Articles | Volume 24, issue 1
https://doi.org/10.5194/nhess-24-309-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-309-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a global impact-based forecasting model for tropical cyclones
Mersedeh Kooshki Forooshani
ISI Foundation, Turin, Italy
Marc van den Homberg
CORRESPONDING AUTHOR
510, an Initiative of the Netherlands Red Cross, the Hague, the Netherlands
Kyriaki Kalimeri
ISI Foundation, Turin, Italy
Andreas Kaltenbrunner
CORRESPONDING AUTHOR
ISI Foundation, Turin, Italy
Internet Interdisciplinary Institute, Universitat Oberta de Catalunya, Barcelona, Spain
Yelena Mejova
ISI Foundation, Turin, Italy
Leonardo Milano
UN OCHA Centre for Humanitarian Data, the Hague, the Netherlands
Pauline Ndirangu
UN OCHA Centre for Humanitarian Data, the Hague, the Netherlands
Daniela Paolotti
ISI Foundation, Turin, Italy
Aklilu Teklesadik
510, an Initiative of the Netherlands Red Cross, the Hague, the Netherlands
Monica L. Turner
UN OCHA Centre for Humanitarian Data, the Hague, the Netherlands
Related authors
No articles found.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Agathe Bucherie, Micha Werner, Marc van den Homberg, and Simon Tembo
Nat. Hazards Earth Syst. Sci., 22, 461–480, https://doi.org/10.5194/nhess-22-461-2022, https://doi.org/10.5194/nhess-22-461-2022, 2022
Short summary
Short summary
Local communities in northern Malawi have well-developed knowledge of the conditions leading to flash floods, spatially and temporally. Scientific analysis of catchment geomorphology and global reanalysis datasets corroborates this local knowledge, underlining the potential of these large-scale scientific datasets. Combining local knowledge with contemporary scientific datasets provides a common understanding of flash flood events, contributing to a more people-centred warning to flash floods.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Cited articles
Annoni, A., Eremchenko, E., Giuliani, G., Strobl, J., and Chen, M.: Digital earth: yesterday, today, and tomorrow, Int. J. Digit. Earth, 16, 1022–1072, 2023. a
Anticipation Hub: Anticipatory Action in 2022: A Global Overview, https://www.anticipation-hub.org/download/file-3249 (last access: 25 April 2023), 2022. a
Atwii, F., Sandvik, K. B., Kirch, L., Paragi, B., Radtke, K., Schneider, S., and Weller, D.: World Risk Report, https://weltrisikobericht.de/wp-content/uploads/2022/09/WorldRiskReport-2022_Online.pdf (last access: 13 October 2023), 2022. a
Baldwin, J. W., Lee, C.-Y., Walsh, B. J., Camargo, S. J., and Sobel, A. H.: Vulnerability in a Tropical Cyclone Risk Model: Philippines Case Study, Weather Clim. Soc., 15, 503–523, https://doi.org/10.1175/WCAS-D-22-0049.1, 2023. a
Bierens, S., Boersma, K., and van den Homberg, M. J.: The legitimacy, accountability, and ownership of an impact-based forecasting model in disaster governance, Politics and Governance, 8, 445–455, 2020. a
Bloemendaal, N., De Moel, H., Muis, S., Haigh, I. D., and Aerts, J. C.: Estimation of global tropical cyclone wind speed probabilities using the STORM dataset, Sci. Data, 7, 377, https://doi.org/10.1038/s41597-020-00720-x, 2020. a
Bloemendaal, N., de Moel, H., Martinez, A. B., Muis, S., Haigh, I. D., van der Wiel, K., Haarsma, R. J., Ward, P. J., Roberts, M. J., Dullaart, J. C. M., and Aerts, J. C. J. H.: A globally consistent local-scale assessment of future tropical cyclone risk, Science Advances, 8, eabm8438, https://doi.org/10.1126/sciadv.abm8438, 2022. a
Boeke, S., van den Homberg, M., Teklesadik, A., Fabila, J., Riquet, D., and Alimardani, M.: Towards predicting rice loss due to typhoons in the Philippines, Int. Arch. Photogramm., 42, 63–70, 2019. a
Boettle, M., Kropp, J. P., Reiber, L., Roithmeier, O., Rybski, D., and Walther, C.: About the influence of elevation model quality and small-scale damage functions on flood damage estimation, Nat. Hazards Earth Syst. Sci., 11, 3327–3334, https://doi.org/10.5194/nhess-11-3327-2011, 2011. a
Chaves-Gonzalez, J., Milano, L., Omtzigt, D.-J., Pfister, D., Poirier, J., Pople, A., Wittig, J., and Zommers, Z.: Anticipatory action: Lessons for the future, Frontiers in Climate, 4, 932336, https://doi.org/10.3389/fclim.2022.932336, 2022. a
Chen, R., Wang, X., Zhang, W., Zhang, W., Zhu, X., Li, A., and Yang, C.: A hybrid CNN-LSTM model for typhoon formation forecasting, Geoinformatica, 23, 375–396, https://doi.org/10.1007/s10707-019-00355-0, 2019. a
Cinco, T. A., de Guzman, R. G., Ortiz, A. M. D., Delfino, R. J. P., Lasco, R. D., Hilario, F. D., Juanillo, E. L., Barba, R., and Ares, E. D.: Observed trends and impacts of tropical cyclones in the Philippines, Int. J. Climatol., 36, 4638–4650, 2016. a
DSWD Central Office: Amendment to memorandum circular no.19 series of 2018 on the guidelines in the implementation of the emergency shelter assistance (ESA) for the typhoon “Ompong” – Affected households with damaged houses, https://www.dswd.gov.ph/issuances/MCs/MC_2018-019.pdf (last access: 13 October 2023), 2019. a
Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., Dullaart, J., Winsemius, H. C., and Ward, P. J.: A globally-applicable framework for compound flood hazard modeling, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-149, 2022. a
EM-DAT: The International Disaster Database, Centre for Research on the Epidemiology of Disasters, https://www.emdat.be/ last access: 13 October 2023), 2022. a
Fudeyasu, H., Ito, K., and Miyamoto, Y.: Characteristics of tropical cyclone rapid intensification over the western North Pacific, J. Climate, 31, 8917–8930, 2018. a
Geiger, T., Frieler, K., and Bresch, D. N.: A global historical data set of tropical cyclone exposure (TCE-DAT), Earth Syst. Sci. Data, 10, 185–194, https://doi.org/10.5194/essd-10-185-2018, 2018. a
Gettelman, A., Bresch, D. N., Chen, C. C., Truesdale, J. E., and Bacmeister, J. T.: Projections of future tropical cyclone damage with a high-resolution global climate model, Climatic Change, 146, 575–585, 2018. a
Gevaert, C. M.: Finding biases in geospatial datasets in the Global South–are we missing vulnerable populations?, in: 41st EARSeL Symposium 2022: Earth Observation for Environmental Monitoring, 13–16 September 2022, Paphos, Cyprus, https://research.utwente.nl/en/publications/finding-biases-in-geospatial-datasets-in-the-global-south-are-we- (last access: 13 October 2023), 2022. a
Hallegatte, S., Vogt-Schilb, A., Bangalore, M., and Rozenberg, J.: Unbreakable: building the resilience of the poor in the face of natural disasters, World Bank Publications, ISBN 978-1-4648-1003-9, https://doi.org/10.1596/978-1-4648-1003-9, 2016. a
Harrison, S. E., Potter, S. H., Prasanna, R., Doyle, E. E., and Johnston, D.: Identifying the impact-related data uses and gaps for hydrometeorological impact forecasts and warnings, Weather Clim. Soc., 14, 155–176, 2022. a
Hou, H., Yu, S., Wang, H., Xu, Y., Xiao, X., Huang, Y., and Wu, X.: A hybrid prediction model for damage warning of power transmission line under typhoon disaster, IEEE Access, 8, 85038–85050, 2020. a
Hsu, C.-E., Serafin, K., Yu, X., Hegermiller, C., Warner, J. C., and Olabarrieta, M.: Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2023-49, in review, 2023. a
Jones, J. N., Bennett, G. L., Abancó, C., Matera, M. A. M., and Tan, F. J.: Multi-event assessment of typhoon-triggered landslide susceptibility in the Philippines, Nat. Hazards Earth Syst. Sci., 23, 1095–1115, https://doi.org/10.5194/nhess-23-1095-2023, 2023. a
Kbah, Z. and Gralla, E.: Understanding Enablers and Barriers for Deploying AI/ML in Humanitarian Organizations: the Case of DRC's Foresight, in: Proceedings of the IISE Annual Conference & Expo 2023, 21–23 May 2023, New Orleans, Louisiana, USA, ISBN 9781713877851, 2023. a
Kim, J.-M., Son, K., and Kim, Y.-J.: Assessing regional typhoon risk of disaster management by clustering typhoon paths, Environ. Dev. Sustain., 21, 2083–2096, 2019. a
Kim, J.-S., Chen, A., Lee, J., Moon, I.-J., and Moon, Y.-I.: Statistical prediction of typhoon-induced rainfall over China using historical rainfall, tracks, and intensity of typhoon in the Western North Pacific, Remote Sensing, 12, 4133, https://doi.org/10.3390/rs12244133, 2020. a
Kooshki Forooshani, M., van den Homberg, M., Kalimeri, K., Kaltenbrunner, A., Mejova, Y., Milano, L., Ndirangu, P., Paolotti, D., Teklesadik, A., and Turner, M. L.: Companion data to Towards global impact-based forecasting model for tropical cyclones, Google Drive [data set], http://rb.gy/f27wy (last access: 13 October 2023), 2023a. a
Kooshki Forooshani, M., Turner, M., Ndirangu, P., Kaltenbrunner, A., and Teklesadik, A.: Global Tropical Storm Model, GitHub [code], https://github.com/rodekruis/GlobalTropicalCycloneModel (last access: 13 October 2023), 2023b. a
Lambert, C., Landry, S., Andreu, M. G., Koeser, A., Starr, G., and Staudhammer, C.: Impact of model choice in predicting urban forest storm damage when data is uncertain, Landscape Urban Plan., 226, 104467, https://doi.org/10.1016/j.landurbplan.2022.104467, 2022. a
Liu, D., Pang, L., and Xie, B.: Typhoon disaster in China: prediction, prevention, and mitigation, Nat. Hazards, 49, 421–436, 2009. a
Lundberg, S. and Lee, S.-I.: A unified approach to interpreting model predictions, arXiv [preprint], arXiv:1705.07874, https://doi.org/10.48550/arXiv.1705.07874, 2017a. a
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), 4–9 December 2017, Long Beach, California, USA, 4765–4774, ISBN 9781510860964, 2017b. a
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: Explainable AI for Trees: From Local Explanations to Global Understanding, arXiv [preprint], https://doi.org/10.48550/arXiv.1905.04610, 2019. a
MacLeod, D., Easton-Calabria, E., de Perez, E. C., and Jaime, C.: Verification of forecasts for extreme rainfall, tropical cyclones, flood and storm surge over Myanmar and the Philippines, Weather and Climate Extremes, 33, 100325, https://doi.org/10.1016/j.wace.2021.100325, 2021. a, b
Masinde, B., Gevaert, C., van den Homberg, M., Nagenborg, M., Gortzak, I., Margutti, J., and Zevenbergen, J.: Auditing a flood vulnerability geo-intelligence workflow for biases, submitted, 2023. a
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact of climate change on global tropical cyclone damage, Nat. Clim. Change, 2, 205–209, 2012. a
Navarro, A. and Merino, A.: Chapter 20 – Precipitation in Earth system models: advances and limitations, in: Precipitation Science, edited by: Michaelides, S., Elsevier, 637–659, ISBN 978-0-12-822973-6, https://doi.org/10.1016/B978-0-12-822973-6.00013-5, 2022. a
PAGASA: Philippine Atmospheric, Geophysical and Astronomical Services Administration, https://www.pagasa.dost.gov.ph/ (last access: 13 October 2023), 2023. a
ReliefWeb: Philippines: Anticipatory Action Framework, 2022 Revision, https://reliefweb.int/report/philippines/philippines-anticipatory-action-framework-2022-revision (last access: 13 October 2023), 2022. a
Rogers, R. F., Velden, C. S., Zawislak, J., and Zhang, J. A.: Tropical Cyclones and Hurricanes: Observations, in: Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 978-0-12-409548-9, https://doi.org/10.1016/B978-0-12-409548-9.12065-2, 2019. a
Santos, G. D. C.: 2020 tropical cyclones in the Philippines: A review, Tropical Cyclone Research and Review, 10, 191–199, 2021. a
Sedhain, S., van den Homberg, M., Teklesadik, A., van Aalst, M., and Kerle, N.: Explainable Impact-Based Forecasting for Tropical Cyclones, in preparation, 2023. a
Teklesadik, A. and van den Homberg, M.: Forecasting impacts of tropical cyclones with machine learning: A case study in the Philippines, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12917, https://doi.org/10.5194/egusphere-egu22-12917, 2022. a, b, c
Tierra, M. C. M. and Bagtasa, G.: Identifying the rapid intensification of tropical cyclones using the Himawari-8 satellite and their impacts in the Philippines, Int. J. Climatol., 43, 1–16, 2023. a
Van Aalst, M. K.: The impacts of climate change on the risk of natural disasters, Disasters, 30, 5–18, 2006. a
van Brussel, M.: Predicting rice losses due to typhoons, The case of the Philippines, Bicol region, Master's thesis, University of Amsterdam, https://arno.uvt.nl/show.cgi?fid=149411 (last access: 13 October 2023), 2021. a
van den Homberg, M., Gevaert, C., and Georgiadou, Y.: The Changing Face of Accountability in Humanitarianism: Using Artificial Intelligence for Anticipatory Action, Politics and Governance, 8, 456–467, https://doi.org/10.17645/pag.v8i4.3158, 2020. a, b
Van Lint, S., Heijmans, I. A., and van der Veen, M.: Sense-making of the Netherlands Red Cross Priority Index model: Case typhoon Haiyan, Philippines, PhD thesis, Masters dissertation), Wageningen University, the Netherlands, https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94), 2016. a
Vickery, P. J., Skerlj, P. F., Lin, J., Twisdale, L. A., Young, M. A., and Lavelle, F. M.: HAZUS-MH Hurricane Model Methodology. II: Damage and Loss Estimation, Nat. Hazards Rev., 7, 94–103, https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94), 2006. a
Wagenaar, D., Lüdtke, S., Schröter, K., Bouwer, L. M., and Kreibich, H.: Regional and Temporal Transferability of Multivariable Flood Damage Models, Water Resour. Res., 54, 3688–3703, https://doi.org/10.1029/2017WR022233, 2018. a
Wagenaar, D., Hermawan, T., van den Homberg, M. J., Aerts, J. C., Kreibich, H., de Moel, H., and Bouwer, L. M.: Improved transferability of data-driven damage models through sample selection bias correction, Risk Anal., 41, 37–55, 2021. a
Walsh, Brian; Hallegatte, S.: Measuring Natural Risks in the Philippines Socioeconomic Resilience and Wellbeing Losses, Economics of Disasters and Climate Change, 4, 249–293, https://doi.org/10.1007/s41885-019-00047-x, 2020. a
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system, Ocean Model., 35, 230–244, 2010. a
Yonson, R., Noy, I., and Gaillard, J.: The measurement of disaster risk: An example from tropical cyclones in the Philippines, Rev. Dev. Econ., 22, 736–765, 2018. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(17779 KB) - Full-text XML
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
We improve an existing impact forecasting model for the Philippines by transforming the target...
Altmetrics
Final-revised paper
Preprint