)
ge.f = Cg|Ms + Ms|(1 — o5 Emax), 2

where gg s and g r are the entrainment rates of solids and flu-
ids, respectively; Cg is user-defined entrainment coefficient
(kg_l); and o Emax uses user-defined the solid entrainable
material height (m).

We utilized r.avaflow direct, a web-based tool (Mergili
and Pudasaini, 2024), to initially generate the sample model
script. We modified the sample script by inputting parameters
relevant to each experimental set-up and wrote a Bash shell
script for all simulations in each experiment to test various
parameter values within our predefined range. We developed
one master Bash script for each experiment that allowed us to
run all experiments in parallel, leveraging the Rocket high-
performance computing (HPC) facilities at Newcastle Uni-
versity. All the GLOF simulations were done for Thorthormi
Tsho and were run for 1500 s when the flow reached up to
~ 24 km downstream of the lake, depending on values of var-
ious parameters defined here. The flow propagation beyond
this point and its interaction with the downstream component
are beyond the scope of this study.

3.2 Model input parameterization and experimental
setups

In the context of r.avaflow, a parameter is a (often user-
defined) variable influencing the physical characteristics of
the movement or the numerical behaviour of the flow. Pa-
rameters can be based e.g. on physics (such as friction an-
gles) or empirical knowledge. Parameters can be represented
by global values, by individual values for each raster cell,
or by time-dependent values. r.avaflow has a large choice of
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Figure 2. Schematic view of Thorthormi Tsho, surrounding terrain (study area) and input parameters employed for investigating r.avaflow
model output sensitivity used in this study. Points 1-6 show the origin of mass movement entering the lake (considered for this study) with
the vertical drop and horizontal distance (separated with a slash) to the lake shoreline.

Table 1. Key parameters tested in this study to investigate model output sensitivity. Detailed parameters for r.avaflow modelling are provided
in Table S1. The constant value is the common parameter value used across experimental setups.

Parameter Value range No. of simulations  Constant value

Topographic data (DEM) High Mountain Asia DEM (HMA-DEM) 4 (1 x 4) HMA-DEM
(8 m), AW3D30 (30 m), NASADEM
(30 m), SRTMGL3 (90 m)

Origin of mass movement Left (2), right (2), headwall (2) 6 Loc-1

Volume of mass movement 1 x 10°-10 x 106 m3 10 5 x 10% m?

Grain density of mass movement  1000-2700 kg m—3 10 2700

Lake volume 2% 108-3.8 x 108 m3 10 3% 108 m?

Entrainment coefficient 1075-85_10—6-95 kg_1 10 107635

Basal friction angle 10-14° 10 10

Internal friction angle 25-35° 10 28

Fluid friction number 0.027-0.050 10 0.05
parameters and initial conditions, such as a DEM represent- crucial aspects of modelled GLOF flow characteristics, in-
ing initial basal topography, the volume of the solid and lig- cluding the impacted area, travel distance, travel time, and
uid phase, entrainment and stopping parameters, and density volume of sediment deposited at the various downstream lo-
and frictional parameters (Mergili and Pudasaini, 2024) (Ta- cations (Mergili et al., 2017). In this study we selected a to-
ble S1). The values specified for these parameters influence tal of nine parameters which are identified as important and
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Table 2. Characteristics of DEM datasets employed in this study to investigate the impact of DEM dataset variation on GLOF modelling

results.
DEM dataset  Acquisition techniques Spatial resolution  Vertical accuracy Coverage Survey date
AW3D30 Optical stereo ~30m 6.84 m (RMSE relative to Global 2006 to 2011
images ICESat in HMA) (Liu et al., 2019)
NASADEM  Synthetic aperture radar ~30m 5.3 m (RMSE for USA) Global 2000
(SAR) interferometry (Crippen et al., 2016)
SRTMGL3 SAR ~90m 9.51 m (RMSE relative to Global 2000
interferometry ICESat in HMA)
(Liu et al., 2019)
HMA-DEM  Optical stereo 8m 2 m (depending on the High 2002 to 2016
images type of sensor) Mountain
(Shean, 2017a) Asia (HMA)

commonly modified in the previous studies (e.g. Mergili et
al., 2020a): (1) DEM dataset, (2) volume of mass movement
entering the lake (Vy), (3) origin of mass movement entering
the lake, (4) volume of the glacial lake (V1), (5) grain den-
sity of mass movement entering the lake (pS), (6) entrain-
ment coefficient (Cg), (7) basal friction angle (§), (8) internal
friction angle (¢), and (9) fluid friction number (Cgr). To in-
vestigate the impact of DEM dataset variation, we modelled
GLOFs by employing freely available global and regional
DEM datasets with differing spatial resolution and vertical
accuracy (Table 2). For the origin of mass movement entering
the lake, we first computed the topographic potential for mass
movement entering the lake (Allen et al., 2019) (Fig. 1b) and
selected six different sites by considering the topographic po-
tential values and geometry of the lake (Fig. 2). The Vg was
varied between 10°~10” m3. The p S value range was consid-
ered based on assumed combinations of rock and ice parts
in mass movement following the approach used in the earlier
studies (Allen et al., 2022; Sattar et al., 2023). For parame-
ters 5-9, we gathered various values employed in previous
studies (Allen et al., 2022; Mergili et al., 2020a, b; Vilca et
al., 2021) and computed descriptive statistics and established
the median, upper quantile, and lower quantile for each pa-
rameter using these collated values (Fig. S1). We then varied
these parameter values between the calculated upper quar-
tile and lower quartile, yielding 10 equally spaced values in
total. This range of 10 values was utilized in a total of 10 ex-
periments for each respective parameter whilst holding other
parameter values constant at the median value. For exam-
ple, for the ¢ experiment, the value of ¢ was varied between
the upper and lower quantiles, with 10 increments in total,
whilst holding constant the other parameter values (Table 1).
An overview of the employed parameters and workflow is
shown in Fig. 2 (schematic view) and Table 1, while further
details on the parameter range used for each experiment are
provided in the following section.

https://doi.org/10.5194/nhess-25-1841-2025

3.2.1 Digital elevation model

Here our goal is to constrain model output uncertainty stem-
ming from the use of freely available global and regional
DEM datasets. We performed a series of GLOF simulations
using four open-access DEM data sources of various reso-
lutions, vertical accuracy, and elevation derivation methods,
namely, the High Mountain Asia DEM (HMA-DEM; 8 m)
(Shean, 2017), ALOS (Advanced Land Observing Satellite)
global digital surface model (AW3D30; 30 m) (JAXA, 2021),
NASADEM (~30m) (NASA JPL, 2021), and SRTMGL3
(~90m) (SRTM, 2013) (Table 2). The details about the
DEM datasets used here are provided in the Supplement.

3.2.2 Volume of the glacial lake and mass movement
entering the lake

r.avaflow has the option to define the initial release vol-
ume of different phases involved in the GLOF process
chain. Here, we assume the GLOF was initiated by rock—
ice-mixed mass movement entering the lake followed by a
tsunami wave hitting the moraine, damming the lake and
causing moraine dam failure. Accordingly, we defined the
frontal moraine damming Thorthormi Tsho as phase 1 (rock
component with p =2700kgm~3), mass movement enter-
ing Thorthormi Tsho as phase 2 (rock—ice component), and
Thorthormi Tsho as phase 3 (fluid part).

Field-based bathymetric data are essential for accurately
estimating Vi, which is a fundamental input for the GLOF
modelling. However, the remote and harsh environment of
glacial lakes in the mountain regions makes it highly chal-
lenging to conduct field-based bathymetric surveys. In the
case of Thorthormi Tsho, conducting the bathymetric sur-
vey is particularly difficult as the lake is filled with debris
and icebergs, which makes it hazardous to conduct a survey.
In the absence of field-based bathymetry, the area—volume
empirical equations are commonly employed by past stud-
ies to approximate V1. However, these area—volume scales
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are based on sparse field data and may not represent the ac-
tual volume, leading to substantial uncertainties in the vol-
ume estimates (Zheng et al., 2021a; Gantayat et al., 2024).
In this study, we calculated the volume of Thorthormi Tsho
considering eight area—volume empirical equations which
are commonly used for computing the volume of moraine
dam lakes (Table S2). Uncertainty in using these empirical
equations where evident as the V, estimate for Thorthormi
Tsho ranges between 2.1 x 108 and 3.8 x 108 m>. So, to in-
vestigate the impact of this uncertainty in modelled GLOF
hydraulics, we modelled 10 scenarios of GLOFs by vary-
ing Vi from 2.0 x 10® to 3.8 x 108 m® with increments of
20 x 10°m3. For all other experiments, the median value
(2.9 x 108 m?3) of Vi estimated from area—volume scaling
equations was used uniformly. r.avaflow requires spatially
varying lake bathymetry to be used as fluid release height
rather than the absolute V1. With Thorthormi being a recently
formed lake, it has ice thickness data covering the extent of
the lake (Farinotti et al., 2019). Therefore, we computed the
bathymetry of Thorthormi Tsho by subtracting ice thickness
data from the surface DEM (Linsbauer et al., 2016, 2017).
Assuming that the present-day lake has been formed by fill-
ing the overdeepening, this ice-thickness-derived bathymetry
was adjusted to match the volume we employed for each
modelled GLOF. For example, for the experiment with a Vp,
of 3 x 108 m?, the ice thickness bathymetry was adjusted to
get the same volume (Table S2).

The volume of mass movement entering the lake serves
as a fundamental parameter for defining various scenarios in
the forward modelling of a GLOF (for example, Allen et al.,
2022, and Sattar et al., 2023). However, it is difficult to pre-
dict how big or small the mass movement will be. The his-
torical record of Vg is sparse but mostly exceeds 1 x 10° m?
(for example, Zheng et al., 2021a, and Byers et al., 2018),
although a recent event in Sikkim Himalaya was known to
have been caused by a volume of up to 14.7 x 10%m? (Sat-
tar et al., 2025). Additionally, earlier studies in Nepal based
on topographic potential and assumed three depths based on
avalanches in Russia and the Swiss Alps (10, 30 and 50 m)
(Rounce et al., 2016) has estimated the volume between
2.7 x 10% to 6.7 x 10° m>. Here we selected the most likely
zone of mass movement entering the lake based on the topo-
graphic potential of the slope surrounding the lake. However,
accurately constraining Vg remains highly challenging and
subject to considerable uncertainty. Considering these uncer-
tainties, to test the effect of mass movement of various vol-
umes, we conducted a series of 10 experiments considering
Vs ranging from 1 x 10° to 10 x 10® m3. For the other exper-
iments, we used a uniform Vg of 5 x 10 m3 (Table 1).

3.2.3 Origin of mass movement entering the lake
To account for uncertainties involved in the origin of mass

movement entering the lake, we identified a total of six mass
movement areas, each characterized by different directions
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and distances to the lake (Figs. 1 and 2). To do this, we first
computed topographic potential for mass movement (rock—
ice avalanche and landslide) entering the lake based on slope
and runout trajectory criteria (Allen et al., 2019). Based on
this first-order estimate, we identified the six potential in-
stances of origin of mass movement each with a unique di-
rection, height, and distance relative to the lake (Fig. 2): Loc-
1 (slope ~ 1 km away from the headwall, aligned along the
longitudinal axis of the lake), Loc-2 (headwall about 100 m
away from the lake along the longitudinal axis), Loc-3 (slope
1km from the right moraine dam), Loc-4 (right moraine
dam), Loc-5 (slope ~ 1.5 km from the left moraine dam), and
Loc-6 (left moraine dam) (Figs. 1 and 2). We then ran one
scenario of a GLOF from each of these locations (total of
6), keeping all input variables constant for each model run.
For the rest of the experiments, we used a mass movement
scenario from Loc-1.

3.2.4 Grain density of mass movement entering the
lake

Our goal here is to assess the impact of pS entering the
lake, which serves as a proxy for the ice-to-rock ratio. Ac-
cordingly, we consistently set the grain density of phase 1
(moraine) at 2700 kg m~> across all the experiments, whilst
the fluid density of phase 3 was also held constant at
1000 kg m~3. In the earlier studies, oS had been used as a
proxy for the portion of a rock—ice component of mass move-
ment entering the lake, which is highly uncertain (Vilca et al.,
2021; Allen et al., 2022). The phase separation of rock and
ice components of the mass movement with different densi-
ties is not well established in r.avaflow (Vilca et al., 2021).
Therefore, in this study, following Sattar et al. (2023), a por-
tion of snow and ice in the mass movement is considered
fluid by adjusting the pS of the phase 2 represented by the
mass (Table S3). In our experiment set-up, this is executed
by varying the pS value between 2700 kg m—> (representing
100 % rock) and 1000 kg m3 (representing 100 % ice) (Ta-
ble 1).

3.2.5 Entrainment coefficient

Material entrainment due to bed erosion can make the flow
more concentrated and thus increase the volume, resulting
in spatial and temporal variation in flow. In the r.avaflow
model, the user must define entrainment height in the form
of a raster covering the entire model domain, which can be
identified using either remote sensing imagery or fieldwork
(Mergili and Pudasaini, 2024). However, accurately measur-
ing the depth and spatial extent of these erodible materi-
als covering the entire model domain is highly challenging,
even with field surveys, and remains infeasible using remote
sensing techniques alone. In this study, we focused on the
frontal moraine, as it is measurable using remote sensing
data. The extent of the moraine was mapped using high-
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resolution Google Earth imagery, while its height was de-
termined using HMA-DEM (Fig. 1). The amount of entrain-
ment itself is dependent on the user-defined Cg. In r.avaflow
the base-10 logarithm of Cg must be entered (Mergili et al.,
2018a, 2017). Here, we modelled 10 scenarios of GLOFs by
varying Cg between 10763 and 10728 kg~! (Table 1).

3.2.6 Frictional parameters

The internal friction angle (¢), basal friction angle (§), and
fluid friction number (Cgr) mechanically control the basal
shear stress, internal deformation, anisotropy of the stresses,
and hydraulic pressure gradient of the solid constituents
(Pudasaini and Krautblatter, 2014b), which are essential at-
tributes influencing flow runout distance and time. Within the
r.avaflow model set-up, a user can use either spatially vary-
ing values for these frictional parameters using a raster map
or one absolute value (Mergili and Pudasaini, 2024; Mergili
et al., 2017). In this study, we computed 10 experiments for
each of these frictional parameters. Specifically, by varying ¢
between 25 and 35°, § between 10 and 14°, and Cgg between
0.027 and 0.050 (Table 1).

3.3 Sensitivity analysis

Here we use sensitivity analysis to determine how variations
in the initial values for key input parameters impact the mod-
elled GLOF hydraulics (Saltelli et al., 2004). Thus, our goal
is not to determine the “correct” value for each parameter but
to determine the r.avaflow input parameter(s) that cause the
most variation in the model output. To constrain this vari-
ability, we mainly focused on examining the peak discharge,
total discharge, and flow arrival time as the output metrics.
The flow for all the experiments was measured from the
profile immediately beneath the moraine dam (profile 1 in
Fig. 2). We calculated the peak and total discharge based on
the flow data obtained from the same profiles (Fig. S2). The
flow arrival time was considered the average value across the
time recorded from the profiles located 3, 6, and 9 km down-
stream of Thorthormi Tsho (profiles 2, 3, and 4 in Fig. 2).
For the scalable parameters, we also computed simple linear
regression considering input parameters as the independent
variable and model output as the dependent variable. To as-
certain the sensitivity of the three model output metrics de-
fined earlier for variations in values across all parameters,
we computed the coefficient of variation (CV) for individ-
ual parameters and subsequently ranked them based on this
metric. The CV is a statistical measurement of the disper-
sion of data points around the mean, regardless of the units
used to measure it. The CV is deemed suitable here since the
r.avaflow output variability is caused by input parameters that
are measured in different units. To calculate the CV, we took
the standard deviation of the output value range of a partic-
ular experiment (e.g. peak discharge) and divided it by the
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mean of the same output range (Abdi, 2010). We multiplied
each CV value by 100 to express them in percentage form.

4 Results
4.1 Effect of the DEM dataset

When the GLOF was modelled employing freely available
global and regional DEM datasets (HMA-DEM, AW3D30,
NASADEM, SRTMGL3), our results showed a variation
in peak and total discharge of a GLOF from Thorthormi
Tsho by almost 100 % and 400 %, respectively (Fig. 3).
Specifically, HMA-DEM consistently produced the lowest-
magnitude GLOF, while SRTMGL3 consistently produced
the highest. Although NASADEM and AW3D30 have a sim-
ilar spatial resolution, notable differences (65 %) in peak dis-
charge and other hydraulic properties emerged between sim-
ulations done using these datasets (Fig. 3a).

We observed a significant fluctuation in the mean flow
depth (82 %) and velocity (43 %) along the flow path re-
sulting from the change in DEM datasets (Table 3). For
instance, the mean flow depth along the river centreline
ranged from 39 m (HMA-DEM) to 54 m (SRTMGL3) (Ta-
ble 3) and the flow reach distance increased from 15.5km
(HMA-DEM) to 24.2km (SRTMGL3). Once again, NASA-
DEM and AW3D30 yielded significantly different maximum
flow depths (8.5 %) and reach distances (72 %) (Fig. 3b). The
flow arrival time varied by around 59 %. Flows derived from
SRTM data always arrived earlier, while those using HMA-
DEM were consistently most delayed (Fig. 3c). There was
also a similar variation in the solid concentration of the flow
in response to changes in input DEM datasets (Fig. 3b).

4.2 Effect of the origin of mass movement entering the
lake

We modelled mass movement with a volume of 5 x 10° m?
entering the lake from the surrounding slopes at various loca-
tions identified in Sect. 3.2.3. Our study found that the GLOF
process chain initiated by mass movements from Loc-1 to
Loc-6 results in a significant fluctuation in the GLOF out-
put (Fig. 4). The peak discharge varied by approximately
200 %, with the total discharge varying by 55 % (Fig. 4).
Likewise, the mean flow depth, velocity, and arrival time
fluctuated by 65 %, 82 %, and 20 %, respectively (Table 3).
By comparison, the flow resulting from the GLOF initi-
ated by mass entering from Loc-1 (Fig. 4a) (1km from
the headwall) and Loc-5 (~ 1.5km above the left moraine)
(Fig. 4e) produced the highest-magnitude GLOF, while that
from Loc-4 (right lateral moraine) (Fig. 4d) was the lowest.
For example, the highest peak (180 x 10°> m?) and total dis-
charge (11 x 10° m?) occurred from Loc-1, while the low-
est peak (60 x 103 m3) and total discharge (7 x 100 m3) were
from Loc-4 (Fig. 4a and d). The longest flow reach distance
(25 km) was produced by Loc-1 and Loc-5, while the short-
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Figure 3. The line graph showing the (a) rate of flow (Q), (b) maximum flow depth (for total and debris part), (¢) flow arrival time, and
(d) flow velocity profiles along the river centreline generated by conducting a sequence of r.avaflow simulations, employing different types
of DEM datasets. The solid and dashed lines (in panel a) show the maximum flow depth and debris part of the flow. The profiles are plotted
as rolling averages every 100 m.

Table 3. Percentage change in flow velocity, depth, and arrival time resulting from variation in values of different input parameters we
employed in this study. The total percentage (%) change represents the output variation resulting from the maximum and minimum input
parameter values used in the experiment. The average percentage (%) change is calculated as the mean change across all incremental steps
employed in setting up the experiment. The arrival time is the average of the record from three locations (profiles 2, 3, and 4) (Fig. 2).
Flow velocity and depth are mean values taken from the river centreline. The negative (—) value indicates that increasing input parameters
decreases output parameters. The detailed flow pattern along the river centreline is provided in Figs. S3, S4, S5, and S6.

No. Parameter Velocity (% change) ‘ Depth (% change) ‘ Time (% change)

Average Total ‘ Average Total ‘ Average  Total
1 DEM dataset 16.25 43 20.5 82 20 59
2 Volume of mass movement entering the lake 9.2 92 92.3 923 —143 —143
3 Density of mass movement entering the lake 0.2 2 3.1 31 -0.6 —6
4 Origin of mass movement entering the lake 10.8 65 8.2 82 33 20
5 Volume of the glacial lake 0.1 1 0.1 1 —4 -9
6 Entrainment coefficient —14 —10 —4.9 49 3 3
7 Basal friction angle 23 —23 —4.2 42 6.8 68
8 Internal friction angle -0.1 -1 -3.8 38 0 0
9 Fluid friction number —5.5 =55 =7 70 0.8 8

4.3 Effect of the volume and grain density of mass
movement entering the lake

est was from Loc-3 (10km) (Fig. 4c). The solid volumetric

portion did not exhibit significant fluctuation, with concen-

tration ranging from 4 % (Loc-4) to 5 % (Loc-2) (Fig. S3).
To separate the effect of variation in the volume (Vs) and

grain density (p.S) of mass movement entering the lake, we
simulated all 10 scenarios of the GLOF event for each vol-

Nat. Hazards Earth Syst. Sci., 25, 1841-1864, 2025 https://doi.org/10.5194/nhess-25-1841-2025



S. Rinzin et al.: Exploring implications of input parameter uncertainties 1851

Time (h) ¢

0.4 I o012
Time (h) : 1 i 5 Time (h) .

0.2 0.4

Time (h) {

Figure 4. Flow rate and depth resulting from mass movement entering the lake from different locations: (a—f) Loc-1 to Loc-6.

ume and density variation using the mass movement initiated
from Loc-1. Here we observed that only Vg variation leads to
a very large variation in the resulting peak (1160 %) (Fig. 5a)
and total discharge (2500 %) (Fig. 6a). Subsequently, this re-
sulted in maximum variation in flow characteristics such as
mean flow depth (923 %) and flow arrival time (143 %) (Ta-
ble 3, Figs. S3—S6). Conversely, the p.S variation showed the
least impact on both peak (5 %) and total discharge (24 %)
(Figs. 5b, 6b, and 7b) and subsequent characteristics such as
flow depth (31 %) and velocity (2 %) (Table 3 and Figs. S3—
S6). Both Vg and pS variation did not result in significant
fluctuation in the solid volumetric concentration of the flow
(Fig. S3).

4.4 Lake volume
Variation in volume of the glacial lake (V1) from 2 x 108
to 3.8 x 108 m? results in total peak discharge variations

of 25 % with an average of 8.7 % (Fig. 5c). Likewise, the
total discharge varied by 18 % with a mean variation of
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3% (Fig. 6¢). However, the resulting flow characteristics
including flow depth, velocity (Table 3), and arrival time
(Fig. 7¢) all showed minimal fluctuation, as the total percent-
age change was well below 10 % (Table 3).

4.5 Effect of the entrainment coefficient

Variations in the entrainment coefficient (Cg) substantially
impact the resulting GLOF output, causing fluctuations in to-
tal discharge by 123 %, although its impact on peak discharge
was minimal (13 %) (Figs. 5d and 6d). These changes also
affect the flow characteristics including mean depth (49 %)
and reach distance (20 %) (Table 3) but had a minimal ef-
fect on arrival time (3 %) (Fig. 7d). Interestingly, Cg varia-
tion exhibited a threshold effect on peak discharge, total dis-
charge, and flow arrival time. The total discharge increases
linearly with increasing Cg up to 107597 kg~! but decreases
after this. On the other hand, peak discharge increased when
Cg increased from 107695 t0 107683 kg_l, remained con-
stant between 107983 and 10699 kg_l, and decreased from
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Figure 5. Linear regression between input parameter value variation and percentage change in the resulting peak discharge (Q). The linear
regression is computed only for the scalable parameters (a) volume of mass movement entering the lake, (b) mass movement density,
(c) volume of the glacial lake, (d) entrainment coefficient, (e) basal friction angle, (f) internal friction angle, and (g) fluid friction number.
The shaded envelope around the line shows a 95 % confidence interval.

there on. The arrival time decreased when the Cg value was
increased from 107646 to 107646 kg~! but increased upon
a further increase in the Cg value to 10778 kg_l. Also, un-
like other parameters, entrainment variation affected the solid
concentration of the flow (Fig. S3). An increase in the en-
trainment coefficient from 107 to 1078 kg~! led to a
30 % increase in the mean solid volumetric concentration of
the flow.
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4.6 Effect of the frictional parameters

Among the frictional parameters, the basal friction angle
(8) resulted in a significant fluctuation in GLOF magni-
tude (Figs. Se, 6e, 7e) and subsequent flow characteristics
(Figs. S3-S6). While the variation in the fluid friction num-
ber (Crr) had a minimal impact on the resulting peak and
total flow (Figs. 5g, 6g), it notably altered other flow charac-
teristics, such as flow velocity (55 %) and depth (70 %) (Ta-
ble 3). The increase in é from 10 to 14° resulted in a peak and
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Figure 6. Linear regression between input parameter value variation and the resulting total discharge. The linear regression is computed
only for the scalable parameters (a) volume of mass movement entering the lake, (b) mass movement density, (c) volume of the lake,
(d) entrainment coefficient, (e) basal friction angle, (f) internal friction angle, and (g) fluid friction number. The shaded envelope around the

line shows a 95 % confidence interval.

total discharge decrease of 36 % (Fig. 5d) and 32 % (Fig. 6d),
respectively. Likewise, the flow velocity decreased by 23 %,
resulting in a delay in flow arrival by 68 % (Table 3). Con-
versely, the peak flow decreased by 2 % only in response to
an increase in the internal friction angle (¢) from 25 to 35°
(Fig. 5f). The variation in all values of frictional parameters
did not result in a significant change in the solid volumetric
concentration of the flow (Fig. S5).

https://doi.org/10.5194/nhess-25-1841-2025

4.7 Comparison of the effects of all parameters

To compare output sensitivity resulting from all input param-
eters considered here, we calculated the percentage of the
coefficient of variation (CV) for peak flow, total discharge,
arrival time, flow depth, and flow velocity. We further com-
puted the average CV (avg CV) across all these output vari-
ables and examined the overall impact of each input param-
eter variation (Fig. 8). Comparing all these output indica-
tors, Vs had the greatest impact (avg CV of 47 %), followed
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Figure 7. Linear regression between input parameter value variation and flow arrival time. The linear regression is computed only for the
scalable parameters (a) volume of mass movement entering the lake, (b) mass movement density, (¢) volume of the lake, (d) entrainment
coefficient, (e) basal friction angle, (f) internal friction angle, and (g) fluid friction number. The shaded envelope around the line shows a

95 % confidence interval.

by DEM datasets (avg CV of 35 %) and the origin of mass
movement (avg CV of 21 %). Other input parameters like §
and Cg also caused significant variation in resulting GLOFs.
Notably, Crr significantly impacted flow depth with its CV
of 16 % despite having minimal impact on other flow charac-
teristics (Fig. 8).

For the seven scalable parameters, we computed linear re-
gression (Figs. 5-7). The linear regression analysis revealed
that the five parameters: Vg (R2=10.99), pS (R?=0.96),
VL (R?=0.81), 8 (R? = 0.96), and Crp (R? = 0.83) demon-
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strated strong explanatory power in accounting for the vari-
ability in GLOF peak discharge (Fig. 5). Among these sets
of parameters, Vs (m = 1.6), pS (m =0.085), and V., (m =
0.07) showed a positive relationship, while § (m = —0.347),
Cg (m = —0.091), and Cgg (m = —0.09) exhibited a nega-
tive relationship (Fig. 5). All seven parameters (R> > 0.86)
except for ¢ (R>=0.59) and Vi (R?=0.25) indicated a
high level of explanatory power regarding the variation in
resulting total discharge (Fig. 6). Comparing all seven input
parameters, Vs exhibited the highest R? value for both peak

https://doi.org/10.5194/nhess-25-1841-2025



S. Rinzin et al.: Exploring implications of input parameter uncertainties 1855

(a) Peak discharge (b) Total discharge

Mass movement volume
DEM datasets

Mass movement origin

Entrainment coefficient
Basal friction angle

Fluid friction number 7] i H E
Lake volume || 1 B] E
Grain density of mass movement f| 1 E 1 E
Internal friction angle E| E ﬂ E
0 10 20 30 40 50 0 20 40 60
Coefficient of variation Coefficient of variation
(c) Flow arrival time (d) Mean flow depth
Mass movement volume E E
DEM datasets 1 1
Mass movement origin E
Entrainment coefficient k| E
Basal friction angle E E
Fluid friction number E D E
Lake volume El| ]
Grain density of mass movement 1 ﬂ 1
Internal friction angle i F E
0 10 20 30 0 20 40 60
Coefficient of variation Coefficient of variation
(e) Mean flow velocity (f) Average

T T T T

T T T T

Mass movement volume
DEM datasets

Mass movement origin
Entrainment coefficient
Basal friction angle
Fluid friction number E

—
Lake volume :] E % E
i

Grain density of mass movement :] E
Internal friction angle H E

0 5 10 15 20 0 10 20 30 40
Coefficient of variation Coefficient of variation (average)

Figure 8. The coefficient of variation for (a) peak flow, (b) volume, (c) time, (d) average flow depth along the river centreline, (e) flow
velocity along the river centreline, and (f) average across all these output parameters.

and total discharge, signifying strong explanatory power re- time; increasing Cg from 107> to 107942 kg~! decreased
garding the modelled flow compared to the other parameters. arrival time, while further increases towards 10728 kg~! led
Additionally, the rate of change in peak discharge and total to a linear increase in arrival time.

discharge for every unit increase in Vs was comparatively
higher than other parameters as indicated by the steepness of
the slope (Figs. 5a and 6a).

Basal friction angle and Cpp demonstrated a high level
of explanatory power concerning the variability in flow ar-
rival time, as evidenced by their R? values of 0.98 and 0.97,
respectively. Vg variation also exhibited a moderately high
explanatory power with a negative relationship, with R? of
0.81 and a slope (m) of —0.019. However, the linearity be-
came less pronounced within the volume range of 4 x 100
to 10 x 10°m?. In contrast, other parameters, including Cg
and ¢, did not exhibit a definitive linear relationship (Fig. 7).
However, Cg variation showed a threshold effect on arrival

5 Discussion

Our primary aim was to investigate the sensitivity of the
modelled GLOF outputs to a range of values for key model
input parameters using the r.avaflow model. Previous stud-
ies have underscored the sensitivity of GLOF model outputs
to some input parameters, including the basal friction angle,
entrainment coefficient, and volume of mass movement en-
tering the lake (Baggio et al., 2021; Mergili et al., 2018b,
2020a). This study advances our understanding of GLOF
modelling by conducting a comprehensive sensitivity analy-
sis across nine essential parameters and multiple (84) GLOF
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simulations. As a result, we have, for the first time, ranked
these nine GLOF input parameters based on their contribu-
tions to model output variabilities. Our results showed that
modelled GLOF output parameters are substantially sensitive
to five of the nine parameters we tested here (DEM dataset,
volume of mass movement entering the lake, origin of mass
movement entering the lake, entrainment coefficient, and
basal friction angle), suggesting that GLOF modelling results
are subject to uncertainty from multiple sources. The find-
ings offer valuable perspectives on the uncertainty in GLOF
modelling results and complexities inherent in modelling the
GLOF process chain within rugged mountain terrain such as
in the Himalaya.

5.1 DEM datasets

A DEM is one essential piece of data for modelling GLOFs
and other types of floods (Hawker et al., 2018; Saksena and
Merwade, 2015; Schumann and Bates, 2018; Westoby et al.,
2014). The impact of DEM resolution is even more pro-
nounced in the steep and complex topographic conditions
prevalent in high-mountain regions like the Himalaya (Liu et
al., 2019). Our study provides the quantification of the effect
of DEM in such environments for the first time. Our results
suggest that the use of global and regional DEM datasets
with a resolution ranging from 8 m (HMA-DEM) to 90 m
(SRTMGL3) leads to over 2-fold and 4-fold variations in
peak and total discharge, respectively, and causes successive
significant fluctuations in flood height, reach distance, and
flow arrival time. This likely results from the low-resolution
DEMs not fully resolving the river channel compared to
higher-resolution DEMs. This limitation results in a reduc-
tion in surface roughness and river channel conveyance (car-
rying capacity of channel). Thus, the flow spreads out more,
leading to an increase in the modelled flow extent and reach
(Figs. 9 and S7) (Muthusamy et al., 2021). This was sup-
ported by comparing the DEM profile and flow depth along
the river centreline (Fig. 9) and across the multiple vertical
cross-sections along the river channel (Fig. S7). The analy-
sis showed that GLOF output from SRTMGL3, where river
channels are poorly resolved, was comparatively higher than
that from HMA-DEM with the better-resolved channel. Also,
DEM datasets were acquired at different times, meaning the
topographic features they captured will also differ depending
on natural geomorphological change or human-made alter-
ation of the earth’s surface over time (Khosh Bin Ghomash
et al., 2019; Bishop et al., 2002; Schumann and Bates, 2018;
Watson et al., 2015). Such discrepancies will have a sub-
stantial influence on flow characteristics and uncertainty if a
DEM with inadequate spatial and temporal resolution is used
in GLOF modelling.

Overestimation of flood maps stemming from reductions
in DEM resolution has been reported in urban flood mod-
elling (Muthusamy et al., 2021; McClean et al., 2020). How-
ever, the impact of DEM data on GLOF modelling, espe-
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cially in a complex topographic setting such as in the Hi-
malaya, has been rarely documented (Wang et al., 2011). Our
results show the substantial variation in GLOF model output
stemming from DEM dataset variation, even when employ-
ing DEMs with comparable spatial resolutions, underscor-
ing the criticality of high-quality DEM data in GLOF mod-
elling (Fig. 9). DEM datasets covering rugged high-mountain
terrain, where GLOFs typically occur, are likely to have
more errors due to geometric distortion and data loss due to
challenges involved in data acquisition for DEM production
(Hugonnet et al., 2021; Liu et al., 2019). Therefore, using
global- to regional-scale open-access DEMs, such as SRTM
for GLOF modelling, due to the absence of high-resolution
alternatives (Wang et al., 2011) may only be suitable for a
first-order assessment of GLOFs at large scales (Zhang et
al., 2023b). This is important as uncertainty stemming from
DEM datasets is often overlooked and/or not well addressed
in the previous basin-specific GLOF modelling work (Rinzin
et al., 2023; Sattar et al., 2023, 2021b).

5.2 Variation in the origin of mass movement

Our study indicated that different origins of mass movement
initiation produced GLOFs with approximately 2-fold vari-
ations in their peak discharge, volume, and reach distance
(Fig. 4). These variations can be explained based on the lake
geometry and the direction, horizontal distance, and vertical
distance at which the mass movement enters the lake. The
r.avaflow model provides detailed output parameters such as
kinetic energy associated with the flow and a flow depth map
for each time step, which allowed us to better understand
the cause of this variation. For example, the mass movement
originating from Loc-1, which is located at the slope above
the headwall, directly impacts the head end of the lake with
the highest kinetic energy (50 714 GJ) of all sources of mass
movement. This head-end impact, coupled with its high en-
ergy, facilitates the direct forward propagation of waves to-
ward the frontal outlet, causing the lake water to overtop the
frontal moraine and resulting in a higher peak and total dis-
charge (Fig. S8). Thorthormi Tsho is roughly crescentic in
shape and curves toward the west, with its maximum curva-
ture facing the origin of mass movement of Loc-5. This shape
also allows for the impact wave generated from mass move-
ment from Loc-5 to move almost unimpeded along the flow
line, resulting in greater GLOF discharge. Also, Loc-1 and
Loc-5 are located at greater distances and higher elevations
from the lake compared to other locations (Fig. 2). This spa-
tial location might have also enabled them to generate greater
force to impact the lake. In contrast, the direct wave of im-
pact generated by the mass movement from Loc-3, located on
the slope above the right moraine dam, is deflected towards
the left lateral moraine and only a secondary wave proceeds
towards the lake outlet, resulting in a comparatively lower
peak and total discharge (Fig. S8) (Emmer et al., 2024). This
finding implies that the geometry of the glacial lake and the
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Figure 9. A comparison of the elevation profiles from four DEM datasets and the corresponding flow depths along the river centreline,
generated through r.avafiow modelling. Panels (a) and (b) show the flow depths and elevation profiles along the river centreline. Panels (c)
and (d) illustrate elevation profiles for two specific sections marked in (a) and (b). DEM and flow depth profiles from the vertical cross-
sections at various distances are also provided in the Supplement (Fig. S7). The DEM datasets were co-registered using the algorithm

developed by Shean et al. (2016).

surrounding source slope plays a vital role in GLOF output.
Thus, we underscore the importance of considering catch-
ment shape in GLOF modelling, although we cannot assume
that two identical basins will have the same flood properties
due to the influence of other factors, such as the involved
volume of solid and fluid parts.

Earlier studies (Mergili et al., 2017, 2020b) have explained
the interaction between landslides and reservoirs (lakes) and
their influence on the resulting hydrograph. However, these
studies did not consider the variables such as directions and
distances from which the mass impacts the lake. To fill this
gap, here we enhanced our understanding of the interplay be-
tween the resulting GLOF magnitude and mass movement
attributes including the direction and distance from which
the mass enters the lake, the amount of kinetic energy the
mass possesses, and the geometry of the lake. Our results em-
phasize the significant impact on the resulting GLOF events
caused by the uncertainty in pinpointing the specific loca-
tion of the origin of mass movement entering the lake. The
thawing of permafrost and destabilization of the slope sur-
rounding the lake due to climate warming (Gruber et al.,
2017; Kaib et al., 2018; Sattar et al., 2025) combined with
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the expansion of the glacial lake towards the mountain flank
(Rounce et al., 2016) are likely to increase the frequency of
mass movement entering the lake, further exacerbating this
uncertainty. By effectively identifying and quantifying the
uncertainties related to the origin of mass movement enter-
ing the lake in addition to the volume, we propose consider-
ing the origins of mass movement in designing the scenario-
based GLOF modelling in future studies. This approach goes
beyond the existing practice, which primarily focuses on the
volume of mass movement entering the lake. This is impor-
tant because, as demonstrated in our study, the impact of
mass movement can vary significantly depending on its ori-
gin. In some cases, what may be considered a worst-case sce-
nario from one origin might represent only a low-magnitude
event from another (GAPHAZ, 2017; Sattar et al., 2021a;
Allen et al., 2022).

5.3 Mass movement volume, grain density,

entrainment coefficient, and lake volume

Our investigation revealed that variation in GLOF magnitude
is most sensitive to the volume of mass movement (V) en-
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tering the lake. It also exhibits a significant level of sensi-
tivity to the entrainment coefficient (Cg), whilst the grain
density (pS) and lake volume (V1) exhibit a negligible im-
pact. For example, the variation in Vg between 1 x 10° and
10 x 10° m? leads to peak and total discharge fluctuation of
1160 % and 2500 %, respectively, and subsequent variation
in maximum flow depth and arrival time (Figs. 5 to 7). The
dominant impact of Vs and Cg on GLOF magnitude could be
due to their direct influence on the overall magnitude and in-
tensity of flood events. The total discharge during the GLOF
cascade event is a function of Vg entering the lake. This is
further corroborated by the near-perfect linear relationship of
peak discharge (R? = 0.99) and total discharge (R? =1) with
Vs entering the lake observed here. Likewise, the volume
of solid content in the flow is solely contributed by the en-
trainment of frontal moraine material, primarily determined
by Cg. Additionally, this correlation could be attributed to
the amount of energy and associated momentum of the flow,
which increases significantly with a corresponding increase
in Vg. Also, it could be due to the longer timing and duration
of the flow as evident in Fig. S2. Most GLOF events in high
mountains across HMA and other alpine regions are caused
by moraine dam breaches triggered by mass movement enter-
ing the lake from the surrounding mountain flank (Shrestha
et al., 2023; Liitzow et al., 2023; Emmer and Vilimek, 2014).
As aresult, Vg is considered a primary basis for scenario de-
velopment (Allen et al., 2022). Thus, we believe this finding
provides useful insights for improving the development of
different scenarios of GLOFs with higher confidence or is a
basis for ensemble testing, with the caveat that the range of
outputs may be too wide to be of practical use.

The volume of a glacial lake is one of the key param-
eters in GLOF modelling and subsequent hazard mapping.
Without field-measured bathymetry, we applied eight differ-
ent empirical equations to estimate the volume of Thorthormi
Tsho, which ranged between 2.1 x 10% and 3.80 x 103 m?.
Interestingly, this variation in Vi did not significantly in-
fluence the modelled GLOF hydraulics; Vi, was ranked as
the third least sensitive parameter in our analysis. This lim-
ited impact may be attributed to the large size of Thorthormi
Tsho (~4.35km?) and its substantial storage capacity, as es-
timated by the empirical equations used for calculating lake
volume here. Even the lower bound of the calculated Vi, ex-
ceeds 95 % of the measured volume of the glacial lake, and
the upper bound is greater than 58 of the 59 measured lake
volumes in the greater Himalaya (Zhang et al., 2023a). We
believe that Thorthormi Tsho’s large volume and expansive
area enable it to absorb and dissipate the energy from po-
tential mass movement impacts, effectively acting as a buffer
(Emmer et al., 2024). Nevertheless, while our findings sug-
gest that VI, uncertainty may have a relatively minor im-
pact on GLOF modelling for large lakes like Thorthormi
Tsho, we acknowledge that Vi, remains a critical parameter
in GLOF modelling, particularly for smaller lakes where vol-
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ume changes could have a more pronounced effect on flood
dynamics (Sattar et al., 2023).

5.4 Variations in frictional parameters

Among the frictional parameters, our result showed that
GLOF magnitude is most sensitive to the basal friction an-
gle (). For example, the variation in total discharge (47.5 %)
resulting from fluctuation in § within the experiment range
was 30 times greater than that of the internal friction angle
(¢) and over 4 times greater than that of the fluid friction
angle (Cgp). § plays a dominant role in flow dynamics and
the interaction between the flowing material and the chan-
nel bed. This direct contact means that even minor changes
in § can have substantial effects on the resistance encoun-
tered by the flowing material, thereby influencing the mobil-
ity of the flow (Pudasaini and Krautblatter, 2014a; Mergili et
al., 2018a, b). ¢ on the other hand primarily affects particle
interactions within the flowing material, whilst Cgr is a co-
efficient which quantifies the overall flow resistance within
the flow path, mainly depending on surface roughness. Our
findings indicate that prioritizing the consideration of § over
the other two frictional parameters is advisable. While the
back-calculated values might seem to be reasonable initia-
tion values for § as measuring it in the field is practically not
feasible, we recommend conducting a statistically substan-
tial sensitivity analysis using adequate sampling size and an
appropriate statistical model. Despite the relatively low over-
all impact on GLOF magnitude, Cpp notably increased the
flow’s mobility, especially beyond 12 km downstream, when
the flow became fluid-dominant (Fig. S4). This is because
Crr controls the mobility of the fluid part (Mergili and Pu-
dasaini, 2024; Mergili et al., 2017). This suggests that Cgg
could exert a substantial influence, particularly in modelling
scenarios encompassing longer flow distances.

5.5 Key points from the comparison of all parameters
and the way forward

Identifying the most accurate parameter values or opti-
mal datasets can be achieved through validation with well-
constrained historical events (Zheng et al., 2021a; Schneider
et al., 2014; Mergili et al., 2020b; Shugar et al., 2021; Sattar
et al., 2025), but there are limitations in the transferability of
these findings due to unique characteristics and initial condi-
tions of each GLOF, such as varying proportions of solid and
liquid parts. Because of this we effectively constrained how
variation in input parameter values within commonly used
ranges influences the GLOF modelling results, instead of try-
ing to determine the correct value for each parameter. Or, put
another way, if we apply our study to a specific example, we
may determine that certain factors are more important than
others for this specific example, but it would be unclear how
applicable our results are to other events. Thus, we see our
approach as the least biased towards any event and hence the
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most generally applicable approach. Our results indicating
modelled GLOFs being subjected to uncertainty from multi-
ple input parameters implies that the parameter value deter-
mined from one modelled GLOF event might not accurately
predict the behaviour of GLOFs in different regions or un-
der different circumstances (Mergili et al., 2018a, 2020b).
Therefore, while these back-analysed parameter values can
provide valuable insights, they need to be applied with cau-
tion and adapted to the specific context of each new GLOF
scenario. As a result of these multiple sources of uncertainty
in modelled GLOFs, it could pose challenges in effectively
communicating risks with communities and other stakehold-
ers (Thompson et al., 2020). We highlight that more sensi-
tive parameters should be treated carefully in future GLOF
modelling works by robustly considering associated uncer-
tainties.

Due to the high sensitivity of the model output on DEM
resolution, we emphasize the critical importance of a high-
resolution and good-quality DEM (Uuemaa et al., 2020;
Schumann and Bates, 2018), especially when modelling is
aimed at producing hazard maps with higher granularity at
the specific basin scale. DEMs should have a high spatial
resolution, have a high vertical accuracy, and be recently
produced, especially in areas of high relief and rapid land-
scape change such as in the Himalaya (Schumann and Bates,
2018). Previous studies have indicated that flood modelling
accuracy can be improved by addressing the effect of DEM
resolution and accuracy (Saksena and Merwade, 2015) or
by merging with other high-resolution and accurate DEMs
(Muthusamy et al., 2021). These methods appear viable in
the context of highly sparse coverage of high-resolution
DEMs and the unaffordability of high-resolution commer-
cial DEMs, but the modelling results may be subjected to
substantial uncertainty.

The mass movement volume and § exhibit a strong lin-
ear relationship with all output parameters. Whilst the linear
relationship does not negate the influence these parameters
have on flow characteristics, it suggests that model output er-
rors resulting from uncertainties in these parameters might be
predictable. This is essential since predicting the Vg move-
ment involved in the forward modelling is highly challenging
and determining an accurate value is impossible — the current
challenge is rather to establish a likely envelope of volumes.
However, such a prediction should be bespoke to the par-
ticular events based on the initial parameters like estimated
ice thickness, slope, and the presence of permafrost. Further-
more, such predictions must also consider other factors, such
as equifinality arising from the interaction of multiple param-
eters (Mergili et al., 2018a, b, 2020b).

The entrainment coefficient exhibits a threshold effect for
peak discharge, arrival time, and total discharge, but these
thresholds occur at different Cg values for each of these out-
put parameters. The observed threshold effects in flow char-
acteristics can likely be attributed to the initial dominance
of the fluid component, wherein the contribution of erosion
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to the flow dynamics is negligible. As the erosion rate pro-
gresses with increasing Cg values, the increasing concen-
tration of eroded material reduces the mobility of the flow,
leading to a decline in mobility of the flow. These threshold
effects suggest that once these thresholds are surpassed, the
resulting flow and arrival time demonstrate a heightened sen-
sitivity to variations in entrainment. Consequently, this sen-
sitivity may translate to the flow characteristics such as flow
depth and arrival time which are essential for hazard and risk
assessments. It is important to note that this threshold value
may vary across different GLOF events due to the diverse
combinations of other parameters.

The GLOF simulations were conducted using the r.avaflow
model due to its capability to model the entire GLOF process
chain (Mergili and Pudasaini, 2024; Mergili et al., 2017).
While we present the uncertainty involved in the full GLOF
process chain from mass movement entering the lake to
downstream propagation, we specifically explored the un-
certainty in the GLOF input parameters relevant to r.avaflow
modelling. Input parameters such as DEM datasets and the
volume and density of mass movement involved in a GLOF
event might be similar across different models. However, it
should be noted that all parameters tested here do not neces-
sarily apply to all models used for GLOF modelling.

The flow arrival time was measured from the profile lo-
cated 3, 6, and 9 km downstream of the lake since some of our
modelled GLOF terminates before proceeding further down-
stream. This is a reasonable point as human settlement down-
stream of the lake is mostly concentrated around this area.
The variation in flow arrival time might be underestimated if
the location is farther downstream from the lake.

Here we focused on nine essential parameters in r.avaflow,
which are relevant to GLOF modelling. As an open-source
modelling code, the r.avaflow model offers flexibility by al-
lowing the users to manipulate all parameters, a level of
transparency that sets it apart from many modelling codes.
However, including inbuilt modules, initial conditions, and
all flow parameters, r.avaflow has more than 30 tuneable
parameters (Mergili and Pudasaini, 2024) (Table S1). Our
choice of parameter in this study is essentially motivated
by those identified as critical and commonly modified in the
previous GLOF modelling studies and which are frequently
modified to fit with the parameter from back-calculated
events. Because of this, our sensitivity analysis might have
potentially overlooked the complexity of r.avaflow stemming
from the effect of all these parameters, let alone their inter-
action effect. Also due to the enormous computational time
and resources required for running r.avaflow, we used one-at-
a-time sensitivity analysis conducting up to 10 simulations
per parameter. While this number of simulations for each pa-
rameter produced substantially conclusive results, we do not
discount the robustness of the global sensitivity analysis em-
ploying an adequate sampling size which can adequately ac-
count for the influence of parameter interactions (Saltelli et
al., 2004). While we consider for the first time the importance
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of the uncertainty in these parameters in GLOF modelling,
in the light of all these limitations, we provide the follow-
ing recommendations. (1) We recommend that future studies
include a broader range of parameters, further advancing the
understanding of their roles in GLOF modelling. (2) This can
be achieved by initially focusing on the most sensitive pa-
rameters identified in this study and progressively expanding
the analysis to include other parameters. Adequate sample
sizes and appropriate statistical models should be employed
to ensure robust findings. (3) Given that r.avaflow is an open-
source tool under continuous development, we underscore
the implementation of features that support parallel compu-
tation for parameter interaction analyses. This advancement
would enable future studies to fully utilize high-performance
computing (HPC) resources and address complex modelling
challenges more effectively.

6 Conclusions

GLOFs present substantial dangers to communities residing
in valleys downstream of glacial lakes. GLOFs involve com-
plex cascading processes and typically occur across rugged
mountain terrains. Due to these complexities, modelling
GLOFs necessitates extensive input data, parameters, and
complex modelling codes for accurate hazard and risk as-
sessments, which is inherently challenging. However, previ-
ous studies have mostly relied on open-access data and are
grounded in a historical event introducing significant uncer-
tainties to the modelling results. In this study, we have, for the
first time, conducted a sensitivity analysis considering multi-
ple GLOF parameters and ranked these inputs based on how
their uncertainties in input values apportion to the variation
in modelling output by employing cutting-edge modelling
code, r.avaflow. Our results suggested GLOF modelling out-
puts such as peak and total discharge are substantially sensi-
tive to variation in input values of six out of nine parameters
we tested here. Specifically, the modelling outputs are the
most sensitive to the volume of mass movement entering the
lake followed by the variation in DEM datasets and the loca-
tion of the origin of mass movement entering the lake. Other
parameters like the basal friction angle and entrainment co-
efficient also showed significant sensitivity. Although lim-
ited to GLOF modelling with the r.avaflow model, our study
emphasizes that GLOF modelling results are influenced by
uncertainties stemming from various sources, underscoring
the need for careful interpretation of the modelling results.
By ranking the model parameters according to their impact
on model output, our study prioritizes model input parame-
ters for future modelling efforts, given the challenge of ad-
equately constraining multiple parameters. Additionally, this
study lays the groundwork for a thorough investigation into
the most sensitive parameters to improve our understanding
of GLOF modelling.
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Code and data availability. The ravaflow modelling code we
used here for simulating all scenarios of GLOFs can be
accessed at https://www.landslidemodels.org/r.avaflow/ (Mergili
and Pudasaini, 2024). SRTMGL3 can be downloaded from
https://doi.org/10.5069/G9445JDF (SRTM, 2013), NASADEM can
be downloaded from https://doi.org/10.5069/G93T9FD9 (NASA
JPL, 2021), and AW3D30 can be downloaded from OpenTopograg-
phy https://doi.org/10.5069/G94M92HB (JAXA, 2021). HMA-
DEM can be downloaded from the National Snow and Ice Data
Center at https://doi.org/10.5067/KXOVQIL172S2 (Shean, 2017).
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