Articles | Volume 24, issue 7
https://doi.org/10.5194/nhess-24-2495-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-2495-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Nicola Loglisci
CIMA Research Foundation, Savona, Italy
Giorgio Boni
DICCA, University of Genoa, Genoa, Italy
Arianna Cauteruccio
DICCA, University of Genoa, Genoa, Italy
DISTAV, University of Genoa, Genoa, Italy
CNR-IRPI, Turin, Italy
Massimo Milelli
CIMA Research Foundation, Savona, Italy
Guido Paliaga
GISIG – Geographical Information Systems International Group, Genoa, Italy
Antonio Parodi
CIMA Research Foundation, Savona, Italy
Related authors
No articles found.
Silvia De Angeli, Lorenzo Villani, Giulio Castelli, Maria Rusca, Giorgio Boni, Elena Bresci, and Luigi Piemontese
Nat. Hazards Earth Syst. Sci., 25, 2571–2589, https://doi.org/10.5194/nhess-25-2571-2025, https://doi.org/10.5194/nhess-25-2571-2025, 2025
Short summary
Short summary
Despite transdisciplinary approaches being increasingly explored to study droughts and their impacts, their depth and breadth are yet to be fully exploited. By integrating insights from different research fields, we present five key dimensions to deepen and broaden the knowledge co-creation process for drought impact studies. Emphasizing social dynamics and power imbalances, we support hydrologists in developing more integrated, power-sensitive, inclusive, situated, and reflexive studies.
Alessandro Borre, Daria Ottonelli, Eva Trasforini, Tatiana Ghizzoni, Giacomo Zoppi, Giorgio Boni, and Silvia De Angeli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2379, https://doi.org/10.5194/egusphere-2025-2379, 2025
Short summary
Short summary
This study introduces a generalized mathematical framework to quantify physical damage to assets from concurrent and consecutive hazards over time. Applied to a Puerto Rico case study (Hurricane Maria and the 2019–2020 earthquakes), it shows that ignoring residual damage significantly underestimates total impacts caused by consecutive events. By incorporating amplification effects and recovery dynamics, the framework improves multi-hazard damage assessments for researchers and decision-makers.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Arianna Cauteruccio, Mattia Stagnaro, Luca G. Lanza, and Pak-Wai Chan
Atmos. Meas. Tech., 16, 4155–4163, https://doi.org/10.5194/amt-16-4155-2023, https://doi.org/10.5194/amt-16-4155-2023, 2023
Short summary
Short summary
Adjustments for the wind-induced bias of traditional rainfall gauges are applied to data from the Hong Kong Observatory using numerical simulation results. An optical disdrometer allows us to infer the collection efficiency of the rainfall gauge. Due to the local climatology, adjustments are limited but result in a significant amount of available freshwater resources that would be missing from the calculated hydrological budget of the region should the adjustments be neglected.
Anna Napoli, Fabien Desbiolles, Antonio Parodi, and Claudia Pasquero
Atmos. Chem. Phys., 22, 3901–3909, https://doi.org/10.5194/acp-22-3901-2022, https://doi.org/10.5194/acp-22-3901-2022, 2022
Short summary
Short summary
Aerosols are liquid or solid particles suspended in the air that can interact with radiation and clouds, modifying the meteoclimatic conditions. Using an atmospheric model, we study the climatological impact of aerosols through their effects on clouds in the Alps, a region characterized by high pollution levels in the densely populated surrounding flatlands. Results show that cloud cover, temperature, and precipitation are affected by aerosols, and the response varies with elevation and season.
M. E. Molinari, M. Manzoni, N. Petrushevsky, A. M. Guarnieri, G. Venuti, A. N. Meroni, A. Mascitelli, and A. Parodi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 405–410, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-405-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-405-2021, 2021
Cited articles
Ali, H. and Mishra, V.: Contributions of dynamic and thermodynamic scaling in subdaily precipitation extremes in India, Geophys. Res. Lett., 45, 2352–2361, https://doi.org/10.1002/2018GL077065, 2018. a
Arnone, E., Pumo, D., Viola, F., Noto, L. V., and La Loggia, G.: Rainfall statistics changes in Sicily, Hydrol. Earth Syst. Sci., 17, 2449–2458, https://doi.org/10.5194/hess-17-2449-2013, 2013. a, b
ARPAL: Meteo-hydrologic Event of 27–28/08/2023, Regional Agency for Environmental Protection of the Liguria Region, http://www.arpal.liguria.it/contenuti_statici/pubblicazioni/rapporti_eventi/2023/REM_20230827-28-arancione_temporali_vers20231028.pdf (last access: 13 July 2024), 2023 (in Italian). a
Bedrina, T., Parodi, A., Quarati, A., and Clematis, A.: ICT approaches to integrating institutional and non-institutional data services for better understanding of hydro-meteorological phenomena, Nat. Hazards Earth Syst. Sci., 12, 1961–1968, https://doi.org/10.5194/nhess-12-1961-2012, 2012. a
Bruni, G., Reinoso, R., van de Giesen, N. C., Clemens, F. H. L. R., and ten Veldhuis, J. A. E.: On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution, Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, 2015. a
Bruno, G., Pignone, F., Silvestro, F., Gabellani, S., Schiavi, F., Rebora, N., and Falzacappa, M.: Performing hydrological monitoring at a national scale by exploiting rain-gauge and radar networks: the Italian case, Atmosphere, 12, 771, https://doi.org/10.3390/atmos12060771, 2021. a, b
Cauteruccio, A. and Lanza, L. G.: The Long-Term Performance of a Rainwater Harvesting System Based on a Quasi-Bicentennial Rainfall Time Series, Sustainability, 15, 15619, https://doi.org/10.3390/su152115619, 2023. a
Cauteruccio, A., Colli, M., Stagnaro, M., Lanza, L. G., and Vuerich, E.: In-situ precipitation measurements, in: Springer Handbook of Atmospheric Measurements, edited by: Foken, T., Springer, Cham, Switzerland, 359–400, https://doi.org/10.1007/978-3-030-52171-4_12, 2021. a
CEN: Hydrometry: measurement requirements and classification of rainfall intensity measuring instruments, European Committee for Standardization, Brussels, Belgium, EN 17277:2019, 22 pp., 2019. a
Coniglio, D., Molini, A., La Barbera, P., and Lanza, L. G.: Non invasive defense structures in the urban environment: a case study, in: Proceedings of the second international symposium on flood defence, Science Press New York Ltd, New York, US, Vol. 2, 1347–1356, ISBN 1-880132-54-0, 2002. a
Du, H., Alexander, L. V., Donat, M. G., Lippmann, T., Srivastava, A., Salinger, J., Kruger, A., Choi, G., He, H. S., Fujibe, F., Rusticucci, M., Nandintsetseg, B., Manzanas, R., Rehman, S., Abbas, F., Zhai, P., Yabi, I., Stambaugh, M. C., Wang, S., Batbold, A., de Oliveira, P. T., Adrees, M., Hou, W., Zong, S., Santos e Silva, C. M., Lucio, P. S., and Wu, Z.: Precipitation from persistent extremes is increasing in most regions and globally, Geophys. Res. Lett., 46, 6041–6049, https://doi.org/10.1029/2019GL081898, 2019. a
Dunn, R. J., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T. M., Ibadullah, W. M. W., Ibrahim, M. K. I. B., Khoshkam, M., Kruger, A., Kubota, H., Leng, T. W., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., de los Milagros Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J. D., Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T., Vose, R., and Yussof, M. N. B. H.: Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3, J. Geophys. Res.-Atmos., 125, e2019JD032263, https://doi.org/10.1029/2019JD032263, 2020. a, b
Faccini, F., Luino, F., Sacchini, A., and Turconi, L.: Flash flood events and urban development in Genoa (Italy): lost in translation, in: Engineering Geology for Society and Territory, edited by: Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., and Luino, F., Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-319-09048-1_155, 2015. a
Faccini, F., Paliaga, G., Piana, P., Sacchini, A., and Watkins, C.: The Bisagno stream catchment (Genoa, Italy) and its major floods (1822, 1970 and 2014): geomorphic and land use variations in the last three centuries, Geomorphology, 273, 14–27, https://doi.org/10.1016/j.geomorph.2016.07.037, 2016. a
Faccini, F., Luino, F., Paliaga, G., Roccati, A., and Turconi, L.: Flash flood events along the west Mediterranean coasts: inundations of urbanized areas conditioned by anthropic impacts, Land, 10, 620, https://doi.org/10.3390/land10060620, 2021. a
Fedi, A., Ferrari, D., Lima, M., Pintus, F., Versace, C., and Boni, G.: The “ACRONET paradigm”, an “pen hardware” project, Open Water Journal, 2, 7, https://scholarsarchive.byu.edu/openwater/vol2/iss1/7, 2013. a
Ferrari, F., Maggioni, E., Perotto, A., Salerno, R., and Giudici, M.: Cascade sensitivity tests to model deep convective systems in complex orography with WRF, Atmos. Res., 295, 106964, https://doi.org/10.1016/j.atmosres.2023.106964, 2023. a
Fiori, E., Comellas, A., Molini, L., Rebora, N., Siccardi, F., Gochis, D. J., Tanelli, S., and Parodi, A.: Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case, Atmos. Res., 138, 13–29, https://doi.org/10.1016/j.atmosres.2013.10.007, 2014. a, b
Gharesifard, M., Wehn, U., van der Zaag, P.: Towards benchmarking citizen observatories: Features and functioning of online amateur weather networks, J. Environ. Manage., 193, 381–393, https://doi.org/10.1016/j.jenvman.2017.02.003, 2017. a
Giazzi, M., Peressutti, G., Cerri, L., Fumi, M., Riva, I. F., Chini, A., Ferrari, G., Cioni, G., Franch, G., Tartari, G., Galbiati, F., Condemi, V., and Ceppi, A.: Meteonetwork: an open crowdsourced weather data system, Atmosphere, 13, 928, https://doi.org/10.3390/atmos13060928, 2022. a
Guerreiro, S. B., Fowler, H. J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E., and Li, X.: Detection of continental-scale intensification of hourly rainfall extremes, Nat. Clim. Change, 8, 803–807, https://doi.org/10.1038/s41558-018-0245-3, 2018. a
Gumbel, E. J.: The Return Period of Flood Flows, Ann. Math. Stat., 12, 163–190, 1941. a
Huang, J., Fatichi, S., Mascaro, G., Manoli, G., and Peleg, N.: Intensification of sub-daily rainfall extremes in a low-rise urban area, Urban Clim., 42, 101124, https://doi.org/10.1016/j.uclim.2022.101124, 2022. a
Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., Ivancan-Picek, B., Kotroni, V., Llasat, M. C., Ramis, C., Richard, E., Romero, R., and Speranza, A.: MEDEX: a general overview, Nat. Hazards Earth Syst. Sci., 14, 1965–1984, https://doi.org/10.5194/nhess-14-1965-2014, 2014. a
Lanza, L. G. and Cauteruccio, A.: Accuracy assessment and intercomparison of precipitation measurement instruments, in: Precipitation Science – Measurement, Remote Sensing, Microphysics and Modeling, edited by: Michaelides, S., Elsevier, Amsterdam, the Netherlands, 3–35, https://doi.org/10.1016/B978-0-12-822973-6.00007-X, 2022. a
Li, D., Lettenmaier, D. P., Margulis, S. A., and Andreadis, K.: The role of rain-on-snow in flooding over the conterminous United States, Water Resour. Res., 55, 8492–8513, https://doi.org/10.1029/2019WR024950, 2019. a
Libertino, A., Ganora, D., Claps, P.: Evidence for increasing rainfall extremes remains elusive at large spatial scales: The case of Italy, Geophys. Res. Lett., 46, 7437–7446, https://doi.org/10.1029/2019GL083371, 2019. a, b
Lin, R., Zheng, F., Ma, Y., Duan, H., Chu, S., and Deng, Z.: Impact of spatial variation and uncertainty of rainfall intensity on urban flooding assessment, Water Resour. Manag., 36, 5655–5673, https://doi.org/10.1007/s11269-022-03325-8, 2022. a
Pagliara, P., Corina, A., Burastero, A., Campanella, P., Ferraris, L., Morando, M., Rebora, N., and Versace, C.: Dewetra, coping with emergencies, in: Proceedings of the 8th International ISCRAM Conference, Lisbon, Portugal, May 2011, 5 pp., https://www.idl.iscram.org/files/pagliara/2011/827_Pagliara_etal2011.pdf (last access: 17 July 2024), 2011.
Paliaga, G. and Parodi, A.: Geo-Hydrological Events and Temporal Trends in CAPE and TCWV over the Main Cities Facing the Mediterranean Sea in the Period 1979-2018, Atmosphere, 13, 89, https://doi.org/10.3390/atmos13010089, 2022.
Parodi, A., Ferraris, L., Gallus, W., Maugeri, M., Molini, L., Siccardi, F., and Boni, G.: Ensemble cloud-resolving modelling of a historic back-building mesoscale convective system over Liguria: the San Fruttuoso case of 1915, Clim. Past, 13, 455–472, https://doi.org/10.5194/cp-13-455-2017, 2017. a
Pelosi, A., Furcolo, P., Rossi, F., and Villani, P.: The characterization of extraordinary extreme events (EEEs) for the assessment of design rainfall depths with high return periods, Hydrol. Process., 34, 2543–2559, https://doi.org/10.1002/hyp.13747, 2020. a
Petracca, M., D'Adderio, L. P., Porcù, F., Vulpiani, G., Sebastianelli, S., Puca, S.: Validation of GPM dual-frequency precipitation radar (DPR) rainfall products over Italy, J. Hydrometeorol., 19, 907–925, https://doi.org/10.1175/JHM-D-17-0144.1, 2018. a
Pignone, F., Rebora, N., Silvestro, F., Castelli, F.: GRISO-rain, in: year-1 activity report, edited by: CIMA research foundation, Savona, Italy, 272, 353, 2010. a
Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., Bowen, G. S., Camargo, S. J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A. C., Wahl, T., and Whiteet, K.: Understanding and managing connected extreme events, Nat. Clim. Change, 10, 611–621, https://doi.org/10.1038/s41558-020-0790-4, 2020. a
Rebora, N., Molini, L., Casella, E., Comellas, A., Fiori, E., Pignone, F., Siccardi, F., Silvestro, F., Tanelli, S., and Parodi, A.: Extreme rainfall in the Mediterranean: What can we learn from observations?, J. Hydrometeorol., 14, 906–922, https://doi.org/10.1175/JHM-D-12-083.1, 2013. a
Roy, S. S. and Rouault, M.: Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa, Appl. Geogr., 39, 151–157, https://doi.org/10.1016/j.apgeog.2012.11.022, 2013. a
Sacchini, A., Ferraris, F., Faccini, F., and Firpo, M.: Environmental climatic maps of Liguria (Italy), J. Maps, 8, 199–207, https://doi.org/10.1080/17445647.2012.703901, 2012. a
Sauter, C., Fowler, H. J., Westra, S., Ali, H., Peleg, N., and White, C. J.: Compound extreme hourly rainfall preconditioned by heatwaves most likely in the mid-latitudes, Weather Clim. Extrem., 40, 100563, https://doi.org/10.1016/j.wace.2023.100563, 2023. a
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Alexander, L. V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-Marta, P. M., Gerber, M., Gong, S., Goswami, B. N., Hemer, M., Huggel, C., van den Hurk, B., Kharin, V. V., Kitoh, A., Klein T., Albert, M. G., Li, G., Mason, S. J., McGuire, W., van Oldenborgh, G. J., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., Zwiers, and Francis, W.: Changes in Climate Extremes and their Impacts on the Natural Physical Environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Cambridge University Press, 109–230, https://doi.org/10.7916/d8-6nbt-s431, 2012. a
Shen, Y. and Xiong, A.: Validation and comparison of a new gauge-based precipitation analysis over mainland China, Int. J. Climatol., 36, 252–265, https://doi.org/10.1002/joc.4341, 2016. a
Starkey, E., Parkin, G., Birkinshaw, S., Large, A., Quinn, P., and Gibson, C.: Demonstrating the value of community-based ('citizen science') observations for catchment modelling and characterisation, J. Hydrol., 548, 801–817, https://doi.org/10.1016/j.jhydrol.2017.03.019, 2017. a
Sun, Q., Zhang, X., Zwiers, F., Westra, S., and Alexander, L. V.: A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation, J. Climate, 34, 243–258, https://doi.org/10.1175/JCLI-D-19-0892.1, 2021. a
Tipaldo, G. and Allamano, P.: Citizen science and community-based rain monitoring initiatives: an interdisciplinary approach across sociology and water science, WIREs Water, 4, e1200, https://doi.org/10.1002/wat2.1200, 2017. a
Vulpiani, G., Pagliara, P., Negri, M., Rossi, L., Gioia, A., Giordano, P., Alberoni, P., Cremonini, R., Ferraris, L., and Marzano, F. S.: The Italian radar network within the national early-warning system for multi-risks management, in: Proceedings of the 5th European Conference on Radar in Meteorology and Hydrology, ERAD, Vol. 184, 5 pp., 30 June–4 July 2008, Helsinki, Finland, 2008.
Xiao, C., Wu, P., Zhang, L., and Song, L.: Robust increase in extreme summer rainfall intensity during the past four decades observed in China, Sci. Rep.-UK, 6, 38506, https://doi.org/10.1038/srep38506, 2016. a
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in...
Altmetrics
Final-revised paper
Preprint